
A GENERIC FINITE ELEMENT IMPLEMENTATION OF ARTERIAL
WALL CONSTITUTIVE LAWS

Santiago A. Urquizaa,c, Pablo J. Blancob,c, Gonzalo D. Aresa and Raúl A. Feijóob,c

aDepartamento de Mecánica, Universidad Nacional de Mar del Plata, Av. J.B. Justo 4302, B7608FDQ,
Mar del Plata, Argentina, santiago.urquiza@fi.mdp.edu.ar, http://www.fi.mdp.edu.ar/

bLaboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, Quitandinha, 25651–075,
Petrópolis, Brazil, pjblanco@lncc.br, feij@lncc.br, http://www.lncc.br/

cInstituto Nacional de Ciência e Tecnologia em Medicina Assistida por Computação Científica, Brazil,
http://www.lncc.br/prjhemo/

Keywords: Hyper-elastic, Hemodynamic, Biological Tissues, Models.

Abstract. Hyper-elastic formulations are usually employed to represent the constitutive response of
biological tissues. Particularly these formulations are often encountered in models assessing the arterial
wall behavior. A great number of distinct hyper-elastic laws can be found in the specialized literature
devised to represent, at different extents, the mechanical aspects of the arterial tissues. However, no one
can be, a priori, considered more suitable than the others. The choice depends on the specific applications
and on the type of mechanical response the corresponding models are intended to account for. Conse-
quently, it is convenient to take at hand the possibility of implementing and rapid prototyping different
constitutive laws in an easy and reliable manner. Therefore, in this work we describe how to implement
a generic Finite Element framework capable to accommodate practically any hyper-elastic material law.
This is carried out using a spatial variational formulation for the momentum equation which is linearized
by means of a Newton-Raphson scheme. The iterative algorithm is such that for a given load, the equi-
librium is reached in the deformed spatial configuration. The main feature of our approach is based on
the evaluation of the second order stress tensor and of the fourth order constitutive tangent tensor using
finite differences. That is, given a strain energy potential we compute, by means of a second order fi-
nite difference centered scheme, the first (stress) and second (tangent matrix) derivatives. In this way, a
generic computational implementation in the context of Finite Elements is achieved, making possible to
change the material behavior just changing the procedure that evaluates the elastic function and reusing
the entire numerical element structure. The developments are carried out for cuasi-incompressible ma-
terials, and some implementation issues are presented and discussed. The method is validated for two
common constitutive laws of the arterial tissues including the mechanical response of the arterial wall
considered as a fiber-reinforced multilayer material.
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1 INTRODUCTION

In recent decades there has been growing scientific interest in the development of constitutive
equations representing the mechanical behavior of arterial wall tissues. Such interest is based in
the fact that the mechanical response of arteries is related to the onset and development of certain
pathologies, such as atherosclerosis. Moreover, the need for complex equations representing the
arterial stress-strain relationship arises naturally when modeling efforts are directed to surgical
planning of vessel repairs such as bypass grafts and the placement of stents.

Modeling arterial blood flows implies a fluid-structure interaction problem between the arte-
rial walls and the blood inside them. The authors have been working from the last 10 years in
Coupled Hetero-dimensional Finite Element problems aimed to model the arterial blood flow
in compliant vessels (Urquiza et al., 2006; P. J. Blanco and Urquiza, 2007; Blanco et al., 2009;
P. J. Blanco and Feijóo, 2010). Up today, very simple wall models were considered (consis-
tent with the 1D model -independent rings models-). More realistic arterial wall models are
needed to be implemented if we are, for example, dealing with models of aneurysms onset,
development and rupture.

When implementing a computer code that takes into account appropriate constitutive equa-
tions of the arterial tissues, the developer is faced to the fact that there is a broad spectrum of
available laws representing the material behavior (A. Delfino and Meister. (1997); Holzapfel
(2000); Humphrey and Canham. (2000); M. A. Zulliger (2004)). In this sense, it is difficult to
determine a priori, which ones are the best suited for computational models of hemodynamic
problems. Observe that, it is mistimed to define in advance which equations should be imple-
mented in the program code, as this would restrict the freedom of choice of the constitutive
law which best suits the actual type of the problem to be solved. Furthermore, if the specific
material relationships are directly encoded in the Element calculations, the complete Element
must be re-coded each time the constitutive law is changed. The key aspect in order to achieve a
generic code, is to split the Geometric non-linearities from the Constitutive non-linearities and
to encapsulate the Constitutive laws in specific functions embodying the material response.

