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Orientadores: Pablo Javier Blanco, Diretor de Tese
Raúl Antonino Feijóo, Co-Diretor de Tese

Esta tese aborda dois problemas de relevância na modelagem do sistema cardiovascular
humano. O primeiro tema consiste no desenvolvimento de um enfoque abrangente para
a simulação do escoamento sanguíneo e sua interação com a parede arterial, e o segundo
tópico é a caracterização in-vivo de tensões e deformações residuais na parede arterial
baseada em dados fornecidos por imagens médicas.

De maneira específica, em relação ao primeiro tópico, um marco de modelagem é
proposto para o tratamento de problemas hemodinâmicos com um alto grau de realismo,
apresentando uma combinação de diferentes técnicas de modelagem para levar em conta i)
o fato que as geometrias iniciais obtidas a partir de imagens médicas são correspondentes
a um sistema de carregamentos não nulos, definido pela existência da pressão interna
no lumen e de tensões axiais localizadas nos contornos artificiais do segmento arterial;
ii) o problema de interação fluido-estrutura; iii) o complexo comportamento constitutivo
da parede arterial; iv) a interação do segmento de interesse com o resto do sistema
cardiovascular; e v) a influência dos tecidos circundantes; e vi) a existência de tensões
residuais.

Para a abordagem das questões descritas acima, o problema mecânico de precar-
regamento é resolvido em uma primeira etapa, encontrando a configuração material de
carregamento nulo onde as equações constitutivas são usualmente definidas. Isto é realizado
encontrando a solução do problema de equilíbrio mecânico da estrutura arterial dada,
considerando que o vaso está submetido a um nível de pressão de base e uma tração axial
nos contornos artificiais. Vale a pena ressaltar que esta tração axial é correspondente a um
nível de pre-estiramento previamente definido.

Uma vez que a configuração de referência é obtida, a simulação fluido-estrutura
3D é realizada, acoplada com um modelo dimensionalmente reduzido do resto do sistema
cardiovascular. Um acoplamento forte através de iterações de ponto fixo é empregado
para representar a interação fluido-estrutura, equanto o acoplamento entre modelos di-
mensionalmente heterogêneos é conseguido usando um método tipo Broyden. Em relação
à modelagem constitutiva, um modelo hyperelástico reforçado com fibras é considerado.
Além disso, através da análise de vários exemplos numéricos, a sensibilidade com relação
à existência de precarregamentos é quantificada para remarcar a relevância desta questão.
Tais resultados indicam que o estado de tensão da parede arterial é fortemente influenciado
pela existência de precarregamentos. Assim sendo, levar em consideração esse estado de
precarga é fundamental para a predição de tensões no tecido arterial.

Em relação ao segundo tópico, um marco conceptual é apresentado para estimação
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de tensões e deformações residuais. Consideramos que os dados são um conjunto de
configurações de um segmento arterial, as quais poderiam ser obtidas a partir do uso
de técnicas de adquisição e , processamento e segmentação de imagens. Utilizando um
enfoque variacional, são apresentadas as equações de equilíbrio mecânico para as configu-
rações conhecidas, acentuando o papel desempenhado pelas deformações residuais. Neste
contexto, apresenta-se um funcional custo que mede o desbalance mecânico que é originado
se um campo de deformações residuais inconsistente é admitido. Este funcional custo
está baseado no resíduo generalizado das equações variacionais previamente mencionadas.
Como consequência, o problema de estimação de deformações residuais é transformado
em um problema de otimização, no qual se procura minimizar o funcional custo proposto.
Com este objetivo, neste trabalho de tese são considerados dois métodos, um método de
gradiente e um algoritmo de ponto interior para problemas que apresentam restrições.

A metodologia proposta é testada em três exemplos numéricos baseados em soluções
manufaturadas: um barra engastada, um cilindro de parede grossa, e uma artéria aorta
composta por três camadas. Os resultados obtidos são promissores e sugerem que o método
apresentado (ou variantes baseadas nas ideias aqui mostradas) junto com técnicas ade-
quadas para a adquisição de imagens podem conduzir à identificação in-vivo de deformações
residuais.
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This thesis is concerned with two major problems arising in the modeling of the cardio-
vascular system. The first topic consists in a comprehensive approach for the simulation
of arterial blood flow and its effect on the stress state of the arterial wall, and the second
topic is concerned with the in-vivo characterization of residual deformations in arterial wall
tissues, based on data provided by medical images.

Specifically, regarding the first topic, an original modeling framework is proposed for
the treatment of hemodynamic problems with increased realism, featuring a combination of
several modeling techniques in order to account for i) the fact that the initial (image-based)
geometry corresponds to a configuration which is at equilibrium with an internal pressure
acting over the lumen, and with tethering forces located at the artificial (axial) boundaries
delimiting the arterial region of interest; ii) the fluid-structure interaction problem; iii) the
complex constitutive behavior of the arterial wall; iv) the influence of surrounding tissues;
v) the interaction of the vessel with the rest of the cardiovascular system; and iv) the
influence of residual stresses.

In order to tackle the issues described above, the preload mechanical problem is
solved in a first stage, finding the zero-load material configuration which is employed to
define suitable constitutive equations. This is performed by finding the solution for the
mechanical equilibrium of the given image configuration considering the vessel at this state
to be loaded by an internal baseline pressure and an axial traction (caused by tethering
forces) at the artificial boundaries. It is worthwhile to mention that this axial traction
is such that a previously defined pre-stretch level is considered on the equilibrium image
configuration.

Once the reference configuration is obtained, the complete 3D fluid-structure inter-
action simulation is carried out, coupled with a dimensionally reduced 1D model of the
rest of the cardiovascular system. Strong coupling via fixed-point iterations is achieved for
the fluid-structure interaction, while the dimensionally heterogeneous coupling is achieved
through a Broyden method. Regarding the constitutive modeling, a fiber-reinforced hy-
perelastic constitutive law is considered. Furthermore, through the analysis of several
numerical examples, the sensitivity with respect to the existence of the preload stresses is
assessed to quantify the importance of this issue. These results indicate that the stress
state of the arterial wall is strongly influenced by the existence of preload. Therefore, the
consideration of such preload state is mandatory for the prediction of stresses in arterial
tissue.

For the second topic, a conceptual framework is presented for the in-vivo estimation



of residual deformations and stresses. As a given data, a set of known configurations for
an arterial segment is considered, which can potentially be obtained from medical imaging
techniques. The mechanical equilibrium equations corresponding to such configurations are
introduced through a variational approach, highlighting the role of the residual deforma-
tions and associated stresses. In this context, a cost functional is proposed to measure the
imbalance of the mechanical setting arising from the consideration of inconsistent residual
deformations, based on the generalized residuals of the associated variational equations.
Then, the characterization of residual deformations becomes an optimization problem,
focused on the minimization of this cost functional. For this purpose, a simple gradient
descent method and an interior-point algorithm for constrained optimization are explored
in this work.

The proposed methodology is tested using three numerical examples based on man-
ufactured solutions, a simple clamped bar, a thick-walled cylinder and a three-layered
aorta artery. The obtained results are promising and suggest that the present method
(or variants based on the present ideas), when coupled with adequate image acquisition
techniques, could successfully lead to the in-vivo identification of residual deformations.
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Chapter 1

Introduction

1.1 Motivation

Motivated by the high worldwide impact of cardiovascular diseases in human health
(Mendis et al, 2011; Heidenreich et al, 2011), the last decades have seen both biomedical
and scientific computing communities being compelled to increase their efforts towards
improving computational tools and simulation-based techniques targeting the diagnosis and
treatment of cardiovascular diseases under patient-generic and patient-specific paradigms.

As a consequence, these communities have entered a virtuous cycle of reciprocal
feedback, leading each time to increasingly realistic modeling of the complex biological
structures and the associated physiological processes occurring at all levels of biological
organization (Southern et al, 2008). In particular, computational simulations are being
used to assess causes, predict the development and optimize treatments and interventions
of several pathologies in the cardiovascular system (CVS). This is due to the abilities
and potentialities of such techniques in yielding relevant information, with a great level
of detail and accuracy. Moreover, individualized -patient specific- computational models
are attractive for physicians and scientists, considering the potential benefits (as power-
ful prognosis tools), the low cost implied in simulations and their associated impact on
minimizing invasive procedures (Castro et al, 2011; Lewis and Kerckhoffs, 2010).

In this context, it is worth to remark that understanding the blood flow dynamics and
the mechanical behavior of the arterial wall provides valuable information to gain insight
into the mechanobiological processes related to the onset and evolution of cardiovascular
pathologies. This fact motivates the seeking of increased realism in cardiovascular sim-
ulations. This is the general goal of this thesis, targeting the study of specific vascular
segments (with particular emphasis in understanding the behavior of the arterial wall
tissue) and their integration with the rest of the CVS. To illustrate this paradigm, Figure
1.1 shows an arterial segment corresponding to a middle cerebral artery and its location
within an anatomically detailed model of the arterial network (Blanco et al, 2014a).

An adequate modeling of the entire arterial system (as an integrated functional
unit) requires the identification of subsystems representing specific zones and/or particular
functional aspects. In this analytic way, a mathematical model must be properly set for
each subsystem in order to handle the underlying (biological, mathematical and numerical)
complexity. Once mathematical models for these components are properly established, it
is necessary to integrate them again into a set of coupled units to recreate the original
dynamic interactions.

Computational biomechanics models formulated at the continuum level are highly
dependent on (i) the simplifying hypotheses about the interaction of the subsystems which
are being considered, (ii) the accuracy of the geometric representations of anatomical and
functional structures, and (iii) the data that characterizes the behavior of materials involved

1
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Figure 1.1: Segmentation of an arterial segment obtained from medical images corresponding to
a middle cerebral artery bifurcation, featuring an aneurysm. Vascular segment location identified
in the anatomically detailed arterial network (ADAN) model (Blanco et al, 2014a).

in the modeling process, for instance, blood and the vascular soft tissues.
In this connection, the development of comprehensive hemodynamic models is fun-

damental to accurately describe the blood flow dynamics and the mechanical behavior of
the arterial wall. As it will be seen, this topic constitutes one of the major objectives
of this thesis. Such models must be able to account for the complex composition of the
arterial wall tissue, as well as for the interaction with the blood flow and the surrounding
bodies.

It has been repeatedly demonstrated that it is key to provide these models with an
accurate spatial description of the vascular region to be studied and adequate parameters
describing the material behavior. On the one hand, powerful imaging technologies are avail-
able (such as IVUS, OCT and 4DMRI) that can offer precise patient-specific information
regarding the geometry of vascular structures. On the other hand, current hemodynamic
models rely on the information provided by the specialized literature (mostly obtained
from ex-vivo studies) for the incorporation of material parameters.

Reciprocally, data assimilation techniques (which have proven to be successful in
other areas) are being developed for cardiovascular modeling (see Wittek et al (2013);
Bertagna et al (2014) and references therein) to provide simulations with patient-specific
parameters characterizing the soft tissue behavior. Remarkably, there are no contributions
directed at the in-vivo estimation of residual stresses in arterial walls.

1.2 State of the art

In this section, the key mechanical aspects that are mandatory to account for a
truly realistic representation of the physiological conditions in hemodynamic simulations
are described. For each topic, relevant contributions are highlighted and the state of the
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art is presented. Finally, these articles, together with other major contributions of several
research groups working in the area, are contextualized in Table 1.1

1.2.1 Boundary conditions on non-physical interfaces

When a portion of an artery is modeled via a full 3D approach, it must somehow be
artificially isolated from the rest of the circulatory system. The simulation results within
such arterial district are sensible to the coupling of such isolated segment with the rest of
the vascular tree. In fact, a sensitivity analysis presented by Blanco et al (2009) evidenced
that the local and global hemodynamics are mutually dependent. This fact suggests that
neglecting the interactions between local 3D models with the remaining vasculature leads
to the prediction of inconsistent hemodynamic environments which can greatly affect the
analysis derived from the predictions of the models. Moreover, the model sensitivity to
changes in local/global parameters (e.g. the compliance of the vessels) is also compromised
if standalone 3D models are employed.

A suitable approach is to perform an embedding of the 3D model in a dimensionally
reduced model (0D-1D for instance) of the entire arterial system to take into account
global/local mutual hemodynamic interactions via consistent coupling conditions at the
interfaces between these models. This issue was introduced by Formaggia et al (1999)
and Formaggia et al (2001) and later exhaustively employed in (Blanco et al, 2007, 2009,
2010; Urquiza et al, 2006; Vignon-Clementel et al, 2006; Migliavacca et al, 2006; Kim et al,
2009a).

1.2.2 Constitutive modeling of the arterial wall

The wall structure of a typical elastic artery is composed of three distinct layers:
the intima, the media and the adventitia. Figure 1.2 displays a diagrammatic model of
the composition of such layers. The intima is the innermost layer, consisting of a single
layer of endothelial cells supported by a thin basal membrane, a subendothelial layer. The
media layer is composed by the internal elastic lamina (that separates the media from
the intima layer) and a series of circumferentially oriented smooth muscle cells and a
helical arrange of collagen fibers embedded in a elastin matrix. These series of smooth
muscle cells are separated by elastic laminae. The adventitia is the outermost layer of
the arterial wall and consists mainly of fibroblasts and fibrocytes (cells that synthesize
collagen and elastin), histological ground and bundles of collagen fibrils forming a fibrous
tissue (Holzapfel and Ogden, 2010a). The adventitia layer is separated from the media
layer by the external elastic lamina. It is worthwhile to note that, from the mechanical
point of view, the relevant constituents are the elastin matrix, the collagen fibers and the
smooth muscle cells.

It is widely accepted that the effects of elastin and collagen can be effectively modeled
as a fiber reinforced hyperelastic material (see Holzapfel and Ogden (2010a) and references
therein). Several constitutive models have been proposed and validated against experi-
mental data. Currently, the most extensively used constitutive model is the transversely
isotropic model proposed in Holzapfel and Gasser (2000), where an exponential behavior
is considered for the collagen fibers to simulate the progressive recruitment of such curled
fibers. Nonetheless, more comprehensive approaches are available. As examples, in Gasser
et al (2006), it is further explored the influence of the dispersion of the fiber orientations,
and in Hill et al (2012), information regarding the progressive recruitment process of such
fibers is introduced. The smooth muscle cells incorporate two additional mechanisms to the
arterial wall behavior, an active and a passive action. The passive mechanism introduces
a characteristic viscoelastic effect in the soft tissue, and the active component infuses a
response to biomechanical stimuli (e.g. blood pressure changes), hormonal stimuli, neural
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stimuli and drugs (Zulliger et al, 2004b).

Figure 1.2: Diagram of the major components of an elastic artery, showing the three arterial wall
layers: intima, media and adventitia. Figure adapted from Holzapfel and Gasser (2000).

1.2.3 Constitutive modeling of the blood

Blood is a concentrated suspension of formed cellular elements including red blood
cells (RBCs), white blood cells and platelets. It is well known that the blood can be
characterized as a non-Newtonian fluid. This non-Newtonian behavior is a consequence of
the influence of the erythrocytes (RBCs) that form branched three dimensional microstruc-
tures at low shear rates and are able to experience deformations. At high shear rates RBCs
tend to align with the flow direction and it can be considered that blood flow presents a
constant viscosity (Robertson et al, 2008).

As high shear rates are encountered in most parts of the arterial system for healthy
individuals, modeling the blood flow as a Newtonian fluid is a reasonable simplifying as-
sumption (Fischer and Rossman, 2009). Actually, the blood exhibits a non-Newtonian
behavior in stagnation regions which are typically found in geometrical singularities such
as highly curved bifurcations, aneurysms and post-stenotic districts. In this sense, several
studies addressing blood flow in aneurysms (Cebral et al, 2005; Fischer and Rossman, 2009)
reported a low sensitivity of the hemodynamic variables (wall shear stress, oscillatory shear
index, mean velocity) with respect to the constitutive equations employed to model the
blood. However, it has been shown that in coiled aneurysms the choice of the constitutive
model heavily influences the outcome of the simulations (Morales et al, 2013).

Based on (Fischer and Rossman, 2009), in this work it will be considered that the
blood behaves as a Newtonian fluid.