Thus, in this paper are presented the main conceptual aspects of an Finite Element imple-
mentation capable of solving problems of large deformations and displacements, coded in such
a way that changes in the constitutive equation does not affect the implementation. This is
achieved in a very simple manner through the encapsulation of the constitutive relationships in
certain functions used to calculate the tangent matrix components. This brings about a code that
separates the constitutive issues from the geometric ones at the same time that encapsulates and
simplifies the software coding of material behavior laws. In the hyper-elastic case treated here,
the stresses and tangential component of the elastic tensor is obtained by finite differences. So,
it is possible to incorporate new material only through programming a scalar function, i.e., the
hyper-elastic strain energy potential. Consequently, this impacts on the simplicity of the imple-
mentation facilitating and accelerating the way the constitutive laws can be incorporated to the
existing software.

2 EQUILIBRIUM AND LINEARIZATION

In this section, the basic large strain mechanical equilibrium equations for an hiper-elastic
material (Gurtin, 1981) representing the arterial tissues are presented.



2.1 Spatial and material equilibrium expressions

Considering the arterial tissues as a solid material, the mechanical equilibrium is defined by
the following variational problem: find us ∈ U s such that the stress state σs is such thatˆ

Ωs

σs · ˆ̇εs dΩs =

ˆ
Ωs

ρsfs · v̂s dΩs +

ˆ
ΓNs

gs · v̂s dΓs ∀v̂s ∈ V̂s, (1)

where ρs is the density, ΓNs is the Neumann surface in its spatial configuration whose coor-
dinates are ys = xs|ΓNs

. Here, fs is a volume loading defined in the current configuration
Ωs, while gs is a surface loading acting on the surface ΓNs. The linear manifold U s and its
associated linear space V̂s are

U s = {us ∈ H1(Ωs); us = ūs on ΓDs},
V̂s = {v̂s ∈ H1(Ωs); v̂s = 0 on ΓDs}.

(2)

In the present work we assess the mechanical equilibrium by means of the linearized version
of the spatial formulation (1).

2.2 Linearization procedure

For the linearization we make use of the Newton-Raphson method. The linearization of
variational formulation (1) is carried out by writing it in the material counterpart, linearizing
there and going back to the spatial configuration. For the simplicity in the presentation we
disregard the nonlinearities arinsing from the nature of the loadings fs and gs.

Notice that the variational formulation (1) can be written in abstract form as: find us ∈ U s

such that
〈RΩs(us), v̂s〉Ωs = 0 ∀v̂s ∈ V̂s, (3)

where in the operator RΩs the constitutive response and the loading are taken into account.
Also this operator depends on the spatial coordinates xs, and that is why we use the index Ωs to
introduce this dependence. The Newton-Raphson linearization applied to this expression reads
as next: find δus ∈ U s such that

〈RΩs(us), v̂s〉Ωs +
d

dτ
〈RΩs+τδΩs(us + τδus), v̂s〉Ωs+τδΩs

∣∣∣∣
τ=0

= 0

∀v̂s ∈ V̂s, (4)

where δΩs denotes the variation of the domain due to the displacement δus. Therefore, the
linear problem consists in finding δus ∈ U s such that

〈DΩs(us)δus, v̂s〉Ωs = −〈RΩs(us), v̂s〉Ωs ∀v̂s ∈ V̂s, (5)

where DΩs(us) is the tangent operator. In the most general situation this operator accounts for
constitutive, geometrical and loads nonlinearities. The tangent operator arises from the second
term in the left hand side of (5), so we must provide this expression in order to characterize all
the elements present in such equation (5).

After a little of algebra we find that

〈DΩs(us)δus, v̂s〉Ωs =

ˆ
Ωs

[
1

det Fs

Fs

(
∂Sm
∂Em

)
s

FT
s εs(δus)FsF

T
s · ˆ̇εs(v̂s)

+ (∇xsδus)σs · (∇xsv̂s)

]
dΩs. (6)



Using the notation

Dsεs(δus) =
1

det Fs

Fs

(
∂Sm
∂Em

)
s

FT
s εs(δus)FsF

T
s , (7)

we formulate the linear problem as follows: find δus ∈ U s such that
ˆ

Ωs

[
Dsεs(δus) · ˆ̇εs + (∇xsδus)σs · (∇xsv̂s)

]
dΩs =

−
ˆ

Ωs

σs · ˆ̇εs dΩs +

ˆ
Ωs

ρsfs · v̂s dΩs +

ˆ
ΓNs

gs · v̂s dΓs ∀v̂s ∈ V̂s. (8)

The first term in the left hand side is derived from the constitutive response, and in components
it reads

[Ds]ijkl =
1

det Fs

[Fs]ia[Fs]jb[Fs]kc[Fs]ld

((
∂Sm
∂Em

)
s

)
abcd

. (9)

In turn, the second term in the left hand side is the contribution to the tangent matrix of the ge-
ometrical nonlinearity resulting from the fact that the configuration is unknown. Evidently, the
fourth order tensor Ds and the Cauchy stress tensor σs depend upon the current configuration,
that is Ds = Ds(us) and σs = σs(us).

Given the tangent matrix and the stress state, problem (8) constitutes a single step in the
iterative algorithm by which the equilibrium is achieved.

2.3 Strain-stress relations and tangent operators

The relation between strain and stress in hyperelastic materials like those treated in the
present work is accounted for through the definition of the strain energy function. This po-
tential is a function of the current strain level. Then, let us consider the classical energy strain
function ψ depending upon the Green-Lagrange deformation tensor ψ(Em). Therefore, the
Piola-Kirchhoff stress tensor Sm is obtained as

Sm =
∂ψ

∂Em

, (10)

from which it is
σm =

1

det Fm

Fm
∂ψ

∂Em

FT
m. (11)

In turn, the stiffness tensor (fourth order tensor denoted by Km) associated with a certain level
of strain, say Em, is obtained by doing

Km =
∂Sm
∂Em

=
∂2ψ

∂Em∂Em

, (12)

which, according to this notation, it is described in the material configuration.
With this the expressions of the tangent matrix and Cauchy stress in the current configuration

and in components are the following

[Ds]ijkl =
1

det Fs

[Fs]ia[Fs]jb[Fs]kc[Fs]ld

((
∂2ψ

∂Em∂Em

)
s

)
abcd

. (13)

[σs]ij =
1

det Fs

[Fs]ik

((
∂ψ

∂Em

)
s

)
kl

[Fs]jl. (14)



Observe that, for a given configuration for which we have Fm at hand (and so Em) we would
have to compute the tangent matrix Km and the stress tensor Sm deriving ψ using (12) and (10),
respectively. Then, these quantities must be consistently transformed to the current configura-
tion using equations (13) and (14), respectively.

In view of the wide range of constitutive characterizations for arterial tissues found in the
literature, the implementation of the finite strain problem becomes untractable from the point of
view of the effort invested in coding expressions like the ones seen above in ad hoc situations.
It is at this point that the present work presents its major contribution. We propose computing
Ds and σs by finite differences, as will be seen in Section 3.

3 CALCULATION OF THE TANGENT MATRIX AND THE STRESS STATE

As said above, we need to provide the expressions for Ds and σs, or DD
s and σDs , respec-

tively. Whitin the context of biomechanics modeling several potential functions are available to
represent the constituve behavior of tissues. Indeed, the tissue engineering area has flourished in
the last ten years, which has been put in evidence through the proliferation of new constitutive
expressions acounting for different sorts of fiber-reinforced material (M. A. Zulliger (2004)).
This issue may become a major disadvantage if the computational implementation is not ade-
quately coded. This is because as soon as a different potential function is required for modelling
purposes, the element programming code should be completely rewritten if the expressions of
its derivatives are embedded and spreaded along the entire code. In this manner, it is convenient
to encapsulate the expresions for the energy potential and its derivatives behind software inter-
faces that isolate it from the main part of the element code where the general geometric aspects
are considered. Proceding in this manner, it easely concluded that the programing structure can
be further simplified if only the expresion for the elastic energy is required and its first and sec-
ond derivatives are evaluated by finite differences. In view of this, in this section we introduce
a finite difference approach for the calculation of the tangent matrix and the stress tensor. Con-
sequentely, the constitutive behavior is easily characterized just by providing the strain energy
potential ψ (or ψD for incompressible materials), being the tangent and stress tensors com-
puted through several evaluations of this potential. Thus, the entire element code is re-used to
evaluate the mechanical equilibrium, and the only procedure to be changed when implement-
ing a new constitutive law is that for the few lines where the expression of the potential ψ is
coded. Evidently, this generic programming concept makes the constitutive model prototyping
a quick and easy step towards assessing and comparing different constitutive models, which in
the other hand, are in continuous and increasing development as can be observed in the current
biomechanics literature.

As stated above, the finite difference expresion for the constituve tensor and the second
Piola-Kirchhoff must be given as derivatives of the potential function.