1.2.4 Fluid-structure interaction

Other relevant aspect to be considered is the adequate treatment of the deformation
of the domain occupied by the fluid (blood) caused by movement of the distensible arterial
walls. It has been pointed out that in some cases the wall shear stress (WSS) may be quite
overestimated if a rigid arterial wall assumption is considered in blood flow simulations
(pure CFD modeling) Hsu and Bazilevs (2011). This stresses the need for including the
wall movement in flow simulations. Moreover, this issue goes beyond pure fluid dynam-
ics, fluid-structure interaction (FSI) formulations must necessarily be considered if proper
determination of stresses within the arterial tissue is required.
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Fluid-structure interaction has been largely studied, and a great deal of methods is
available to tackle this problem, most of them based on the Arbitrary Lagrangian-Eulerian
(ALE) formulation introduced by Hughes et al (1981) and firstly applied in the context
of hemodynamics by Taylor et al (1998). Iterative and monolithic approaches have been
proposed for the FSI system. In this regard the literature is vast, and we limit to mention
some relevant works in the field, e.g. (Deparis et al, 2003, 2006) for the former and
(Crosetto et al, 2011; Wu and Cai, 2014; Joosten et al, 2009) for the latter.

1.2.5 Surrounding tissues

The arterial vessel is surrounded by tissues, which restrains the movement of the
arterial wall, altering the deformation processes, and thence affecting the stress state.
Most of current FSI studies neglect this fact considering that the outer surface of the
arterial wall is free of loads, leading to unrealistic motions of the artery, as shown in
Malossi et al (2013). The main obstacle relies in the determination of the forces acting
on the outer boundary. Furthermore, determining the outer boundary itself is a hard task
as sometimes there is no clear distinction between adventitia and surrounding tissue. A
recent article Moireau et al (2012) deals with this issue by modeling the external tissues
as a viscoelastic medium. Reported results show improvements in the accuracy when
comparing the predicted results (both considering and neglecting the surrounding tissue
interaction) with experimental information extracted from medical images.

1.2.6 Initially loaded configuration

Patient-specific computational models are based on in-vivo geometrical structures
obtained from medical image acquisition devices (like MRI and CT). Those images corre-
spond to configurations of anatomical structures in 3D space that are not load-free. On
the contrary, those spatial configurations are subjected to the hemodynamic forces acting
at the internal wall of the artery and, as afore stated, to forces acting at the external
boundary of the vessel due to the interaction with the surrounding media.

In general, in the available literature this aspect is usually disregarded, and only
in few publications (see Table 1.1) the configuration initially obtained from the medical
images is considered to be equilibrated by an inner baseline pressure. However, there is
no clear exposition on how this pressure level is selected. A more realistic approach would
be to estimate this inner pressure taking into account the data acquisition technology and
the selected reconstruction algorithm; for example, in some cases the given information is
a mean over time of the positioning of the artery in the complete cardiac cycle (e.g. in 3D
rotational angiographies Orth et al (2009); van Rooij et al (2008)) while in other studies
it is possible to synchronize the image acquisition with the patient’s electrocardiogram,
obtaining images corresponding to a constant time window within the cardiac pulse (e.g.
in intravascular ultrasound studies Mintz et al (2001); Honda and Fitzgerald (2008)).

The most common approach to compute the stress state in this preloaded configura-
tion is usually referred to as inverse design analysis (Govindjee and Mihalic, 1996, 1998) or
inverse elastostatics (Lu et al, 2007, 2008; Zhou et al, 2010) and focuses on finding the zero
load configuration; a different approach is proposed in Gee et al (2009, 2010) introducing
pre-stresses and pre-strains in the image-based geometry. It is important to remark that
the first methodology offers a more comprehensive approach to the subject and enables
the computation of the elastic energy stored in the tissue, that, as pointed out by Ferruzzi
et al (2015), plays a relevant role in arterial wall functioning.

It is also worthwhile to mention that, as stated by Gee et al (2009), neglecting the
fact that the image-based geometry corresponds to a loaded state and taking a simplified
approach (considering them as load-free configurations being the most common case) leads
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to unrealistic evaluation of the quantities of interest such as strain, stress as well as other
internal variables involved in the constitutive description.

1.2.7 Residual stresses

Consider the scheme introduced in Figure 1.3, showing three different configurations
of an arterial wall segment. Here, Ωiv represents the in-vivo configuration, i.e. a config-
uration corresponding to the arterial wall segment at equilibrium with hemodynamic and
external loads (the image-based configuration). The zero-load (or load-free) configuration
Ω0 is also presented, which represents the state corresponding to a self-equilibrated configu-
ration, where all external loads (both hemodynamic loads and loads acting on the external
boundary) have been removed. This configuration is neither stress-free nor strain-free
(Fung, 1991; Fung and Liu, 1989). The notation σr is introduced to refer to the residual
stress state induced by the residual deformation field, say Fr. Note that the stress state
σ in Ωiv is dependent on these residual deformations and the deformation field originated
as response to the load state, here denoted as Fu. The presence of this residual stress
can be manifested performing seizures to the arterial segment. For example, when a cut
is performed axially, arteries show a retraction of its length and radial cuts result in an
opening angle. If additional cuts are performed, the material will further release stored
energy until a virtual stress-free (and strain-free) state is achieved. We will denote this
state as the virtual configuration Ωv of the tissue. Moreover, since there is no energy stored
in the body in this configuration, it is possible to regard it as a material configuration in
the classical sense used to define constitutive laws in continuum mechanics.

Ωiv,σ(Fu,Fr)
(i) In-vivo loaded configuration

σtet

σtet

Hemodynamic load

Ω0,σ
r(Fr)

(ii) Zero-load configuration

Ωv

(iii) Virtual configuration

Figure 1.3: Representative scheme introducing (i), the in-vivo configuration Ωiv, corresponding
to an in-vivo state of the arterial segment, subjected to hemodynamic and external loads, (ii) the
zero-load configuration Ω0, featuring a self-equilibrated residual stress state, and (iii) the stress-free
virtual configuration Ωv, a disaggregated state of the arterial wall tissue that serves as a material
reference and has no energy stored.

The stretching observed in an arterial segment when it is removed from the rest of



1.2. State of the art 7

Ω0

Zero-load configuration
σr(Fr)

σtet

Ωiso

Zero-load isolated configuration
σr

d(Fr
d)

Ωv

Virtual configuration (stress-free)

Fr
d

vst,F
r
st

Figure 1.4: Scheme to represent the decomposition of the residual deformation tensor Fr when
considering the pre-stretching component Fr

st. Configuration Ωiso represents an unloaded and
isolated arterial segment, at equilibrium with the residual stress σr

d(Fr
d). Displacement ust maps

points from Ωiso into Ω0 inducing the residual deformation Fr
st; then, the characterization of the

total residual deformation tensor is given by Fr = Fr
stF

r
d.

the CVS is referred to as pre-stretch. This pre-stretch is responsible for a component of the
residual deformations. In fact, consider Figure 1.4, which introduces the zero-load isolated
configuration Ωiso, representing an unloaded arterial segment detached from the rest of the
CVS. This configuration features a reduced length (when compared to the in-vivo state)
and a different residual stress state, say Fr

d. The displacement field ust maps points from
Ωiso into Ω0, inducing a residual deformation Fr

st. Then the total residual deformation
at Ω0 is given by Fr = Fr

stF
r
d. Note that, opposed to Fr

st, the deformation Fr
d is, in the

present conceptual framework, not related to a continuous displacement field. Following a
similar procedure, it could be possible to decompose Fr

d into several components resulting
from the different deformations caused by the energy release in each cut.

Most efforts to account for residual stresses in arterial wall models are based on the
characterization of the deformations resulting from performing seizures in the tissue as
described above. Among these, we highlight the contributions of Holzapfel and Gasser
(2000), with the first in-depth proposal of this idea; Holzapfel et al (2007) and Holzapfel
and Ogden (2010a) performing a layer separation and incorporating further detail to the
residual deformation description by accounting for the different behavior presented in each
constituent layer; and Pierce et al (2015) displaying a generalization of this technique,
mapping information obtained from ex-vivo experiments into patient-specific geometries.
It is important to note that the use of these strategies is debatable for the translation
of experimental information available in the literature to complex geometries, such as the
corresponding to arterial bifurcations or aneurysms. In the present context it is also impor-
tant to recall the alternative approaches taken in Taber and Humphrey (2001) and Bellini
et al (2014), where residual stresses are introduced through growth processes considering
that each mechanically relevant component is synthesized and deposited in the tissue with
a predefined deformation level. All these approaches rely on experimental ex-vivo measure-
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ments, making difficult to devise extensions of those methodologies to in-vivo quantification
of residual stresses as required for patient specific simulations.

We emphasize that the introduction of residual stresses in hemodynamic simulations
is still an open problem and, up to the author’s knowledge, there is no general methodology
available to obtain patient-specific information regarding the residual stress state in a
vascular region.
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Article Dim. het. coupling FSI Finite strains Histological model Preloaded state External tissue Tethering stress

Grinberg and Karniadakis
(2008)

X - - - - - -

Vignon-Clementel et al (2006) X - - - - - -

Urquiza et al (2006)
Blanco et al (2010)
Blanco et al (2013b)

X (α) - - - - -

Torii et al (2006)
Torii et al (2008)
Wu and Cai (2014)

- X X - - - -

Lu et al (2007)
Lu et al (2008)

- - X - X - -

Holzapfel and Gasser (2000)
Holzapfel and Ogden (2010b)

- - X X (β) - X

Crosetto et al (2011)
Reymond et al (2013)

- X X - - X -

Kim et al (2009b)
Kim et al (2009a)

X X X - - - -

Gee et al (2009)
Gee et al (2010)

- - X X X - -

Blanco et al (2013a)
Malossi et al (2013)

X X X - - X -

Tezduyar et al (2010)
Hsu and Bazilevs (2011)
Vavourakis et al (2011)

- X X X X - -

Moireau et al (2012) - X X - X X -

Pierce et al (2015) - - X X X - X

Proposed modeling
framework

X X X X X X X

Table 1.1: Summary of main contributions in modeling issues (see text for further explanation). (α) Using simple 1D models for the arterial wall. (β)This work
is based on ex-vivo measures, the initial configurations are truly unloaded.
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1.3 Objectives

In view of the context revisited above, the general objective of this thesis is placed
on the modeling of blood flow dynamics and its interaction with the arterial wall. That is,
it is aimed at studying blood flow in (possibly) patient-specific arterial vessels and their
integration with the rest of the CVS, emphasizing the analysis of the mechanical regime
of the arterial tissue. Specifically, the particular goals of this work are the following

• to develop and implement an integrative modeling framework capable of dealing with
the inherent complexities of hemodynamic problems, addressing the modeling of 3D
FSI models with 1D systemic blood flow models and accounting for the effect of
existing loads in vascular geometries derived from medical images, and

• to present a novel variational approach for the in-vivo characterization of residual
stresses and deformations.

1.4 Contributions

In line with the first main objective of this thesis, a modeling framework that in-
tegrates the aspects listed in Section 1.2 is presented. In summary, the strategies to be
addressed here will include a full 3D model of a vascular district coupled with a dimen-
sionally reduced model of the rest of the CVS. The dimensionally heterogeneous coupling
between models of reduced dimensions with full 3D zones is formulated in a consistent
variational framework, following the developments described in Blanco et al (2007). In
particular, the 3D model accounts for the solution of the blood flow problem in a mov-
ing domain due to the wall compliance. The resulting FSI problem is treated with the
ALE method for the fluid problem. The solid problem (arterial wall) is considered to be
in the finite strain regime assuming a hyper-elastic material behavior, subjected to the
hemodynamic loads exerted by the blood flow, a viscoelastic media surrounding the vessel
and a tethering stress state acting at the artificial cross-sectional boundaries (interfaces
between 3D and 1D models). The preload problem is also addressed, considering known
a pre-strained configuration (for example, the diastolic configuration) and such problem
consists in finding the load free reference configuration. Tethering forces are also considered
in the preload problem such that a certain level of pre-stretch is achieved. This fact will
allow us to take into account the pre-stretch component (Fr

st) of the residual deformation
state. Moreover, the variational equilibrium for the solid problem is stated in a given
deformed/loaded configuration, which is considered to be extracted from medical images,
and the corresponding formulations are consistently linearized.

Related to the development of this modeling framework, the contribution is twofold:

(i) to present and discuss the conceptual background behind the variational formulations
which are required in the hemodynamics field when a realistic mechanical analysis of
arterial walls is sought,

(ii) to introduce, for the first time, hemodynamic simulations integrating the key as-
pects detailed in Section 1.2, aiming to gain insight on the interplay among modeling
ingredients and underlying hypotheses, and their impact in the assessment of the
mechanical state of arterial walls.

Additionally, four numerical experiments are analyzed that show the relevance and
significance of the proposed integrative approach. Specifically, a sensitivity analysis is
performed assessing the relevance of taking into account the complete load state acting
over the arterial wall, evidencing the importance of considering both the internal pressure
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and residual pre-stretch deformations to appropriately characterize the mechanical state
of the arterial wall.

As a contribution related to the second main objective of this thesis, a novel concep-
tual framework that makes the estimation of residual deformations (and associated stresses)
practicable in conditions resembling in-vivo scenarios is presented. This framework com-
bines a variational modeling approach and the kind of data that could be retrieved from
medical images. As it will be observed, this formulation consists in the definition of a
cost functional which is able to measure the mechanical imbalance due to the assumption
of inconsistent residual deformations at a given set of equilibrated configurations of the
arterial wall. Thence, the characterization of residual stresses becomes an optimization
problem where the residuals of the involved variational equations are minimized by finding
the appropriate residual deformation field. In this context, three numerical examples are
presented that evidence the suitability and consistency of this novel approach, showing
that this methodology is able to identify, with great accuracy, residual stress fields inspired
by experimental ex-vivo measures on real human arterial vessels.

1.5 Scientific production

In this Section, the publications derived from this thesis are listed.

Articles in peer-reviewed journals

• Blanco, P.J., Ares, G.D., Urquiza, S.A. & Feijóo, R.A. On the effect of preload and
pre-stretch on hemodynamic simulations: an integrative approach. Biomechanics and
Modeling in Mechanobiology. DOI 10.1007/s10237-015-0712-y (in Press)

• Ares, G.D., Blanco, P.J., Urquiza, S.A. & Feijóo, R.A. Identification of residual
stresses in multi-layered arterial wall tissues using a variational framework (Submit-
ted to Biomechanics and Modeling in Mechanobiology).

Book chapters

• Urquiza, S.A., Blanco, P.J., Ares, G.D. & Feijóo, R.A. Implementation issues of
large strain formulations of hyperelastic materials for the modeling of arterial wall
mechanics. In: R.A. Feijóo, A. Ziviani & P.J. Blanco.. (Org.). Scientific Computing
Applied to Medicine and Healthcare. 1ed., Petrópolis, 2012, v. , p. 79-120.

Complete articles in conference proceedings

• Aranciaga, J., Caballero, D.E., Parisi, N.A., Lombera, G., Blanco, P. J., Ares, G.D.
& Urquiza, S. A. Implementación de una formulación de bajo orden para materiales
incompresibles en hemodinámica. ENIEF 2014, Congreso sobre Métodos Numéricos
y sus Aplicaciones, 2014, San Carlos de Bariloche. Mecánica Computacional, 2014.
v. 33. p. 2635-2666

• Urquiza, S. A., Parisi, N.A., Caballero, D.E., Lombera, G., Ares, G.D., Blanco, P. J.,
& Feijóo, R.A. Un Modelo No Lineal de la Dinámica del Flujo Sanguíneo y la Pared
Arterial. ENIEF 2013, Congreso sobre Métodos Numéricos y sus Aplicaciones, 2013.
Mecánica Computacional. v. 32. p. 3885-3902.

• Urquiza, S.A., Blanco, P.J., Ares, G.D. & Feijóo, R.A. A generic finite element
implementation of arterial wall constitutive laws. MECOM Bicentenario (MECOM
2010 - CILAMSE 2010), 2010, Buenos Aires. Mecánica Computacional, 2010. v. 29.
p. 5973-5984
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Abstracts in conference proceedings

• Ares, G.D., Blanco, P.J., Urquiza, S.A. & Feijóo, R.A. Comprehensive computa-
tional modeling of brain aneurysms: from preload analysis to 3D-1D FSI simulations.
ESMC 2015. 9th European Solid Mechanics Conference, 2015, Madrid. Proceedings
of ESMC 2015, 2015.