Let us consider that the constitutive behavior is given by the strain energy potential ψ, which
is a function of the Green-Lagrange tensor Em. Then, the quantities to be evaluated are the
following

∂ψ

∂Em

and
∂2ψ

∂Em∂Em

. (15)

The finite difference approach consists in evaluating the potential ψ at different strains denoted
by Em + ∆Em. It is important to note that being E a symmetric tensor the corresponding
functional form of ψ must be symmetrized or, alternatively, only symmetric perturbations of E
must be considered. Consequentely, to evaluate the derivatives, E will be perturbed preserving



its symmetry. Thus we define the following nine symmetric second order tensorial pertubations:

(∆KL)ij =
1

2
(δiKδjL + δiLδjK) ε

where (i, j) are the indices of the tensor ∆KL, and K,L fixed indicate its perturbed com-
ponents. Observe that the above expression represent a second order tensor whose non nule
components are for the indices (k, l) and (l, k) and is not the expression for a fourth order
tensor. Then it is posible to introduce the usefull abreviated notation:

ψ(±KL) = ψ(E±∆KL)

ψ(±KL,±MN) = ψ(E±∆KL ±∆MN)

ψ(0) = ψ(E)

And finally it is possible to give the finite difference aproximation for S as

Skl =
∂ψ

∂Ekl
' ψ(+KL) − ψ(−KL)

2ε
. (16)

In the same manner, the diagonal components of K, denoted by (K)klkl = Kklkl, ∀k, l, are given
by

Kklkl =
∂2ψ

∂E2
kl

' ψ(+KL) − 2ψ(0) + ψ(−KL)

ε2
. (17)

Analogously, the cross derivatives (sayk 6= m or l 6= n) are calculated as follows

Kklmn =
∂2ψ

∂Ekl∂Emn
'

ψ(+KL,+MN) −
[
ψ(−KL,+MN) + ψ(+KL,−MN)

]
+ ψ(−KL,−MN)

4ε2
. (18)

It is quite obvious that the above expresions are equivelent to aproximate the potential ψ as a
quadratic function around E, implying a moving least squares cuadratic aproximation with the
minimun number of points required to become well defined. Embeding this ideas in a Finite
Element code is a straightforward task. As the energy potentials are smooth in the components
of E, the precision in the derivative calculation is not an obstacle as far as the evaluation may
be made for small enough ε without any numerical impediments. So, a unique code can deal
with virtually any hiperelastic material by means of a “black box” procedure being called by the
element code with the unique purpose of evaluating ψ(E). In consequence, if another material
law is needed, this last procedure may be easely changed as required.

4 TEST CASES

4.1 Test Case 1: Human carotid artery modeled with strain energy function proposed by
Delfino

Brief description of proposed constitutive law
This simplified arterial wall constitutive law due to A. Delfino and Meister. (1997) represents

an isotropic rubber-like potential for human carotid arteries wich is able to model the typicall



stiffening effects in the high pressure domain. As we know, the strain energy function (SEF)
depends on the system´s invariants. In this case, the first invariant (I1 = C : I) is the only
variable of the SEF:

ψ =
a

b

{
exp

[
b

2

(
I1 − 3

)]
− 1

}
Where a > 0 is a stress-like material parameter and b > 0 is a non-dimensional parameter.
For more details of the mathematical aspects of this formulation, see A. Delfino and Meister.

(1997) and Holzapfel (2000).
Model Analysis
Here we have modeled a human carotid artery as a 3D simulation example. Geometrical data

and characteristic parameters of the SEF were extracted from the literature cited above.
In table 1 we show the material and geometrical data used in the simulation:

Material Parameters Geometrical Data
a[kPa] 44.2 Inner Radius [mm] 3.1
b 16.7 External Radius [mm] 4.0

Table 1: Test Case 1. Material parameters and geometrical data

Mesh
A linear tetrahedral mesh was used for the solid, and linear triangles on the surface mesh.

It contains 32 elements on the perimeter, 4 elements on the radial direction, and 2 elements
on the axial direction. This makes a total of 1536 tetrahedral elements for the solid layer, 128
triangular elements in the interior and exterior surfaces and 256 triangular elements on the top
and bottom surfaces.

Figure 1: Test Case 1. Mesh

Boundary Conditions
Dirichlet boundary conditions were imposed on nodes of top and bottom surfaces in order

to ensure the pre-stretch requisites in each case. To achieve this, we set the value of the axial
displacements on the corresponding nodes.



Newmann boundary conditions were imposed in the inner surface, setting a constant value
for the pressure.

Results
This test was carried out with 20% pre-stretch and 20 kPa pressure. The figure 2 shows the

deformed configuration and the color scale represents the radial displacements.
Finally, figure 3 shows Pressure vs Inner Radius curves obtained in this work compared with

published data (Holzapfel, 2000).