• Ares, G.D., Blanco, P.J., Urquiza, S.A. & Feijóo, R.A. Assessing preload and pre-
stretch impact on hemodynamic simulations. In: ENIEF 2014, Congreso sobre Méto-
dos Numéricos y sus Aplicaciones, 2014, San Carlos de Bariloche. Mecánica Com-
putacional, 2014.

• Urquiza, S.A., Blanco, P.J., Ares, G.D. & Feijóo, R.A. Implementation of the FSI
problem in hemodynamics considering large strains. In: Congreso sobre Métodos
Numéricos y sus Aplicaciones (ENIEF 2011), 2011, Rosario, Argentina. Anais do
ENIEF 2011, 2011.

1.6 Structure of the thesis

The thesis is structured as follows. Chapter 2 presents an introduction to the key
continuum mechanics concepts and models that integrate the proposed comprehensive
modeling framework. There, the topics addressed include finite-strain 3D solid mechan-
ics, 3D fluid dynamics in deformable domains and dimensionally reduced models for the
circulatory system. Next, in Chapter 3 the practical strategies adopted to tackle each
one of the key aspects in hemodynamic modeling are described. Chapter 4 shows the
application of the proposed integrative modeling framework to several study cases, which
include two numerical experiments in idealized arterial domains (a straight pipe and a
standardized carotid bifurcation) and two patient-specific cases (a common carotid artery
and a middle cerebral artery, the latter featuring an aneurysm). Following, in Chapter 5, a
variational framework for the characterization of residual deformations in arterial wall tis-
sues is developed, and in Chapter 6 three numerical examples are explored to demonstrate
the capabilities of the identification strategy. Finally, concluding remarks and future work
are outlined in Chapter 7.



Chapter 2

Continuum mechanics models

2.1 Introduction

In this chapter the key mechanical concepts and models from the continuum me-
chanics field are introduced. These represent the groundwork for the development of the
present work, focusing on the modeling of the arterial wall structure and its interaction
with the blood flow.

In a first stage, an introduction to solid mechanics in the finite strain regime is
exposed, presenting the kinematic bases along with the mechanical equilibrium concept.
In this context, two variational problems (the preload and forward problems) are presented
considering the same equilibrium equations. The difference between these two problems
relies in the known data, which amounts to knowing the configuration of the body. For
both cases the detailed procedure to perform a consistent linearization through the Newton-
Raphson method is presented.

In a second stage, the Arbitrary Lagrangian Eulerian (ALE) formulation for the
Navier-Stokes equations is summarized, aimed at modeling the blood flow dynamics in
three-dimensional moving domains.

Finally, the dimensionally reduced model which accounts for the description of the
complete cardiovascular system is presented. It is composed by one-dimensional models
for the main arterial vessels and zero-dimensional representations of the remaining part of
the cardiovascular components.

2.2 Solid mechanics at finite strains

2.2.1 Kinematics

Let B be a body for which we identify in the Euclidean space E its spatial configu-
ration Ωs. Points in this domain are denoted by xs. A material or reference configuration
will be referred to as Ωm, with points xm. This material configuration is considered
as load-free but may be subjected to residual deformations (RDs) and, consequently, to
residual stresses (RSs). Although the mathematical developments in this Chapter do not
account for residual deformations, this issue will be extensively discussed in Chapter 5.

Remark 2.1. In the context of hemodynamics, Ωs may refer to a diastolic, systolic or
any other loaded state of the arterial wall. And it stands for the configuration at which
mechanical equilibrium is achieved for a given load condition, which in the present context
is characterized by blood internal pressure and tethering forces.

The deformation of the body at the spatial configuration is characterized through

13
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the diffeomorphic mapping χm that relates both configurations, that is

χm : Ωm → Ωs,

xm 7→ xs = χm (xm)
(2.2.1)

The displacement field which maps the material points into the spatial configuration is
denoted by u. Then, we can also characterize the displacement from Ωm onto Ωs and its
inverse by the following expressions,

xs = χm (xm) = xm + um, (2.2.2)

xm = χs (xs) = χ−1
m (xs) = xs − us, (2.2.3)

where subscripts m and s denote the descriptions of the fields in the material and spatial
configurations, respectively. That is, for the displacement vector field it is

us(xs) = (um(xm))s = um
(
χ−1
m (xs)

)
. (2.2.4)

This notation will be used extensively in the forthcoming developments. The gradients of
these mappings are then given by

Fm = ∇mχm = I +∇mum, (2.2.5)
fs = ∇sχs = I−∇sus, (2.2.6)

where ∇m and ∇s denote the gradients with respect to material and spatial coordinates,
respectively. Observe that

(
F−1
m

)
s

= fs and
(
f−1
s

)
m

= Fm.
It is worthwhile to recall that the deformation gradient tensor Fm characterizes the

transformation of a differential segment dxm through

dxs = Fmdxm, (2.2.7)

and its determinant measures the volumetric change of a differential volume element
dΩm when deformed into dΩs via

dΩs = det FmdΩm. (2.2.8)

To exclude the possibility of nullifying volume dΩs, detFm > 0 must be satisfied. Moreover,
for incompressible media it follows that

detFm = 1, (2.2.9)

which represents a reasonable kinematical constraint in the case of dealing with biological
tissues (Fung, 1993).

Let us know introduce the Green-Lagrange strain tensor Em, which is a measure of
the deformation of a segment dxm when transformed into dxs , i.e.

dxs · dxs − dxm · dxm =
(
FT
mFm − I

)
dxm · dxm = 2Emdxm · dxm, (2.2.10)

thence
Em =

1

2

(
FT
mFm − I

)
. (2.2.11)

Also, the so-called left and right Cauchy-Green strain tensors can be defined as Cm =
FT
mFm and Bm = FmFT

m, respectively. Note that the left Cauchy-Green and the Green
Lagrange tensors are related by Cm = 2Em − I.
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2.2.2 Kinematically admissible fields

In the forthcoming sections, the definition of the mechanical equilibrium will be given
in terms of the Virtual Power Principle (Germain, 1973). In such context, it is fundamental
to define the sets of kinematically admissible displacement.

Consider the domain Ωs bounded by ∂Ωs = ∂ΩD
s ∪ ∂ΩN

s , where ∂ΩN
s and ∂ΩD

s

denote the Neumann and Dirichlet boundaries, respectively. At the Dirichlet boundary,
displacements us are prescribed. Then, displacement field us is defined in the linear
manifold of kinematically admissible functions Us, given by

Us =
{

us ∈Ws; us = us|∂ΩDs

}
, (2.2.12)

which is associated to the linear space of kinematically admissible variations Vs given by

Vs =
{

ûs ∈Ws; ûs = 0|∂ΩDs

}
. (2.2.13)

In the above sets, Ws is a Hilbert space with functions regular enough for mathematical
operations to make sense. In the classical setting, it is Ws = H1(Ωs).

2.2.3 Equilibrium equations

Consider the setting presented in Figure 2.1, showing the load-free and stress-free
material configuration Ωm (that can be thought as the zero-load isolated configuration
Ωiso introduced in Section 1.2.7) and the spatial configuration Ωs with boundary ∂ΩN

s =
∂ΩW

s ∪ ∂ΩE
s ∪ ∂ΩA

s , where ∂ΩW
s represents the wall interface between the vessel and the

blood, ∂ΩE
s is the external surface, and ∂ΩA

s =
⋃C
i=1 ∂ΩA,i

s stands for the set of C cross-
sectional -non-physical- ring-like boundaries. These non-physical boundaries are generated
by the isolation of a given arterial vessel from the rest of the cardiovascular system. Unless
stated otherwise, in all these boundaries Neumann conditions will be assumed. This spatial
configuration will equivalently be called equilibrium configuration, see Remark 2.1.

ΩsΩm

u

t = 0, σR = 0 t = ts

∂ΩE
s ∂ΩW

s

∂ΩA,1
s∂ΩA,2

s

Figure 2.1: Mechanical equilibrium setting, displaying the load-free and stress-free material con-
figuration Ωm and the spatial (equilibrium) configuration Ωs subjected to the load state ts in
∂ΩN

s = ∂ΩW
s ∪ ∂ΩE

s ∪ ∂ΩA
s

In a general case, the load state of the arterial segment can be characterized as
follows: the forces exerted by the blood flow over ∂ΩW

s , i.e. the traction tWs ; a load tEs
acting on the external surface ∂ΩE

s due to the presence of surrounding tissues, and a set
of tethering tractions tA,is acting over ∂ΩA,i

s , i = 1, . . . , C. For notational ease, we group
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the tethering tractions into tAs , which is defined over the whole ∂ΩA
s . We will consider

that the load exerted by external tissues, tEs is an active traction, that is, it depends on
the solution of the problem (see Section 3.3). It is important to note that the traction due
to hemodynamic forces tWs is a follower load, and can be split into normal and tangential
components as follows tWs = tW,ns ns + tW,ts where tW,ns = tWs · ns is the normal component
of the traction and tW,ts is the tangent vector which can be characterized as tW,ts = Pst

W
s ,

with Ps = (I− ns ⊗ ns) being the orthogonal projection operator over the plane with unit
normal vector ns. Note that we can trivially write tW,ts = Pst

W,t
s .

The variational statement of the Virtual Power Principle will be presented consid-
ering the incompressibility as a relaxed kinematical constraint. Then, an independent
variable (the pressure in the body) emerges as a Lagrange multiplier to accommodate this
distributed constraint. Furthermore, we neglect inertia forces and other forces per unit
volume such as gravity. Thus, the mechanical problem is considered to be quasi-static.

Next, we provide the statement of two variational formulations of mechanical equilib-
rium whose difference is rather subtle: the known domain from which the analysis departs.
In Problem 1 below, the given known domain is the domain at which the body is at
equilibrium (the spatial domain Ωs), and the unknown domain is the reference domain
used to define the constitutive equations (the material domain Ωm). In Problem 2, the
given domain is the material domain, while the unknown one is the spatial domain.

Problem 1 (Preload problem). Given the equilibrium configuration Ωs and the load
defined in this spatial configuration

(
tWs , t

E
s , t

A
s

)
, the variational equations that govern this

problem are those corresponding to the mechanical equilibrium expressed in the spatial
domain. Hence, the problem reads: given (tW,ns , tW,ts , tEs , t

A
s ), find (us, λs) ∈ Us × Ls such

that σs satisfies
∫

Ωs

[−λs divs ûs + σs · εs (ûs)] dΩs =

∫

∂ΩWs

Pst
W,t
s · ûs d∂ΩW

s +

∫

∂ΩWs

tW,ns ns · ûs d∂ΩW
s +

∫

∂ΩEs

tEs · ûs d∂ΩE
s +

C∑

i=1

∫

∂ΩA,is

tA,is · ûs d∂ΩA,i
s ∀ûs ∈ Vs, (2.2.14)

∫

Ωs

[1− det F−1
s ]λ̂s dΩs = 0 ∀λ̂s ∈ Ls, (2.2.15)

where εs(û) = 1
2(∇sû +∇sûT ) is the linearized strain rate tensor in the spatial configura-

tion, Ls = L2 (Ωs), and Us and Vs are, respectively, the linear manifolds of kinematically
admissible functions and the space of kinematically admissible variations as previously
defined in (2.2.12) and (2.2.13). Also, σs is the Cauchy stress tensor which is related to
the second Piola-Kirchhoff stress tensor Sm through

σs =
1

det Fs
Fs(Sm(Em))sF

T
s . (2.2.16)

where the Piola-Kirchhoff stress tensor is a function of the Green-Lagrange deformation
tensor (see equation (2.2.11)) via a constitutive equation (see Section 3.6).

Problem 2 (Forward problem). When the material configuration Ωm is known, the
variational equations (2.2.14)-(2.2.15) can be evaluated in terms of such reference domain,
yielding what is known as the forward problem. In fact, the variational equations that
govern the equilibrium problem expressed now in the material domain Ωm are written as
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follows: given a load system described in the material description, (tW,nm , tW,tm , tEm, t
A
m), find

(um, λm) ∈ Um × Lm such that

∫

Ωm

[
−λm

(
F−Tm · ∇mûm

)
det Fm + Sm(Em) · Ė (ûm) dΩm

]
=

∫

∂ΩWm

(
tW,nm F−Tm nW0 · ûm

)
det Fm d∂ΩW

m +

∫

∂ΩWm

PmtW,tm · ûm|F−Tm nW0 |det Fm d∂ΩW
m

+

∫

∂ΩEm

(
tEm · ûm

)
|F−Tm nE0 |det Fm d∂ΩE

m +
C∑

i=1

∫

∂ΩA,im

(
tA,im · ûm

)
|F−Tm nA,i0 | det Fm d∂ΩA,i

m

∀ûm ∈ Vm, (2.2.17)
∫

Ωm

(det Fm − 1)λ̂m dΩm = 0 ∀λ̂m ∈ Lm, (2.2.18)

where Ė(ûm) = 1
2 [FT

m(∇mûm)+(∇mûm)TFm], n0 is the unit normal vector in the material
configuration, Pm is the projection operator in material description, which is given by

Pm = I− F−Tm nW0
|F−Tm nW0 |

⊗ F−Tm nW0
|F−Tm nW0 |

, (2.2.19)

and Um,Vm and Lm are the counterparts of Us,Vs and Ls, respectively, with functions
defined in Ωm.

Remark 2.2. The Forward problem stated above is the classical equilibrium problem in
solid mechanics when the material configuration is known, while the preload problem is a
non-traditional formulation of the very same variational equation when the equilibrated (de-
formed) spatial configuration is known. Therefore, as expected, both mechanical problems,
which are non-linear, are governed by the same equilibrium equation, and the difference
simply lies in the available data for the problem, and therefore in the corresponding lin-
earized expressions.

Remark 2.3. The Preload problem stated above is a mandatory step towards characterizing
the mechanical state, i.e. the stress state, of the arterial wall at the spatial configura-
tion (a baseline geometry, e.g. the end-diastolic geometry) with a given so-called baseline
hemodynamics loads (e.g. the end-diastolic pressure and tethering stresses). The material
configuration is required because it is used to define constitutive equations. Such baseline
configuration is usually obtained from medical images, while the baseline hemodynamics
loads can be easily estimated either from measurements or from the domain knowledge.
Just after solving the Preload problem, the baseline mechanical state (the stress state due
to preload) is adequately determined and the Forward problem involving fluid-structure
interaction and dimensionally-heterogeneous coupling can be solved to determine the equi-
librium configuration for other hemodynamics loads occurring during the cardiac cycle.
This is the reason why we need the use of the two forms associated with the evaluation of
the mechanical equilibrium. Note that this Preload problem is solved only once, for a given
set of loads, and, then, the Forward problem is solved with a time-evolving set of loads given
by the action of the blood flow during the cardiac cycle driven by the pulsation of the heart
imposed through the coupling with the dimensionally reduced model of the cardiovascular
system.
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2.2.4 On the hypothesis of negligible inertial forces

We emphasize that the inertial term could be easily incorporated in the solid problem.
However, for the arterial districts investigated in Chapter 4 the stresses associated to
inertial forces can be disregarded without affecting the predictive capabilities of the model
of the arterial wall. This is easily justified by a straightforward nondimensionalization of
the equations (consider for simplicity a cylindrical geometry), which shows that the non-
dimensional number αin, representing the ratio between inertial and circumferential stresses
arising within the cardiac cycle is of the order of 10−6. In fact, αin can be approximated
by

αin =
ρw∆rih

T 2
p pi

, (2.2.20)

where ri denotes the inner radius, h the wall thickness, pi the transmural pressure, ∆ri the
inner radius variation, ρw the density of the wall and Tp the time it takes to achieve the peak
pressure from diastole, all these quantities are corresponding to the current configuration.
Given the following values within the physiological range, ri = 0.4[cm], ∆ri = 0.2ri,
h = 0.2ri, pi = 15 · 104[ dyn

cm2 ], ρw = 1[ gr
cm3 ] and Tp = 0.1[s], through equation (2.2.20)

αin = 4.267 · 10−6 is obtained. This also holds for the Preload problem, but in order to
account for the inertial term the velocity of the body at the equilibrium configuration
should be also given. Nevertheless, the inertial term will be negligible due to the image-
based geometries being corresponding to diastolic relaxed states with low wall velocities
and accelerations.

2.2.5 Linearization procedure of the equilibrium problem

For the two non-linear equilibrium problems formulated in Section 2.2.3, i.e. (i) the
mechanical equilibrium when the material configuration Ωm is known (see (2.2.14) and
(2.2.15)), and (ii) the mechanical equilibrium when the spatial configuration Ωs is known
(see (2.2.17) and (2.2.18)), the corresponding linearized forms via the Newton method are
here detailed. Furthermore and for the sake of simplicity, in these derivations we limit
our presentation to evaluate the contribution of the follower loads (tW,ns and tW,ts ) and a
general static load tNs acting on a boundary ∂ΩN

s .

Newton-Raphson method for Preload Problem (data Ωs; unknown Ωm)

For the preload problem the linearization of the variational expressions (2.2.14)-
(2.2.15) is here presented. In compact form Problem 1 reads: find (us, λs) ∈ Us ×Ls such
that {

〈Ms(us, λs), ûs〉Ωs = 0 ∀ûs ∈ Vs
〈Ns(us), λ̂s〉Ωs = 0 ∀λ̂s ∈ Ls

(2.2.21)

We recall that for this case Ωs is fixed and for each Newton-Raphson iteration a new
material configuration Ωk

m is obtained, with points xkm = xs − uks . The Newton-Raphson
linearization applied to the above expression at the point

(
uks , λ

k
s

)
∈ Us×Ls (displacement

and pressure fields at the previous iteration) and the increment/perturbation (δus, δλs) ∈
Vs × Ls gives:

〈Ms(u
k
s , λ

k
s), ûs〉Ωs +

d

dτ
〈Ms(u

k
s + τδus, λ

k
s + τδλs), ûs〉Ωs

∣∣∣∣
τ=0

= 0 ∀ûs ∈ Vs (2.2.22)

〈Ns(uks), λ̂s〉Ωs +
d

dτ
〈Ns(uks + τδus), λ̂s〉Ωs

∣∣∣∣
τ=0

= 0 ∀λ̂s ∈ Ls (2.2.23)

As shown in Appendix A, to denote the presence of the perturbation (τδus) into the
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quantities that depend on us, we introduce the additional index τ , i.e. F−1
s = I − ∇sus

results in F−1
s,τ = I−∇sus,τ = I−∇s (us + τδus). For the sake of clarity we omit index k on

the displacement field us (and also on quantities that are updated at each iteration, such
as Fs). The expanded expression for the perturbed residual in the material configuration
in equation (2.2.22) takes the form

〈Ms(us + τδus, λs + τδλs), ûs〉Ωs =

∫

Ωs

[− (λs + τδλs) divsûs + σs,τ · εs(ûs)] dΩs

+

∫

∂ΩWs

Pst
W,t
s · ûs d∂ΩW

s +

∫

∂ΩWs

tW,ns ns · ûs d∂ΩW
s

∫

∂ΩNs

tNs · ûs d∂ΩN
s , (2.2.24)

where the perturbed expression for the Cauchy stress tensor σs,τ reads

σs,τ =

(
1

det Fs,τ
Fs,τSs,τF

T
s,τ

)
. (2.2.25)

Analogously, for the second term of (2.2.23), the perturbed residual is written as

〈Ns(us + τδus), λ̂s〉Ωs =

∫

Ωs

[1− det F−1
s,τ ]λ̂s dΩs. (2.2.26)

Using equations (8.1.8)-(8.1.11) from Appendix A, we obtain the derivatives of the per-
turbed expressions as follows

d

dτ
〈Ms(us + τδus, λs + τδλs), ûs〉Ωs

∣∣∣∣
τ=0

= −
∫

Ωs

(FT
s · ∇sδus)σs · εs(ûs) dΩs

+

∫

Ωs

2(Fs(∇sδus)σs) · εs(ûs) dΩs +

∫

Ωs

Ds(Fs∇sδus)S · εs(ûs) dΩs

−
∫

Ωs

δλsdivsûs dΩs, (2.2.27)

and
d

dτ
〈Ns(us + τδus), λ̂s〉Ωs

∣∣∣∣
τ=0

= −
∫

Ωs

(FT
s · ∇sδus)λ̂s dΩs (2.2.28)

where S denotes the symmetric part, and Ds(Fs∇sδus)S is given by

Ds(Fs∇sδus)S =
1

det Fs
Fs

[(
∂Sm
∂Em

)

s

FT
s (Fs∇sδus)SFs

]
FT
s . (2.2.29)

Collecting equations (2.2.27) and (2.2.28) we can now formulate the linearized problem:
given (us, λs) (displacement and pressure fields at the previous iteration -omitted k index-)
find (δus, δλs) ∈ Vs × Ls such that

{
ds(δus, ûs) + es(δλs, ûs) = gs(ûs) ∀ûs ∈ Vs
fs(δus, λ̂s) = hs(λ̂s) ∀λ̂s ∈ Ls

(2.2.30)
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with

ds(δus, ûs) = −
∫

Ωs

(FT
s · ∇sδus)σs · εs(ûs) dΩs +

∫

Ωs

2(Fs(∇sδus)σs) · εs(ûs) dΩs

+

∫

Ωs

Ds(Fs∇sδus)S · εs(ûs) dΩs, (2.2.31)

es(δλs, ûs) = −
∫

Ωs

δλs div ûs dΩs, (2.2.32)

gs(ûs) = −
∫

Ωs

[−λs div ûs + σs · εs(ûs)] dΩs +

∫

∂ΩWs

Pst
W
s · ûs d∂ΩW

s +

∫

∂ΩWs

tW,ns ns · ûs d∂ΩW
s +

∫

∂ΩNs

tNs · ûs d∂ΩN
s (2.2.33)

fs(δus, λ̂s) = −
∫

Ωs

(FT
s · ∇sδus)λ̂s dΩs (2.2.34)

hs(λ̂s) = −
∫

Ωs

[1− det F−1
s ]λ̂s dΩs (2.2.35)

Newton-Raphson method for Forward Problem (data Ωm; unknown Ωs)

We now apply the Newton-Raphson linearization procedure to equations (2.2.17)-
(2.2.18) and write the expressions in the configuration found in the last iteration. Observe
that, in this case, the material configuration Ωm is fixed and the spatial domain Ωk

s updated
at every iteration where, when convergence is achieved, exact equilibrium is satisfied. As
before, we omit index k indicating the quantities at the last iteration. Thus, the problem
reads: find (um, λm) ∈ Um × Lm such that

{
〈Mm(um, λm), ûm〉Ωm = 0 ∀ûm ∈ Vm
〈Nm(um), λ̂m〉Ωm = 0 ∀λ̂m ∈ Lm

(2.2.36)

The Newton-Raphson linearization applied to the above expression at the point (ukm, λkm) ∈
Um × Lm and for the increment/perturbation (δum, δλm) ∈ Um × Lm yields:

〈Mm(ukm, λ
k
m), ûm〉Ωm +

d

dτ
〈Mm(ukm + τδum, λ

k
m), ûm〉Ωm

∣∣∣
τ=0

+
d

dτ
〈Mm(ukm, λ

k
m + τδλm), ûm〉Ωm

∣∣∣
τ=0

= 0 ∀ûm ∈ Vm (2.2.37)

〈Nm(ukm), λ̂m〉Ωm +
d

dτ
〈Nm(ukm + τδum), λ̂m〉Ωm

∣∣∣
τ=0

= 0 ∀λ̂m ∈ Lm (2.2.38)

As shown in Appendix A, to denote the presence of the perturbation (τδum) into
the quantities that depend on u we introduce the additional index τ , i.e. Fm,τ = I +
∇m (um + τδum) = Fm+ τ∇mδum. Analyzing the expanded expression for the perturbed
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residual in the material configuration, in the second term of equation (2.2.37), we have

d

dτ
〈Mm(um + τδum, λm), ûm〉Ωm

∣∣∣∣
τ=0

= −
∫

Ωm

d

dτ
[λm(F−Tm,τ · ∇mûm) det Fm,τ ]

∣∣∣∣
τ=0

dΩm

+

∫

Ωm

d

dτ
[Sm(Em,τ ) · Ėτ (ûm)]

∣∣∣∣
τ=0

dΩm −
∫

∂ΩWm

d

dτ

(
tW,nm F−Tm,τn0 · ûm

)
det Fm,τ

∣∣∣∣
τ=0

d∂ΩW
m

−
∫

∂ΩWm

d

dτ
Pm,τt

W,t
m · ûm

∣∣F−Tm,τn0

∣∣det Fm,τ

∣∣∣∣
τ=0

d∂ΩW
m

−
∫

∂ΩNm

d

dτ

(
tNm · ûm

) ∣∣F−Tm,τn0

∣∣det Fm,τ

∣∣∣∣
τ=0

d∂ΩN
m, (2.2.39)

where Ėτ (ûm) = 1
2 [FT

m,τ (∇mûm) + (∇mûm)TFm,τ ].
Using equations (8.1.1)-(8.1.7) detailed in Appendix A to perform the derivation

with respect to τ (and evaluate at τ = 0) the following expression is obtained

d

dτ
〈Mm(um + τδum, λm), ûm〉Ωm

∣∣∣∣
τ=0

=

∫

Ωm

λm[(F−Tm (∇mδum)TF−Tm )·(∇mûm)] det Fm dΩm

−
∫

Ωm

λm[(F−Tm · (∇mδum))(F−Tm · (∇mûm))] det Fm dΩm

+

∫

Ωm

(
∂Sm
∂Em

((∇mδum)TFm)S
)
· Ė (ûm) dΩm

+

∫

Ωm

Sm(Em) · ((∇mδum)T (∇mûm))S dΩm

−
∫

∂ΩWm

(
tW,nm F−Tm n0 · ûm

)
det Fm

(
F−Tm · ∇mδum

)
d∂ΩW

m

−
∫

∂ΩWm

[
tW,nm (−F−Tm (∇mδum)T F−Tm )n0 · ûm

]
det Fm d∂ΩW

m

−
∫

∂ΩWm

[
d

dτ

F−Tm,τn0

|F−Tm,τn0|

∣∣∣∣
τ=0

⊗ F−Tm n0

|F−Tm n0|

]S
tW,tm · ûm|F−Tm n0|det Fm d∂ΩW

m

−
∫

∂ΩWm

PmtW,tm · ûm|F−Tm n0| det Fm

(
F−Tm · ∇mδum

)
d∂ΩW

m

−
∫

∂ΩWm

PmtW,tm · ûm
(−F−Tm (∇mδum)T F−Tm )n0 · F−Tm n0

|F−Tm n0|
det Fm d∂ΩW

m

−
∫

∂ΩNm

(
tNm · ûm

)
|F−Tm n0|det Fm

(
F−Tm · ∇mδum

)
d∂ΩN

m

−
∫

∂ΩNm

(
tNm · ûm

) (−F−Tm (∇mδum)T F−Tm )n0 · F−Tm n0

|F−Tm n0|
det Fm d∂ΩN

m, (2.2.40)
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with d
dt

F−T
m,τn0

|F−T
m,τn0|

∣∣∣∣
τ=0

given by expression (8.1.7) provided in Appendix A. Similarly, for the

contribution of the third term of (2.2.37), a perturbation (τδλm) is introduced, and the
expression is derived. The calculation of this term is straightforward since 〈Rm, ûm〉Ωm is
linear in λm, then

d

dτ
〈Mm(um, λm + τδλm), ûm〉Ωm

∣∣∣∣
τ=0

=−
∫

Ωm

δλm(F−Tm · ∇mûm) det Fm dΩm. (2.2.41)

Finally, the second term of (2.2.38) yields

d

dτ
〈Nm(um + τδum), λ̂m〉Ωm

∣∣∣∣
τ=0

=

∫

Ωm

det Fm(F−Tm · ∇mδum)λ̂m dΩm. (2.2.42)

With these blocks we are able to write the linear problem: given (um, λm) (dis-
placement and pressure fields at previous iteration -omitted k index-), find (δum, δλm) ∈
Vm × Lm such that

{
am (δum, ûm) + bm (δλm, ûm) = lm (ûm) ∀ûm ∈ Vm
cm(δum, λ̂m) = mm(λ̂m) ∀λ̂m ∈ Lm

(2.2.43)

where the linear and bilinear forms are the following

lm (ûm) =

∫

Ωm

λm
(
F−Tm · ∇mûm

)
det Fm dΩm −

∫

Ωm

Sm (Em) · Ė (ûm) dΩm

+

∫

∂ΩWm

(
tW,nm F−Tm n0 · ûm

)
det Fm d∂ΩW

m +

∫

∂ΩWm

PmtW,tm · ûm
det Fm

|F−Tm n0|
d∂ΩW

m

+

∫

∂ΩNm

(
tNm · ûm

)
|F−Tm n0|det Fm d∂ΩN

m, (2.2.44)
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am ((δum) , ûm) =

∫

Ωm

λm

[(
F−Tm (∇mδum)T F−Tm

)
· (∇mûm)

]
det Fm dΩm

−
∫

Ωm

λm
[(

F−Tm · (∇mδum)
) (

F−Tm · (∇mûm)
)]

det Fm dΩm

+

∫

Ωm

(
∂Sm
∂Em

((∇mδum)T Fm)S
)
· Ė (ûm) dΩm+

∫

Ωm

Sm (Em) · ((∇mδum)T (∇mûm))S dΩm

−
∫

∂ΩWm

(
tW,nm F−Tm n0 · ûm

)
det Fm

(
F−Tm · ∇mδum

)
d∂ΩW

m

−
∫

∂ΩWm

[
tW,nm (−F−Tm (∇mδum)T F−Tm )n0 · ûm

]
det Fm d∂ΩW

m

−
∫

∂ΩWm

[
d

dτ

F−Tm,τn0

|F−Tm,τn0|

∣∣∣∣
τ=0

⊗ F−Tm n0

|F−Tm n0|

]S
tW,tm · ûm|F−Tm n0|det Fm d∂ΩW

m

−
∫

∂ΩWm

PmtW,tm · ûm|F−Tm n0| det Fm

(
F−Tm · ∇mδum

)
d∂ΩW

m

−
∫

∂ΩWm

PmtW,tm · ûm
(−F−Tm (∇mδum)T F−Tm )n0 · F−Tm n0

|F−Tm n0|
det Fm d∂ΩW

m

−
∫

∂ΩNm

(
tNm · ûm

)
|F−Tm n0|det Fm

(
F−Tm · ∇mδum

)
d∂ΩN

m

−
∫

∂ΩNm

(
tNm · ûm

) (−F−Tm (∇mδum)T F−Tm )n0 · F−Tm n0

|F−Tm n0|
det Fm d∂ΩN

m, (2.2.45)

bm(δλm, ûm) = −
∫

Ωm

δλm(F−Tm · ∇mûm) det Fm dΩm, (2.2.46)

cm(δum, λ̂m) =

∫

Ωm

det Fm

(
F−Tm · ∇mδum

)
λ̂m dΩm, (2.2.47)

and
mm(λ̂m) = −

∫

Ωm

(det Fm − 1) λ̂m dΩm (2.2.48)