Figure 2: Test Case 1. 3D Example Simulation - 20% pre-stretch and Pressure =20[kPa]

Figure 3: Test Case 1. Pressure vs Inner Radius

4.2 Test Case 2: Rat carotid artery modeled as a multi-layer fiber reinforced material.

Brief description of proposed constitutive law



In this model, Holzapfel (2000) proposed to treat each layer of arterial wall as an isotropic
composite reinforced by collagen fibers that act in two main directions. The material parameters
are associated with the histological structure of the arterial wall.

Since the artery walls are composed of different layers, each material layer will respond ac-
cording to an elastic potential. It is assumed that each lamella responds with similar mechanical
characteristics. Therefore the same form of the strain energy function is used in both layers, ob-
viouslly, with a different set of parameters in each case. The SEF is separated into an isotropic
component, associated with the elastin fibers, and an anisotropic component, which represents
the behavior of the collagen fibers. As a result, we can write the SEF as follows:

ψ(C, a01, a02) = ψiso(C) + ψaniso(C, a01, a02)

Where C is Cauchy tensor and a01, a02 the unit vectors that define the collagen fibers direc-
tions.

As we know, the potential can only be dependent of the system´s invariants; here we show
structure tensors in accordance with the large strain formulation and incorporate two tensors
wich contain the information of the collagen fiber directions. Additionally, this information can
be put in tensorial form taking the tensorial product of the fiber directions, say, Ai(i = 1, 2) =
aoi ⊗ aoi. For more details, see Holzapfel (2000). Taking into account the following invariants

I1(C) = trC;

I4(C, a01) = C : A1; I6(C, a02) = C : A2

it is possible to express the SEF as follows:

ψiso(I1) =
c

2
(I1 − 3)

ψaniso(I4, I6) =
k1

2k2

∑
i=4,6

{
exp[k2(I i − 1)2]− 1

}
Model Analysis
In order to validate the model we simulate a segment of a rat carotid artery and compare the

results with the published data found in Holzapfel (2000).
The arterial segment is modeled as a two-layer thick-walled tube with axial pre-stretch. A

representative sketch is shown in figure 4. As mentioned before, each layer uses 3 parame-
ters that define the material response. Since arterial walls can be considered as incompresible
materials, we use a cuasi-incompresible formulation via sufficient large volumetric modules of
elasticity.

Geometrical data and material parameters :
Inner radius: Ri = 0.71[mm]
Media thickness: EM = 0.26[mm]
Adventitia thickness: EA = 0.13[mm]
The material parameters can be found in table 2 (see (Holzapfel, 2000) for addittional de-

tails).



Figure 4: Test Case 2. Layer scheme

Material Parameters
Parameter Media Adventitia
c[kPa] 3.0000 0.3000
k1[kPa] 2.3632 0.5620
k2 0.8323 0.7112
β 61° 28°

Table 2: Test Case 2. SEF Parameters

Mesh
A linear tetrahedral mesh was used for the solid, and linear triangles on the surface mesh. It

contains 48 elements on the perimeter, 2 elements on the radial direction for each layer, and 2
elements on the axial direction. This makes a total of 1152 tetrahedral elements for each solid
layer, 192 triangular elements in the interior and exterior surfaces and 384 triangular elements
on the top and bottom surfaces. The mesh is shown in figure 5.

Figure 5: Test Case 2. Mesh

Boundary Conditions
Dirichlet boundary conditions were imposed on nodes of top and bottom surfaces in order

to ensure the pre-stretch requisites in each case. To achieve this, we set the value of the axial
displacements on the corresponding nodes.

Newmann boundary conditions were imposed in the inner surface, setting a constant value
for the pressure.



Results
This test was carried out with 90% pre-stretch and 10 kPa pressure. Figure 6 shows the

media layer in the deformed configuration. The color scale represents the radial displacements.
Finally, figure 7 shows Pressure vs Inner Radius curves obtained in this work compared with

published data (Holzapfel, 2000).

Figure 6: Test Case 2. 3D Example Simulation (media layer) - 90% pre-stretch and Pressure =10[kPa]

Figure 7: Test Case 2. Pressure vs Inner Radius

5 CONCLUSIONS

In this work we have briefly presented a generic implementation of a Large Strain Formu-
lation capable to deal with virtually any constitutive hiper-elastic law of the arterial wall. The
formulation was tested comparing the results with published data for two different cases, both



with good agreement. The approach presented herein provides useful means to represent arte-
rial wall models in an easy a flexible way. Additional work will be required to adapt the present
formulation to the truly incompressible case, a subject that is part of the ongoing work of the
authors. Our future work in this area will include coupling this formulation with a Navier-
Stokes model in compliant domains in order to realistically address problems like the onset and
development of aneurisms.
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