The above linear problem is convenient to be rewritten (evaluated) in terms of the variables
now defined in the updated configuration Ωk

s (written as Ωs for sake of simplicity, omitting
k index as before), with points xks = xm + ukm. To do that, as a first step we seek for the
spatial expression of the tangent components. With the expressions provided in Appendix
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A in mind, we can write the spatial version of (2.2.40) as

d

dτ
〈Ms(u

k
s + τδus, λs), ûs〉Ωs

∣∣∣∣
τ=0

=

∫

Ωs

λs((∇sδus)T · (∇sûs)− (divsδus)(divsûs)) dΩs

+

∫

Ωs

(Dsεs(δus) · εs(ûs) + (∇sδus)σs · (∇sûs)) dΩs

+

∫

∂ΩWm

[
tW,ns

(
(∇sδus)T − I

)
ns · ûs

]
divsδus d∂ΩW

s

−
∫

∂ΩWs

(H (δus) ns ⊗ ns)
S tW,ts · ûs d∂ΩW

s −
∫

∂ΩWm

Pst
W,t
s · ûs (divsδus) d∂ΩW

s

−
∫

∂ΩWm

Pst
W,t
s · ûs(− (∇sδus)T ns · ns) d∂ΩW

s

−
∫

∂ΩNs

(
tNs · ûs

) [
(divsδus)− (∇sδus)T ns · ns

]
d∂ΩN

s (2.2.49)

where H (δus) stands for

H (δus) =
[
− (∇sδus)T + ((∇sδus)T ns · ns)I

]
, (2.2.50)

and recalling (2.2.29) Dsεs(δus) is given by

Dsεs(δus) =
1

det Fs
Fs

[(
∂Sm
∂Em

)

s

FT
s εs(δus)Fs

]
FT
s . (2.2.51)

Now we add and subtract the term λs(∇sδus) · (∇sûs) into equation (2.2.49) and consider
the operation with second order tensors

λs(divs δus)(divs ûs) = λs(I⊗ I)εs(δus) · εs(ûs), (2.2.52)

which leads us to

d

dτ
〈Ms(us + τδus, λs), ûs〉Ωs

∣∣∣∣
τ=0

=

∫

Ωs

(Ds + λs(2I− (I⊗ I)))εs(δus) · εs(ûs) dΩs

+

∫

Ωs

(∇sδus)σs · (∇sûs) dΩs +

∫

∂ΩWm

[
tW,ns ((∇sδus)T − I)ns · ûs

]
divsδus d∂ΩW

s

−
∫

∂ΩWs

(H (δus) ns ⊗ ns)
S tW,ts · ûs d∂ΩW

s −
∫

∂ΩWm

Pst
W,t
s · ûs (divsδus) d∂ΩW

s

−
∫

∂ΩWm

Pst
W,t
s · ûs(− (∇sδus)T ns · ns) d∂ΩW

s

−
∫

∂ΩNs

(
tNs · ûs

) [
(divsδus)− (∇sδus)T ns · ns

]
d∂ΩN

s(2.2.53)
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where I and I are the fourth and second order identity tensors, respectively. Analogously,
the spatial expressions (2.2.41) and (2.2.42) result in

d

dτ
〈Ms(us, λs + τδλs), ûs〉Ωs

∣∣∣∣
τ=0

= −
∫

Ωs

δλs divs ûs dΩs, (2.2.54)

and
d

dτ
〈Ns(us + τδus, λs), λ̂s〉Ωs

∣∣∣∣
τ=0

=

∫

Ωs

divs δusλ̂s dΩs. (2.2.55)

Hence, from equations (2.2.49), (2.2.54) and (2.2.55), the spatial form of the linearized
problem for incompressible materials is formulated as follows: given (us, λs) (displace-
ment and pressure fields at previous Newton-Raphson iteration -omitted k index-) find
(δus, δλs) ∈ Vs × Ls such that

{
as(δus, ûs) + bs(δλs, ûs) = ls(ûs) ∀ûs ∈ Vs
cs(δus, λ̂s) = ms(λ̂s) ∀λ̂s ∈ Ls

(2.2.56)

where the bilinear and linear forms are given by

as(δus, ûs) =

∫

Ωs

[Ds + λs (2I− (I⊗ I))] εs (δus) · εs (ûs) dΩs

+

∫

Ωs

(∇sδus)σs · (∇sûs) dΩs +

∫

∂ΩWs

[
tW,ns ((∇sδus)T − I)nWs · ûs

]
divs δus d∂ΩW

s

−
∫

∂ΩWs

(H (δus) ns ⊗ ns)
S tW,ts · ûs d∂ΩW

s −
∫

∂ΩWm

Pst
W,t
s · ûs (divsδus) d∂ΩW

s

−
∫

∂ΩWm

Pst
W,t
s · ûs

(
− (∇sδus)T ns · ns

)
d∂ΩW

s

−
∫

∂ΩNs

(
tNs · ûs

) [
(divs δus)− (∇sδus)T ns · ns

]
d∂ΩN

s ,(2.2.57)

bs(δλs, ûs) = −
∫

Ωs

δλs divs ûs dΩs, (2.2.58)

ls (ûs) = −
∫

Ωs

[−λs divs ûs + σs · εs (ûs)] dΩs+

∫

∂ΩWs

Pst
W
s ·ûs d∂ΩW

s +

∫

∂ΩWs

tW,ns ns·ûs d∂ΩW
s

+

∫

∂ΩNs

tNs · ûs d∂ΩN
s , (2.2.59)

cs(δus, λ̂s) =

∫

Ωs

divs δûs λ̂s dΩs, (2.2.60)

and
ms(λ̂s) = −

∫

Ωs

(
1− det F−1

s

)
λ̂s dΩs. (2.2.61)
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2.3 Fluid mechanics in deformable domains

2.3.1 Setting for ALE formulation

The ALE formulation is particularly useful in flow problems involving deforming
domains (Donea and Huerta, 2003; Hughes, 1987; Löhner, 2008), e.g., in FSI problems with
finite displacements. Within this framework, a reference deformable domain is introduced
and the fluid motion is described in terms of the coordinates of such domain.

Consider the kinematic setting shown in Figure 2.2. Let Υt be the domain repre-
senting the lumen of the vessel at a given time t, and Υ0 a reference configuration of this
domain at t = t0.

Υ0

∂Υ
A,i
0

∂Υ
A,j
0

∂ΥW
0

Υt

∂Υ
A,i
t

∂Υ
A,j
t

∂ΥW
t

d = d at ∂ΥW
t

Figure 2.2: ALE kinematic setting.

Considering t ∈ {0, T}, the boundary is defined by ∂Υt = ∂ΥA,i
t ∪∂ΥW

t , i = 1, . . . , C,
where ∂ΥA,i

t is the ith inflow/outflow -artificial- boundary, i = 1, . . . , C, being C the
number of inflow/outflow artificial boundaries resulting from isolating the vessel geometry
from the rest of the cardiovascular system. The interface with the arterial wall is ∂ΥW

t

(fluid-solid interface). Points in the mentioned configurations are denoted by xt and x0,
accordingly.

In this section, v and p are employed to denote fluid velocity and pressure, respec-
tively, and d denotes the displacement (and velocity) of the domain Υt with respect to the
reference configuration Υ0. All these fields are defined in the spatial domain Υt.

The displacement (and velocity) of the fluid-solid interface ∂ΥW
t equals the displace-

ment of the arterial wall. This is the kinematic coupling condition for the FSI problem,
that is

d|∂ΥWt
= d̄t, (2.3.1)

where d̄t represents the displacement of the arterial wall at the fluid-solid interface. If
the reference configuration Υ0 is chosen to be the lumen enclosed within an image-based
configuration (say ΩI , with displacements uI), then it follows that

d̄t = us|∂ΩWs
− uIs|∂ΩWs

, (2.3.2)

where us|∂ΩWs
denotes the solid displacements at the fluid-structure interface for a given

time t. As is customary in the specialized literature (Quarteroni et al, 2001), the dis-
placement field on the interior of the deformable domain is obtained through an harmonic
extension of the boundary values, that is by solving the problem described next.

Problem 3 (Harmonic extension for deformable domain).
Given the displacement field at the domain boundary ∂ΥW

t , find the displacement field
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dt ∈ Dt = d ∈ H1 (Υt) , d |∂ΥWt
= d̄t such that

∫

Υt

∇d · ∇d̂ dΥt = 0 ∀d̂ ∈ D∗t , (2.3.3)

with D∗t = d ∈ H1 (Υt) , d |∂ΥWt
= 0 being the space of kinematically admissible variations

associated to Dt.
Note that, theoretically, it is possible to select any other method to extend the bound-

ary displacements into the domain without modifying the problem, for example, we could
take the Navier elasticity equations. It is necessary to avoid mesh deformations that lead
to an exaggerated distortion of the elements, hindering the convergence of the numerical
methods and degrading the obtained results. This motivates the introduction of constraints
over the deformation of the elements in the context of finite element implementations.

2.3.2 Equilibrium equations

Here a variational formulation for the incompressible flow of a Newtonian fluid in
a deformable domain expressed in the spatial configuration is presented. Since all the
quantities are expressed in terms of spatial coordinates xt, subscripts are omitted to sim-
plify the notation. No-slip boundary conditions are imposed on ∂ΥW

t for the velocity
field. Neumann boundary conditions on the artificial boundaries ∂ΥA,i

t , i = 1, . . . , C, are
considered and denoted by tit. These loads correspond to the action of the rest of the
cardiovascular system (CVS) over such boundaries. Such coupling with the rest of the
CVS is addressed in Section 3.5. The traction tit is assumed to be a vector pointing in the
direction of the normal vector ni, so we directly write tit = titn

i, where tit is the magnitude
of the traction vector and ni is the outward unit normal of ∂ΥA,i

t , i = 1, . . . , C. Forces
per unit volume are neglected. With this setting, the variational problem is formulated as
follows.

Problem 4 (Fluid problem in ALE setting).
For every t ∈ [0, T ] find (v, p) ∈ Ut × Pt× such that

∫

Υt

ρ
∂v

∂t
· v̂ dΥt +

∫

Υt

ρ∇v (v − vR) · v̂ dΥt −
∫

Υt

p div v̂ dΥt+

∫

Υt

σ̄ (v) · ε (v̂) dΥt =
C∑

i=1

∫

∂ΥA,it

titn
i · v̂ d∂ΥA,i

t ∀v̂ ∈ Vt, (2.3.4)

∫

Υt

p̂ div v dΥt = 0 ∀p̂ ∈ Pt, (2.3.5)

where d is the solution of (2.3.3), ρ is the fluid density, σ is the Cauchy stress tensor such
that σ = −pI + σ̄, which for a Newtonian incompressible fluid it is σ̄ = 2µε(v), µ is the
dynamic viscosity, and the velocity of the frame of reference is vR =

(
∂dt
∂t

)
t

= FA
t
∂dt
∂t ,

where FA
t = ∂xt

∂x0
. Also the sets of kinematically admissible functions are given by

Ut = v ∈ H1(Υt), v|∂ΥWt
=

(
∂d̄

∂t

)

t

,

Pt = L2(Υt),

(2.3.6)
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and Vt is the corresponding linear space of kinematically admissible variations obtained
from taking differences in the linear manifold Ut.

2.3.3 Problem linearization

In order to solve numerically the system of equations, a fixed-point linearization
method is employed, where the velocity of the reference domain at each iteration is cal-
culated as vkR = dk−dn

∆t (other choices are also viable), where superscripts k and n refer
to the previous fixed point iteration and previous time-step, respectively. Hence, the pro-
posed fixed-point method reads: for each iteration k = 0, 1, . . . find

(
vk+1, pk+1,dk+1

)
∈

(Uk × Pk ×Dk) such that

∫

Υk

ρ
∂vk+1

∂t
· v̂ dΥk +

∫

Υk

ρ∇vk+1(vk − vkR) · v̂ dΥk −
∫

Υk

pk+1divv̂ dΥk

+

∫

Υk

σ̄(vk+1) · ε (v̂) dΥk =
C∑

i=1

∫

∂ΥA,ik

tik · v̂ d∂ΥA,i
k ∀v̂ ∈ Vk, (2.3.7)

∫

Υk

p̂divvk dΥk = 0 ∀p̂ ∈ Pk, (2.3.8)

∫

Υk

∇dk+1 · ∇d̂ dΥk = 0 ∀d̂ ∈ D∗k, (2.3.9)

where now the spaces of admissible variations are similar to those described previously,
but defined in the current updated domain Υk.

Observe that the formulation is such that the equilibrium equations are being solved
in the last updated domain of analysis. When convergence is achieved, the domain of
analysis should coincide with the a priori unknown domain at a given time instant.

2.4 Dimensionally reduced models

In this section we briefly introduce the dimensionally reduced models used to repre-
sent the systemic behavior of the cardiovascular system. The system will be represented by
a set of one dimensional segments for the main (and larger) arteries combined with zero-
dimensional models to model the microvasculature and the venous system. This approach
has been extensively used elsewhere (Formaggia et al, 2006; Liang et al, 2009; Blanco and
Feijóo, 2013; Watanabe et al, 2013).

2.4.1 One dimensional fluid flow model

The 1D model was rationally introduced in (Hughes and Lubliner, 1973) following
a derivation from the Navier-Stokes equations when considering that (a) the axis of the
vessel is a straight segment, and (b) the flow is predominantly aligned in the axial direction,
implying that the non-axial velocity components are negligible. It is not a requirement to
consider the artery to have symmetry of revolution.

Consider the setting shown in Figure 2.3, displaying a vessel domain with its axis
aligned with the x direction within a Cartesian 3D frame. We will denote A (x, t) the
cross-sectional lumen area at the axial coordinate x and at time t. Also, R (x, t) denotes
the vessel radius, and P (x, t) the mean pressure at the same point. The field v = (vx, 0, 0)
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represents the fluid velocity, with v (x, t) the mean value of vx, i.e.

v (x, t) =
1

A (x, t)

∫

A(x,t)
vx dA. (2.4.1)

The flow rate, denoted as Q (x, t), is given by

Q (x, t) = A (x, t) v (x, t) =

∫

A(x,t)
vx dA. (2.4.2)

x

A (x, t)

v = (vx, 0, 0)

Figure 2.3: Setting for one dimensional model of fluid flow in a vessel.

Considering the above mentioned geometrical and kinematical hypotheses the mass
conservation equation for incompressible flows can be expressed as

∂A

∂t
+
∂Q

∂x
= 0 (2.4.3)

and the momentum conservation equation reads

∂Q

∂t
+

∂

∂x

(∫

A
v2
x dA

)
= −A

ρ

∂P

∂x
− 2πRτ

ρ
, (2.4.4)

where ρ is the blood density and τ is the wall shear stress, depending on µ, the blood vis-
cosity. In order to rewrite this expression only in terms of the triple (P,Q,A) a convective
acceleration parameter α (x, t) depending on the shape of the velocity profile is introduced
as follows

α =
A

Q2

∫

A
v2
x dA. (2.4.5)

For unidirectional velocity fields, this parameter varies within the range of
[
1, 4

3

]
, being,

for example, equal to 1 for a flat velocity profile and 4
3 for a parabolic profile. In this work,

α = 1 is assumed. In turn, the wall shear stress τ is considered to be given by the formula
characterizing Poiseuille flow

τ =
4µQ

πR3
. (2.4.6)

In order to close the system of equations, a constitutive equation relating the mean
pressure P to the cross sectional area A is required. This topic will be treated along with
the constitutive equations for the three-dimensional model in Section 3.6.
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2.4.2 Arterial junction models

In order to model the arterial tree as a connection of one-dimensional models for
arterial vessels, proper coupling conditions must be formulated. The present model will
be used whenever two or more arterial segments meet, that is, at vessel junctions. Then,
consider an arterial junction with NT converging segments, the mass conservation equation
reads

NT∑

i=1

Qi = 0, (2.4.7)

where Qi denotes the flow for the ith segment. In addition, it is considered that there is
no pressure drop at the junction, thus leading to

P1 = Pi ∀i = 2, ..., NT . (2.4.8)

These coupling conditions have been extensively used in the literature (Stergiopulos
et al, 1992; Formaggia et al, 2003; Matthys et al, 2007; Blanco et al, 2014b).

2.4.3 Arterioles and capillaries (0D model)

To model the resistive and compliant behaviors of the peripheral beds, Windkessel
models at the terminal arterial points are considered (Stergiopulos et al, 1992). From a
mathematical point of view, this model serves to provide appropriate boundary conditions
to the network of one-dimensional segments.

An electrical analogy for the Windkessel element consists of a resistance (R2) con-
nected in parallel with a capacitor (C) and then in series with an additional resistance
(R1). Figure 2.4 represents this setting. Considering that the arterial system presents a
pressure Pte at the terminal point and it is connected to a low pressure reference point Pr,
the governing equation is given by

R1R2C
dQ

dt
= R2C

d

dt
(Pte − Pr) + (Pte − Pr) + (R1 +R2)Q. (2.4.9)

The interested reader is encouraged to see Blanco et al (2014b), where a system-
atic approach to achieve a physiological blood flow distribution in the CVS through the
calibration of the parameters involved in this terminal model is presented.

Figure 2.4: Windkessel terminal model, electrical analogy.

2.4.4 Venous system and pulmonary circulation (0D model)

The blood flow through the low-pressure components of the CVS composed by
venules, veins, superior and inferior vena cava along with the pulmonary circulation is
modeled by a R-L-C analog electric circuit (Liang et al, 2009; Blanco and Feijóo, 2013).

In this case, the components represent the resistance (R), inertance (L) and compli-
ance (C) of a single compartment. (Pi, Qi) and (Po, Qo) are the pairs of pressure and flow
rate at the input and output of the compartment, respectively. In addition, Pex stands for
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the external pressure, for the examples explored in this thesis Pex = 0 is assumed. The
equations representing the behavior of this model can be written as

{
LdQodt +RQo = Pi − Po,
C d
dt (Pi − Pex) = Qi −Qo.

(2.4.10)

2.4.5 Cardiac model: heart and valves (0D models)

These 0D models for the cardiac circulation follow the presentations by Liang et al
(2009) and Blanco and Feijóo (2013).

Elastance model for cardiac chambers The four cardiac chambers are described
using elastance-based models. Denoting the cardiac chamber pressure as Pi and its volume
as Vch, both quantities can be related through

Pch − Pex = (EAe (t) + EB) (Vch − V0,ch) + αch |Pch|
dVch
dt

, (2.4.11)

where V0,ch is the dead volume of the chamber and αch controls the viscoelastic pressure-
volume relation. As usual, the evolution of the chamber volume over time is related to the
inflow and outflow by

dVch
dt

= Qi −Qo. (2.4.12)

Also, EA and EB are the amplitude and base values for the elastance, and e (t) is a
normalized function that controls the variation of the elastance during the cardiac cycle.
For the ventricles, this function is given by

ev(t) =





1
2

{
1− cos

(
π t
Tvc

)}
0 ≤ t ≤ Tvc

1
2

{
1 + cos

(
π t−TvcTvr

)}
Tvc ≤ t ≤ Tvc + Tvr

0 Tvc + Tvr ≤ t ≤ T,
(2.4.13)

and for atria by

ea(t) =





1
2

{
1 + cos

(
π t+T−tarTar

)}
0 ≤ t ≤ tar + Tar − T

0 tar + Tar − T ≤ t ≤ tac
1
2

{
1− cos

(
π t−tacTac

)}
tac ≤ t ≤ tac + Tac

1
2

{
1− cos

(
π t−tarTar

)}
tac + Tac ≤ t ≤ T.

(2.4.14)

Here, subscripts v and a denote the ventricles and atria, respectively. In these equations, T
is the duration of the cardiac cycle, Tvc, Tac, Tvr and Tar refer to the duration of contraction
and relaxation periods, and tac, tar to the starting times for the contraction and relaxation
periods.

Non-ideal model for heart valves Cardiac valves are modeled using a non-ideal diode
model that allows inverted flow prior to the valve closure. A momentum balance equation
governing the behavior of each valve can be expressed as

L
dQo
dt

+RQo +B |Qo|Qo = Θ (Pi − Po) , (2.4.15)

with L representing the inertance of the fluid, R the viscous resistance, B accounting for
the flow separation phenomena and, as before, Pi and Po denote the input and output
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pressures. The coefficient Θ introduces a non-binary response of the valve, simulating the
orifice of each valve as a function of their opening angle θ. This function reads

Θ =
(1− cos θ)4

(1− cos θmax)4 , (2.4.16)

where θmax is the maximum angle the valve is able to open. The opening angle is computed
using an heuristic angular momentum balance equation (for more details see Korakianitis
and Shi (2006)) as follows

I
d2θ

dt2
+ kf

dθ

dt
= kp (Pi − Po) + kQQo cos θ +

{
kVQo sin (2θ) if Pi ≥ Po
0 if Pi ≤ Po

, (2.4.17)

where I is the moment of the inertia of the valve. The solution of this equation is con-
strained to

θ =

{
θmin if θ ≤ θmin,
θmax if θ ≥ θmax.

(2.4.18)

The use of this model allows to account for two types of valve malfunctioning, valve nar-
rowing (reduced θmax, related to valve stenosis) and valve insufficiency (increased value of
θmin), when the valve is not able to prevent backward flow.
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Integration of hemodynamic models

3.1 Introduction

As already discussed, in order to analyze the mechanical behavior of the arterial
wall and the blood flow dynamics, it is fundamental to provide a realistic hemodynamic
environment where the following key topics are properly taken into account (see Chapter
1 for further details):

• the fact that image-based configurations correspond to a preloaded state,

• the interaction between the arterial district of interest and the rest of the CVS,

• the complex arterial wall behavior,

• the action of external tissues,

• the fluid-structure interaction, and

• the impact of residual deformations and stresses.

Furthermore, it is necessary to utilize adequate computational tools to approximate
and solve the variational equations corresponding to continuum mechanics models (see
Chapter 2) representing the behavior of the different components of the system. Also, the
efficient coupling between such subsystems is not trivial and requires careful consideration.

Then, the goal of this chapter is to describe the strategies adopted to tackle the
mentioned issues. For this purpose, a brief discussion of how the preload problem is
addressed is presented in Section 3.2. Next, in Section 3.3 the implemented model for
the representation of the action of surrounding tissues is introduced, and a description
of the FSI strategy is included in Section 3.4. Next, the methodology implemented for
the coupling of dimensionally heterogeneous models is summarized in Section 3.5, and the
selection of adequate constitutive equations for the arterial wall is discussed in Section 3.6.
Also, the incorporation of axial residual deformations is treated in Section 3.7. Finally, the
numerical approximations implemented for this integrative modeling framework, both for
the fluid and solid problems, are addressed in Section 3.8.

3.2 Initially loaded state

To account for the fact that vessel geometries extracted from medical images corre-
spond to in-vivo loaded states, the preload problem given by equations (2.2.14)-(2.2.15)
introduced in Section 2.2.3 is solved. We will denote the image-based configuration as
Ωbase and consider a known baseline pressure level (defined for each example) introducing
a force acting over the interior boundary on the arterial wall ΓWbase. In this way, the material

33
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reference configuration is obtained and can be utilized for the computation of the arterial
wall behavior in the 1D-3D fluid-structure interaction problem.

Figure 3.1 displays a graphical example of the treatment of initially loaded vessel
geometries. In this context, Figure 3.1(a) presents a volume render from a computerized
tomography (CT) image of a patient, and Figure 3.1(b) presents the lumen segmentation
of the arterial region where the specific segment of interest is located, in this example, the
common carotid artery. Also, Figure 3.1(c) introduces a discretization of the arterial wall
corresponding to the isolated segment in its in-vivo state Ωbase. Figure 3.1(d) shows the
material (reference) configuration Ωm obtained from the solution of the aforementioned
preload problem.

(a) Volume render from computarized to-
mography (CT) image.

(b) Segmentation of the common carotid
segment and surrounding vessels.

(c) Image-based configuration Ωbase for the
isolated segment of interest.

(d) Material configuration Ωm for the iso-
lated segment of interest obtained from
preload problem solution.

Figure 3.1: Graphical example for the treatment of initially loaded vessel geometries extracted
from medical images.

3.3 External tissue support

For the surrounding media we assume that the effective behavior is viscoelastic.
Then, the load tEs depends on the displacement and on the velocity of the solid wall at
∂ΩE

s , that is

tEs = ke (us − u0) + kv
∂us
∂t

∣∣∣∣
∂ΩEs

, (3.3.1)

where ke and kv are effective elastic and viscoelastic parameters, respectively, and u0

defines a reference position for the elastic response. A linear approximation is considered
for the computation of the time derivative. The parameters will be defined considering
the hypothesis that surrounding tissues are more influential over regions featuring larger
curvatures. In order to support this hypothesis, let us consider a curved arterial segment
subjected to tethering forces at non-physical boundaries and supported by surrounding
tissues, as depicted on Figure 3.2. Through a simple analysis of external forces it can
be inferred that, in order to avoid the rigid displacement of the arterial segment, the
surrounding tissues must compensate the action of tethering forces. Additionally, if the
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external tissues act primarily in the normal direction of the surface, the forces exerted by
them should be more prominent in the highly curved region.

� tet � tet

Figure 3.2: Local analysis of external loads in the arterial wall. It is assumed a higher influence of
external tissues in curved regions (highlighted in red),so to provide a source of mechanical balance
against the tethering forces which are applied at non-physical boundaries.

3.4 Fluid-structure interaction

3.4.1 Interface equations

In this section the fluid-structure interaction technique implemented to perform the
coupling between the arterial wall and blood flow models is addressed. For the interface
equations, at a given time t, the arterial wall is at equilibrium in a configuration Ωs. At
the interface ∂ΩW

s ≡ ∂ΥW
t , the following coupling equations hold

us = dt at ∂ΩW
s ≡ ∂ΥW

t ,

(σs − σ)ns = 0 at ∂ΩW
s ≡ ∂ΥW

t ,
(3.4.1)

with ns representing the normal vector at the interface, σs is the Cauchy stress in the
solid and σ is the Cauchy stress in the fluid. Note that us and dt are both expressed
in terms of the same reference frame, since at any given time t the arterial wall bound-
ary (corresponding to the spatial configuration) matches the boundary for the blood flow
domain.

3.4.2 Fluid-structure interaction in the 3D-1D coupling context

The FSI problem is solved within the context of a dimensionally heterogeneous cou-
pling algorithm (3D-1D coupling, see Section 3.5). Thus, it is actually a black-box com-
ponent from the point of view of the 3D-1D coupling algorithm. In fact, as time evolves,
computations are carried out with the following strategy:

Algorithm 1 1D-3D coupling context
Solve preload problem (eqs. (2.2.14)-(2.2.15))
Loop in time

Loop for 3D-1D coupling (Broyden iterations, see Section 3.5)
Data (D) sent to components
Loop for FSI coupling (fixed-point method, see Section 3.4)
Outcome (O) retrieved from components

The data for the FSI black-box component are

(D.i) at each time step: quantities from previous time step (fluid quantities);
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(D.ii) at each 3D-1D coupling iteration: the normal component of the traction vectors tit
at ∂ΥA,i

t , i = 1, . . . , C, which are provided by the 3D-1D algorithm, and that are
incorporated as Neumann boundary conditions on the fluid problem (see equation
(2.3.4));

(D.iii) at each FSI coupling iteration: quantities at previous iteration (fluid and solid
quantities).

Solving the FSI problem implies solving the fully coupled system of equations given
by (2.2.17)-(2.2.18) (arterial wall mechanics) and (2.3.3)-(2.3.5) (blood flow dynamics). As
outcome, the solution of the FSI problem provides the 3D-1D coupling algorithm with the
flow rates Qi =

∫
∂ΥA,it

v · ni d∂ΥA,i
t , i = 1, . . . , C.

3.4.3 Coupling algorithm

Figure 3.3 presents the FSI algorithm based on fixed point iterations. The FSI
coupling loop corresponds to the circuit of blocks labelled with letters from (a) to (g).
Blocks in yellow correspond to the input/output connections with the 3D-1D coupling
algorithm. The key blocks of the FSI scheme are the components (b) and (f), highlighted
in green.

The key block (b) represents one iteration of the fixed-point scheme introduced in
Section 2.3.3. Hence, for each iteration k = 0, 1, . . . of the FSI coupling scheme, block
(b) will provide the solution of the following linearized problem: find

(
vk+1, pk+1,dk+1

)
∈

Uk × Pk ×Dk such that

∫

Υk

ρ
∂ṽk+1

∂t
· v̂ dΥk +

∫

Υk

ρ∇ṽk+1(vk − vkR) · v̂ dΥk −
∫

Υk

p̃k+1divv̂ dΥk

+

∫

Υk

σ̄(ṽk+1) · ε (v̂) dΥk =

C∑

i=1

∫

∂ΥA,ik

tik · v̂ d∂ΥA,i
k ∀v̂ ∈ Vk, (3.4.2)

∫

Υk

p̂divvk dΥk = 0 ∀p̂ ∈ Pk, (3.4.3)

∫

Υk

∇d̃k+1 · ∇d̂ dΥk = 0 ∀d̂ ∈ D∗k, (3.4.4)

As input, is necessary to provide this block with the solid displacement at the interface
∂ΩW

s at the current FSI iteration (uks), and the solution corresponding to the fluid problem
and the arterial wall for the previous time step (quantities denoted with supra-index n).
With this information, the manifolds Uk and Dk are defined as

Uk =

{
v ∈ H1(Υk), v|∂ΥWk

=
uks − uns

∆t

}
,

Dk =
{

d ∈ H1 (Υk) , d |∂ΥWk
= uks

}
(3.4.5)

Additionally, the velocity of the reference domain at each iteration is calculated as vkR =
dk−dn

∆t . This actions are represented in the figure by blocks (i) and (a). Block (c) introduces
a subrelaxation step on the output provided by block (c) controlled by the parameter κa,
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consequently, the solution is updated as follows
(
vk+1, pk+1,dk+1

)
= κa

(
ṽk+1, p̃k+1, d̃k+1

)
+ (1− κa)

(
vk, pk,dk

)
. (3.4.6)

Key block (f) represents one step of the Newton-Raphson linearization of the solid
(forward) problem, as formerly introduced in Section 2.2.5: given (us, λs) (displacement
and pressure fields at previous Newton-Raphson iteration -omitted k index-) find (δus, δλs) ∈
Vs × Ls such that

{
as(δus, ûs) + bs(δλs, ûs) = ls(ûs) ∀ûs ∈ Vs
cs(δus, λ̂s) = ms(λ̂s) ∀λ̂s ∈ Ls

(3.4.7)

where the bilinear and linear forms are given by

as(δus, ûs) =

∫

Ωs

[Ds + λs (2I− (I⊗ I))] εs (δus) · εs (ûs) dΩs

+

∫

Ωs

(∇sδus)σs · (∇sûs) dΩs +

∫

∂ΩWs

[
tW,ns ((∇sδus)T − I)nWs · ûs

]
divs δus d∂ΩW

s

−
∫

∂ΩWs

(H (δus) ns ⊗ ns)
S tW,ts · ûs d∂ΩW

s −
∫

∂ΩWm

Pst
W,t
s · ûs (divsδus) d∂ΩW

s

−
∫

∂ΩWm

Pst
W,t
s · ûs

(
− (∇sδus)T ns · ns

)
d∂ΩW

s

−
∫

∂ΩNs

(
tNs · ûs

) [
(divs δus)− (∇sδus)T ns · ns

]
d∂ΩN

s , (3.4.8)

bs(δλs, ûs) = −
∫

Ωs

δλs divs ûs dΩs, (3.4.9)

ls (ûs) = −
∫

Ωs

[−λs divs ûs + σs · εs (ûs)] dΩs+

∫

∂ΩWs

Pst
W
s ·ûs d∂ΩW

s +

∫

∂ΩWs

tW,ns ns·ûs d∂ΩW
s

+

∫

∂ΩNs

tNs · ûs d∂ΩN
s , (3.4.10)

cs(δus, λ̂s) =

∫

Ωs

divs δûs λ̂s dΩs, (3.4.11)

and
ms(λ̂s) = −

∫

Ωs

(
1− det F−1

s

)
λ̂s dΩs. (3.4.12)

The Neumann boundary condition for the inner surface of the solid (block (e)) is updated
at each FSI iteration through tWs = ι · tW,ks + (1 − ι) · tW,k−1

s , where ι = k/ns if k < ns.
This way, the load is applied gradually in the first ns (problem dependant parameter)
steps, avoiding overshooting phenomena. Analogously to the procedure taken for the fluid
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problem, a subrelaxation controlled by the parameter κb is applied (block (g)), yielding

(uk+1
s , λk+1

s ) = κb (δus, δλs) + (uks , λ
k
s). (3.4.13)

Lastly, convergence is then evaluated (block (h)). If convergence is reached the
algorithm proceeds with the next 3D-1D coupling iteration (see Section 3.5) or, otherwise,
the next FSI iteration is carried out.

3.5 Dimensionally heterogeneous models

3.5.1 Hemodynamic components

The 3D FSI model, in which a detailed description of the hemodynamics is sought,
is embedded into a larger system, the arterial system. Since there is no need for a full
blood flow model of the complete circulation, dimensionally reduced models are instead
employed to provide a fair description of the global dynamics which remains very accurate
in terms of average quantities, such as average pressure and flow rate.

Within this context, we consider two different approaches for the embedding of the
3D FSI model. As first option we consider the ADAN model Blanco et al (2014a,b), a
highly detailed model of the arterial circulation, featuring an accurate spatial description
of more than 2000 arteries, as shown in Figure 3.5.1. This model is currently the most
detailed description of the arterial circulation and is able to provide with a realistic envi-
ronment for (virtually) any 3D segment of interest. As a second option we consider a more
simple approach, using a complete model of the CVS based on a less detailed model of the
arterial tree (inspired in the arterial network proposed in Avolio (1980)) -see Figure 3.5.1-
and incorporating venules, veins, cavas, atria, ventricles, and valves, modeled through 0D
models. The interested reader is encouraged to see Blanco et al (2013b) for a more detailed
description of this closed-loop circulation model.

For both cases, the coupling is performed through a black-box iterative technique.
A brief resume of this method is here provided, presenting the coupling strategy for two
components listed below. The interested reader is directed to Blanco et al (2013b) for a
complete in-depth presentation of this approach.

Displacement at interface
(i)

Dirichlet boundary conditions
(a)

Traction at interface
(d)

Neumann boundary condition
(e)

Linearized fluid problem
(b)

Linearized solid problem
(f)

Convergence
achieved?

(h)

FSI problem
solution

Solution from previous
3D-1D coupling iteration

Subrelaxation -κa-
(c)

Subrelaxation -κb-
(g)

Yes

No

previous 1D-3D
coupling itera-
tion

next 1D-3D cou-
pling iteration

Figure 3.3: Fluid-structure iterative coupling scheme
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(a) Representative scheme of the ADAN
model.

(b) Representative scheme of arterial
network proposed by Avolio (1980).

Figure 3.4: Representations of dimensionally reduced hemodynamic components.

Dimensionally reduced component (DR). This component can be either the ADAN
model or the simplified closed-loop circulation. For both cases the arterial network is
modeled using the governing equations introduced in Section 2.4.

Specific-vessel component (SV). The arterial segment which demands a detailed de-
scription of the physical phenomena is represented using the model elaborated above in
Section 2.2.3 and Section 3.4, that is: the three-dimensional behavior of the blood flow
and its interaction with the arterial wall (see Section 3.4), considering the initially loaded
-with pressure and tethering stresses- geometry (see Section 2.2.3). Eventually, coupling
with surrounding tissues and residual deformations can be introduced in this component.

3.5.2 Coupling equations

Consider that the dimensionally reduced (DR) component is linked through C bonds
to the specific-vessel (SV) component. For the sake of readability we will call simply by “1D-
0D” the DR component and by “3D” the SV component. For the ith bond (i = 1, . . . , C),
consider two coupling variables, namely Pi and Qi, the normal traction and flow rate at
such coupling point. Additionally, we will denote as Qic and P ic (c = DR,SV) to the flow
rate and normal traction, respectively, given by the corresponding component for the ith
bond. Hence, for this bond, the following set of coupling equations can be written:

{
QiDR = QiSV = Qi

P iDR = P iSV = P i
, i = 1, . . . , C. (3.5.1)

Consequently, for the complete problem, a system of 2C equations is obtained. It is
worthwhile to note that for the 3D component, P iSV represents the magnitude of the uniform
normal traction vector acting on the fluid non-physical boundaries ∂ΥA,i

t . Thence, for the
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SV component both quantities are calculated as follows



QiSV =

∫

∂ΥA,it

v · ni d∂ΥA,i
t ,

P iSV = tit

, i = 1, . . . , C, (3.5.2)

where it is straightforward to see that tit = (−p+ µ(∇v)n · n)|
∂ΥA,it

, i = 1, . . . , C.

3.5.3 Strong coupling strategy

In Figure 3.5 the coupling is schematically described. In this scheme a single coupling
point condenses the C coupling interfaces. Therefore, at such coupling point we have the
unknown vector containing all the unknowns of the coupled system, namely (Q,P), being
(Qi, Pi), i = 1, . . . , C the pair of coupling variables at each coupling interface. Hence, the

DR component
(1D-0D)

SV component
(3D)

coupling
variables:

(Q,P)

boundary
data:
P =

(P1, . . . , PC)
unknowns:

Q =
(Q1, . . . , QC)

RDR(Q,P)

RSV(Q,P)

Figure 3.5: Idealization of system as black-box components, coupling variables and chosen bound-
ary data for components.

coupling problem amounts to find the pair (Q,P) such that coupling equations (3.5.1) are
satisfied, that is

RDR(Q,P) = 0,

RSV(Q,P) = 0,
(3.5.3)

where RDR and RSV are residuals defined accordingly. We recall that, in the fluid flow
problem, those residuals consist of equations of continuity of mass and continuity of the
normal component of the traction vector (hereafter denoted simply by “coupling pressure”).

From the vector of coupling variables (Q,P) it is now required to define those quan-
tities that will turn into boundary data for each component within the iterative scheme.
Here, we choose the coupling pressure to be boundary data for both components. Hence,
the system of coupling equations (3.5.3) results

RDR(Q,P) = Q−QDR(P) = 0,

RSV(Q,P) = Q−QSV(P) = 0,
(3.5.4)

where QDR and QSV are compact vector notations for the operators related to the DR and
SV components, respectively. These operators encompass the 1D-0D problem (see Blanco
et al (2013b)) and the 3D problem (see Sections 2.2.3, 2.3.1, and 3.4) with P = (P1, . . . , PC)
as boundary data at the C coupling interfaces. This system contains 2C equations, and
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can be written as follows

Qi −QiDR(P1, . . . , PC) = 0 i = 1, . . . , C,

Qi −QiSV(P1, . . . , PC) = 0 i = 1, . . . , C.
(3.5.5)

Thus, for instance, observe that QiSV stands for the flow rate given by the SV component
at ith coupling interface, after solving the FSI problem, for a given set (P1, . . . , PC) of
boundary data (see Section 3.4). Regarding the equation (2.3.4), the boundary data is
(t1t , . . . , t

C
t ) = (P1, . . . , PC).

In the continuous setting, this system of non-linear equations holds for each time.
That is, when approximating in time, system (3.5.5) is solved iteratively until convergence
is achieved at each time step.

3.5.4 Solving the coupling equations system

The problem of solving (3.5.4) iteratively can be tackled using any suitable method
for systems of non-linear equations. Our previous experience dictates the use of a Broyden
algorithm which avoids the computation of derivatives while preserving good convergence
properties, as shown in Blanco et al (2013b). In turn, at each coupling iteration (e.g. at
each Broyden iteration), the entire FSI algorithm described in Figure 3.3 is executed when
solving the SV component. Thus, the iterations ruled by the coupling algorithm embrace
the FSI iterations, while such coupling iterations are embraced by the temporal loop.

For a nonlinear equation R(z) = 0, the plain Broyden method reads

Algorithm 2 Broyden method
1. Given z0 and B0 do
2. Compute r0 = R(z0)

3. Loop l = 0, 1, . . . until ‖r
j‖
‖r0‖ ≤ ε or ‖rj‖ ≤ εabs

4. ∆z = −(Bj)−1rj

5. zj+1 = zj + ∆z
6. rj+1 = R(zj+1)

7. Bj+1 = Bj + rj+1⊗∆z
∆z·∆z

8. End loop.

where ε and εabs denote relative and absolute residual tolerances (respectively) controlling
the convergence criteria to stop the Broyden algorithm. In the context of our problem zj

is such that zj = (Qj ,Pj) and the residual vector rj is given by the collected residuals for
each component, i.e.

rj =

(
RDR(Qj ,Pj)
RSV(Qj ,Pj)

)
, (3.5.6)

thus, at this step it is included the solution of both 1D and 3D problems to obtain QDR(P)
and QSV(P), respectively.

Defining initial conditions z0

The choice of the initial conditions has a great influence in the capability of the
method in achieving convergence. In the presented examples, as a first step we simulate
the complete DR component (including a 1D segment that will later be replaced by a 3D
counterpart) decoupled until a cyclic solution is achieved. This solution will serve as initial
condition for this component. As a second step, we simulate the decoupled SV component
for one tenth of the cardiac cycle using as Neumann boundary conditions a normal traction
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vector given by the pressure delivered at the coupling points b the DR component. The
initial condition for this 3D simulation is given by null velocities and uniform pressure
(equal to the magnitude of the traction vector introduced on the main inlet). The solution
of this simulation will serve as initial condition for 3D component.

Defining initial matrix B0

Along with the initial state z0, it is necessary to provide the method with an initial
matrix B0 that will be updated at each iteration at step 7 in Algorithm 2. As this is a
time-dependent problem, the complete algorithm is repeated at each N time step, and a
new initial matrix B0,N needs to be provided. For the first time step, B0,1 is initialized
computing the Jacobian of the system using finite differences. The components of this
Jacobian read as follows

B0,1
ab =

ra(z
0
1 , z

0
2 , . . . , z

0
b + ς, . . . , z0

2C)− ra(z0)

ς
, (3.5.7)

where ra denotes de ath component of the residual vector and ς is a small enough pertur-
bation. At each new time step, say N+1, it is employed the final updated matrix obtained
at the previous set of l Broyden iterations which resulted in convergence at the previous
time-step N , is employed, that is B0,N+1 = Bl,N .

3.6 Constitutive modeling

3.6.1 Constitutive equations for the 3D arterial wall

We make use of the most extensively used constitutive model to represent the be-
havior of elastin and collagen components in the arterial wall, as proposed in Holzapfel
and Gasser (2000).

In this constitutive framework, the tissue is modeled as a hyperelastic composite
material in which the elastin matrix is taken into account through a Neo-Hookean isotropic
contribution, and the collagen fibers are considered by means of an anisotropic contribution
acting in two given directions. In the arterial wall, different layers can be distinguished,
and for each layer the same type of strain energy function is assumed, with a different set
of material parameters and orientation angles characterizing the families of collagen fibers.

Hence, the strain energy function of the material takes the form:

Ψ =
celast

2
(I1 − 3) +

k1

2k2

∑

i=4,6

δi

{
ek2(Ii−λ0

i )
2 − 1

}
(3.6.1)

where δi = 1 if Ii > λ0
i ; δi = 0 otherwise, and

I1 = tr(Cm), Ii = ai · (Cmai), i = 4, 6, (3.6.2)

with Cm = FT
mFm, celast is the material parameter which characterizes the effective stiff-

ness of the elastin; the effective stiffness of collagen fibers is characterized by k1 and
k2, while the recruitment stretch is λ0

i , and the directions of orientation of fibers are ai,
i = 4, 6, which are vectors defined in the material configurarion Ωm. The invariants I4, I6

measure the stretch in the direction of the fibers as a consequence of the deformation state
of the body. The exponential term will be active only if the stretch of the collagen fibers
corresponds to a recruited state. The passive response of the smooth muscle is taken into
account in a compatible manner with the simplified 1D model through an independent ring
model (see viscoelastic terms detailed in Blanco et al (2010)).
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We highlight that it is also considered an alternative constitutive equation for the
modeling of arterial walls of aneurysms. We make use of an exponential and isotropic strain
energy function, based on the hypothesis that collagen fibers are the main energy-storing
constituents due to elastin degradation, and acknowledging a lack of information regarding
fiber orientations in such environment. This strain energy function, originally introduced
in Delfino et al (1997), reads

Ψ =
kdel
2kx

{
exp[kx(Ī1 − 3)]− 1

}
, (3.6.3)

where, kdel is an effective elastic parameter and kx is a non-dimensional parameter con-
trolling the exponential behavior of the tissue.

3.6.2 Constitutive equations for the 1D arterial wall

To take into account the compliance of the vessel and close the system of equations
presented in Section 2.4, a constitutive equation that relates the pressure P to the cross
sectional A must be included. In this thesis, it is considered a non-linear viscoelastic model
originally proposed by Kivity and Collins (1974), taking following form

P = P0 +
hw,0Ee
R0

ε+
Khw,0
R0

ε̇ (3.6.4)

where ε =
(√

A
A0
− 1
)
, R is the radius of the artery, Ee the effective Young’s modulus

of the vessel, K is the effective viscosity of the wall, hw the thickness and subscript ’0’
indicates that quantities are evaluated for a reference pressure value P0.

As shown in C̆anić et al (2006), it is important to account for the viscoelasticity of
the arterial wall tissue as it plays a major role in the definition of the pulsewave in the
CVS.

3.7 Residual deformations

As the application of the in-vivo characterization of residual deformations (see Chap-
ter 5) for complex 3D geometries is matter of current research, in this work we incorporate
the axial stretch component through the definition of boundary conditions at the non-
physical boundaries when solving the preload problem in order to obtain a “shortened”
material geometry. For this purpose in this thesis we explore three different alternatives:

(i) prescribing axial displacements for every node at the non-physical boundary,

(ii) applying tethering forces via penalization, related to the mean displacement of the
surface, and

(iii) applying pre-computed tethering forces.

Strategy (i) is the most straightforward approach and is suitable for pipe-like geome-
tries with straight axis. This technique is employed in the idealized common carotid artery
example (see Section 4.2).

Strategy (ii) adds tethering forces acting over the axial direction of the non-physical
boundary which are proportional to the mean displacement of the boundary, the main
difference introduced by this method is the possibility of bending and rotation of the
involved surfaces. This technique is used on the examples shown in Sections 4.3 and 4.4.

For the implementation of strategy (iii) the tethering forces applied in each non-
physical boundary are previously computed through an auxiliary problem. As a first step
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Figure 3.6: Example domain extension (red) at non-physical boundary for the auxiliary problem
to determine tethering forces. Left Figure shows mesh details, displaying overlapped nodes at the
interface between the original (gray) and the auxiliary (red) geometry. Right Figure evidences the
matching cross-sectional shape of the extended domain.

we generate a pipe-like extension of the initial geometry (Ωbase,aux auxiliar domain) at
each boundary. This extension presents a linear axis and constant cross-sectional shape,
consistent with the original domain as exemplified on Figure 3.6. As a second step a target
pre-stretch level and a baseline pressure are defined , and then the preload problem on
Ωbase,aux using strategy (ii) is solved to obtain a shortened domain denoted by Ωm,aux

(material counterpart of Ωbase,aux). The penalization method in the second step provides
us with the tethering force required to acquire the desired pre-stretch level on the auxiliary
problem, the reaction of this force is then applied on the original domain to solve the
preload problem. Figure 3.7 displays this 3-step process proposed for the computation of
the material domain.

With each of these described methodologies a “shortened” material geometry is ob-
tained, when compared with the configuration extracted from the medical images Ωbase.
For the 1D-3D FSI coupled problem it is considered that during the complete cardiac cycle
the position of the non-physical boundaries remains constant. Thence, during the FSI
simulation null mean displacements of the boundaries (with respect to Ωbase) are enforced
using a penalization method analogous to strategy (ii).

3.8 Numerical approximations

The formulations described up to this point are in the continuum setting, and there-
fore are independent of the numerical method employed to approximate the problem. In
this work, for both the fluid and the solid problems the finite element method for the spa-
tial discrezation is used. The time integration is treated with an implicit Crank-Nicolson
finite-difference method. The finite element techniques employed regarding both solid and
fluid problems are detailed next. Also, details for the discretization of the interface between
both domains and the shared information among them are provided.
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(a) Baseline domain Ωbase (grey)
and generated auxiliary extension
Ωbase,aux (red).

(b) Material configuration corre-
sponding to the auxiliary domain
Ωm,aux (red), obtained as solution
of the preload problem.

(c) Comparison between the ma-
terial configuration Ωm (red) and
the configuration extracted from
the medical images Ωbase (grey).

Figure 3.7: Strategy (iii), application of pre-computed tethering forces in the preload problem.

3.8.1 Numerical approximation for the solid problems

Consider φi, the ith element of the basis Bu of the discrete space associated to the
manifold Uh = span{φ1,φ2, . . . ,φ3NT } approximating U and ϕl to the lth element of the
basis Bλ of the discrete space Ph = span{ϕ1, ϕ2, . . . , ϕNT } approximating P; with NT

standing for the total number of nodes in the underlying mesh. As previously mentioned,
both φi and ϕl are constructed based on linear finite element shape functions, and as
can be seen, equal order interpolation will be employed. Specifically, ϕl is the scalar field
defined by the shape function corresponding to the node l (l = 1, . . . , NT ). Also, from each
node, three canonical vectorial fields are defined as





φi = (ϕl, 0, 0)

φi+1 = (0, ϕl, 0)

φi+2 = (0, 0, ϕl)

, i = 3(l − 1). (3.8.1)

The approximated displacement and Lagrangean fields (uhs and λhs ) are obtained as
linear combinations of the elements of the presented basis as

{
uhs = U1φ1 + U2φ2 + · · ·+ U3NTφ3NT

λhs = P1ϕ1 + P2ϕ2 + · · ·+ PNTϕNT
, (3.8.2)

where U and P condense the unknowns of the discretized equilibrium problem as coeffi-
cients of the linear combinations.

The discrete form for the linearized forward problem introduced in (3.4.7) can be
written in the following form: given (U,P ) (coefficients for the displacement and pressure
fields at previous Newton-Raphson iteration -omitted k index-) find (δU, δP ) such that

[
A B
BT 0

] [
δU
δP

]
=

[
L
M

]
, (3.8.3)

where the vector δU condenses the unknowns related to δus and δP the ones corresponding
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to δλs. The matrix blocks are given by

Aij =

∫

Ωs

[Ds + λs (2I− (I⊗ I))] εs
(
φj
)
· εs (φi) dΩs

+

∫

Ωs

(
∇sφj

)
σs · (∇sφi) dΩs +

∫

∂ΩWs

[
tW,ns ((∇sφj)T − I)nWs · φi

]
divsφj d∂ΩW

s

−
∫

∂ΩWs

(
H
(
φj
)
ns ⊗ ns

)S
tW,ts · φi d∂ΩW

s −
∫

∂ΩWm

Pst
W,t
s · φi

(
divsφj

)
d∂ΩW

s

−
∫

∂ΩWm

Pst
W,t
s · φi

(
−
(
∇sφj

)T
ns · ns

)
d∂ΩW

s

−
∫

∂ΩNs

(
tNs · φi

) [(
divsφj

)
−
(
∇sφj

)T
ns · ns

]
d∂ΩN

s , (3.8.4)

and
Bil = −

∫

Ωs

ϕl divsφi dΩs, (3.8.5)

and the load vectors by

Li −
∫

Ωs

[−λs divsφi + σs · εs (φi)] dΩs +

∫

∂ΩWs

Pst
W
s · φi d∂ΩW

s +

∫

∂ΩWs

tW,ns ns · φi d∂ΩW
s

+

∫

∂ΩNs

tNs · φi d∂ΩN
s , (3.8.6)

Ml =

∫

Ωs

(
1− det F−1

s

)
ϕl dΩs. (3.8.7)

The forward and preload problems require further treatment at the discrete level
for improving preconditioning, because of the large size of the algebraic system derived
from the discretization of realistic patient-specific geometries. This is accomplished by
modifying the variational formulations introducing a consistent zero-order term on the
linearized (forward and preload) problems. That is, the left hand side of the first equation
of (3.4.7) for the forward problem (as(δus, ûs)) includes the additional term

∫

Ωs

γ∇sδus · ∇sûs dΩs (3.8.8)

where γ can be regarded as a viscoelastic parameter. Note that this term is nullified when
convergence is achieved, i.e. as δus → 0.

Moreover, since tetrahedral elements with linear interpolation for both displacement
and pressure fields are used for the space discretization, the problem needs to be stabilized
in the sense of the inf-sup condition, the linearized (forward and preload) problems are
modified adding a Laplacian-like term in the pressure equation. That is, the left hand side
of the second equation of (3.4.7) for the forward problem includes the term

∫

Ωs

h2

ν
∇sδλs · ∇sλ̂s dΩs, (3.8.9)
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where h is a characteristic length of the finite element and ν a given stabilization parameter.
Minding these changes, equation (3.8.3) is redefined as follows

[
A∗ B
BT D

] [
δU
δP

]
=

[
L
M

]
, (3.8.10)

where blocks A∗ and D are given by

A∗ij = Aij +

∫

Ωs

γ∇sφj · ∇sφi dΩs, (3.8.11)

Dlk =

∫

Ωs

h2

ν
∇sϕk · ∇sϕl dΩs. (3.8.12)

The discrete expressions for the linearized form of the preload problem can be ob-
tained analogously following the presented procedure.

3.8.2 Numerical approximation for the fluid problem

As a first step, a θ time integration scheme (θ = 1/2 is Crank-Nicolson) in introduced
in the set of linearized equations for the fluid problem presented in -, yielding

∫

Υk

ρ
vk+1 − vk

∆t
· v̂ dΥk +

∫

Υk

ρ∇vθk+1(vθk − vkR) · v̂ dΥk

−
∫

Υk

pk+1divv̂ dΥk +

∫

Υk

2µε(vθk+1) · ε (v̂) dΥk =

C∑

i=1

∫

∂ΥA,ik

tik · v̂ d∂ΥA,i
k ∀v̂ ∈ Vk, (3.8.13)

∫

Υk

p̂divvk+1 dΥk = 0 ∀p̂ ∈ Pk, (3.8.14)

∫

Υk

∇dk+1 · ∇d̂ dΥk = 0 ∀d̂ ∈ D∗k, (3.8.15)

where it has been considered that the blood behaves as a Newtonian fluid, with σ(v) =
2µε(v). In this context, µ denotes the viscosity of the Newtonian fluid and the velocities
vθk+1 and vθk are obtained as

vθk+1 = θvk+1 + (1− θ)vn, vθk = θvk + (1− θ)vn, (3.8.16)

with vn standing for the fluid velocity at the time corresponding to the previous time step
tn.

Next, for the spaces Vhk ,Phk and Dhk (discrete approximations of the corresponding
spaces Vk,Pk and Dk, respectively) consider the bases





Bv = {ψ1,ψ2, . . . ,ψ3(Nf
T+Nf

E)
}

Bp = {ϕ1, ϕ2, . . . , ϕNf
T
}

Bd = {φ1,φ2, . . . ,φ3Nf
T
}

(3.8.17)
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where Nf
E is the total number of tetrahedral elements employed in the discretization of

the fluid domain and Nf
T is the total number of nodes in the mesh. Every ϕi in Bp

is a scalar field given by the linear finite element shape functions of these nodes and
each φi in Bd is a vectorial function as explained in the previous section for the solid
problems. Moreover, functions ψi in Bv are a vectorial fields constructed based on these
shape functions and an additional “bubble” shape function (see (D.N. Arnorld, 1984)) for
each tetrahedral element. The addition of these “bubble” functions serves the purpose of
satisfying the inf-sup condition corresponding to the null divergence constraint over the
velocity field. The approximated velocity, pressure and displacement field are obtained as
linear combinations of the corresponding bases elements, i.e.





vh = V1ψ1 + V2ψ2 + · · ·+ V3(NT+NE)ψ3(NT+NE)

ph = P1ϕ1 + P2ϕ2 + · · ·+ PNTϕNT
dh = V1φ1 + V2φ2 + · · ·+ V3NTφ3(NT )

, (3.8.18)

where vectors V, P,D condense the linear combination coefficients.
Moreover, since blood flow dynamics can be characterized as a convection-dominated

problem, in this work the Streamline Upwind Petrov-Galerkin technique (SUPG, (Hughes
et al, 1987)) is employed. Furthermore, an artificial compressibility contribution controlled
by the coefficient % is incorporated to regularize the saddle-point problem. Minding these
considerations, the discrete system corresponding to equations (3.8.13)-(3.8.15) reads




A B 0
BT C 0
0 0 D





V k+1

P k+1

Dk+1


 =



L
0
0


 , (3.8.19)

where V k+1, P k+1 and Dk+1 are the vectors of coefficients of the solution for the iteration
k + 1, and the blocks forming the system matrix are

Aij =

∫

Υk

ρ

∆t
ψj ·ψi dΥk +

∫

Υk

θρ∇ψj(vθk − vkR) ·ψi dΥk

+

∫

Υk

θρ∇ψj(vθk − vkR) · τup∇ψi(vθk − vkR) dΥk +

∫

Υk

θ2µε(ψj) · ε (ψi) dΥk (3.8.20)

Bil = −
∫

Υk

ϕldivψi dΥk (3.8.21)

Clm = −
∫

Υk

%ϕlϕm dΥk, (3.8.22)

Dno =

∫

Υk

∇φo · ∇φn dΥk, (3.8.23)
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Li =

∫

Υk

ρ

∆t
vk ·ψi dΥk −

∫

Υk

(1− θ)ρ∇vn(vθk − vkR) ·ψi dΥk

−
∫

Υk

(1− θ)ρ∇vn(vθk − vkR) · τup∇ψi(vθk − vkR), dΥk −
∫

Υk

(1− θ)2µε(vn) · ε (ψi) dΥk,

(3.8.24)

where τup is defined at each element considering its characteristic length h and the magni-
tude of the relative velocity of the fluid with respect to the mesh as follows

τup =
h

2|vθk − vkR|

(
1− 1

Pe

)
, Pe =

ρ|vθk − vkR|h
2µ

. (3.8.25)

3.8.3 Interface discretization

Both arterial wall and blood flow domain discretizations are built from a unique sur-
face mesh obtained from the segmentation and mesh preparation process. These construc-
tions preserve the original mesh for the interface in such way that tetrahedral elements for
both problems posse matching nodes and faces at the interface boundary (∂ΩW

s ≡ ∂ΥW
t ).

As consequence, the sharing of information between both problems is straightforward.
For example, for the definition of Dirichlet boundary conditions for the fluid problem, as
required in (3.4.5), the displacement of the solid is transferred directly between matching
nodes on the surface. Similarly, the traction at each node for the fluid domain is computed
and then introduced as Neumann boundary data for the solid problem. It is important
to note that, when the convergence of the FSI algorithm is achieved, both meshes are
compatibly deformed preserving its matching characteristic along the simulation (with an
error related to the convergence tolerance of the problem). Figure 3.8 shows an example of
a boundary mesh along with two face-matching tetrahedral elements from solid and fluid
domains.

Figure 3.8: Discretization of the interface between the arterial wall and blood flow domains (∂ΩW
s ≡

∂ΥW
t ), displaying the complete triangular mesh -left- and a closeup showing one tetrahedral element

from each domain (blue element for arterial wall, red element for fluid domain) with matching faces
in the boundary -right-.





Chapter 4

Applications in computational
hemodynamics

4.1 Introduction

In this chapter four numerical examples are presented, aiming at showing the poten-
tial of the integrative modeling framework described in Chapters 2 and 3 and assessing the
influence of initial loads and pre-stretch in hemodynamic simulations.

The first example features a straight pipe representing an idealized human common
carotid artery. Six modeling scenarios are analyzed, presenting a comparison between
the results obtained using the proposed modeling framework and the ones provided by
alternative cases considering different simplifying hypotheses.

In the second example, an idealized common carotid bifurcation is analyzed. In this
case, the attention is primarily focused on assessing the impact of tethering forces on the
hemodynamic simulation, contrasting two scenarios that differ only in the considered level
of pre-stretch (λC = 1.2 and λC = 1.0). The discrepancies between the most frequently
used approach in the literature and our proposed modeling framework are highlighted.

For the third example, a patient-specific human common carotid artery is studied.
The baseline diastolic configuration of the vascular segment of interest is extracted from
medical images. Analogous to the analysis presented for the second example, the blood flow
dynamics and mechanical response of the vessel are studied for two scenarios corresponding
to different levels of pre-stretch.

Finally, in the fourth example, a patient-specific cerebral aneurysm located in the
middle cerebral artery is studied. The analysis is focused on the influence of the tethering
forces corresponding to different levels of pre-stretch on the aneurysm sack.

4.2 Problem 1: straight pipe

4.2.1 Problem description

A straight pipe representing an idealized human common carotid artery is studied. In
the first place the preload problem is solved to obtain the material configuration, assuming
that the initial -given- configuration has been extracted from a set of medical images.
Then, we proceed to solve the 3D FSI problem coupled with the simplified closed-loop
circulation model (see Section 3.5).

Hereafter, we will refer to the fluid pressure field at a given time t as pt, and define
a baseline pressure level pbase = 9 · 104 dyn

cm2 (67.5mmHg), and the relative pressure field at
any given time is prelt = pt − pbase.

51
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Six different cases are analyzed with two main objectives: i) to assess the relevance of
taking into account the complete load state at the so-called initial geometry, separating the
inner pressure load and the tethering forces; and ii) to analyze the pitfalls when considering
alternative strategies to simulate the system response without having solved the preload
problem. Thus, the following scenarios are considered:

(a) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium with a constant internal reference pressure pbase and that
presents a known level of pre-stretch λC = 1.2 and the FSI problem is solved from
that configuration onwards;

(b) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium only with a constant internal reference pressure pbase, the
length of the material configuration is equal to the initial length (λC = 1.0) and the
FSI problem is solved from that configuration onwards;

(c) the preload problem is solved considering that the initial geometry presents a known
level of pre-stretch λC = 1.2 and no inner pressure is considered; the FSI problem is
solved from that configuration onwards, assuming that the solid is equilibrated by a
relative pressure prelt ;

(d) no preload problem is solved and the constitutive equation is defined considering that
the initial geometry is the material configuration, for the FSI problem it is considered
that the solid is a configuration at mechanical equilibrium with the defined relative
pressure prelt , i.e., neither the full level of pressure nor the stretch are considered in
the simulation;

(e) no preload problem is solved and constitutive equations are defined considering that
the initial geometry is the material configuration, the FSI problem is set in that
configuration by firstly applying a known level of pre-stretch λC = 1.2 as well as the
full level of inner pressure pt exerted by the blood flow at any given time t;

(f) no preload problem is solved and constitutive equations are defined considering that
the initial geometry is the material configuration, the FSI problem is set in that
configuration by applying the full level of inner pressure pt exerted by the blood flow
at any given time t and considering that the length of the vessel is constant and equal
to the corresponding for the initial state (λC = 1).

Note that: case (a) corresponds to the most realistic and physiologically accurate scenario.
Cases (b) and (c) are expected to give insight about the importance of taking into account
the full load state when solving the preload problem (internal pressure and pre-stretch,
respectively). Finally, cases (d), (e) and (f) will serve the purpose of comparing against
standard approaches to blood flow and arterial wall simulations that completely neglect
the preload problem. Table 4.1 summarizes the loading conditions used to solve both the
preload and the FSI problems for each test case.

For each case, we will denote as diastolic baseline configuration to the equilibrium
geometry obtained when the vessel is loaded with the constant reference pressure p = pref
and the corresponding tethering forces. That means that for cases (a), (b), (c) and (d) the
geometry will be the one obtained from the image, while for cases (e) and (f) the geometry
is considerably different due to loading conditions (see Table 4.3).

4.2.2 Geometrical and constitutive parameters

The idealized arterial segment is assumed to have been extracted from a medical
image, with inner radius and thickness equal to ri = 0.37 cm and e = 0.063 cm, respectively
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Scenario Mat. configuration Preload problem loads FSI and forward problem loads

Int. pressure Tet. stretch Int. pressure Tet. stretch

(a) preload* pbase λC = 1.2 pt λC = 1.2

(b) preload* pbase λC = 1.0 pt λC = 1.0

(c) preload* 0 λC = 1.2 prelt λC = 1.2

(d) image+ - - prelt λC = 1.0

(e) image+ - - pt λC = 1.2

(f) image+ - - pt λC = 1.0

Table 4.1: Description of scenarios considered for the idealized carotid segment. Loading conditions
for the preload and FSI forward problems are presented. *: indicates that the material configuration
is known after solving the preload problem. +: indicates that the material configuration is directly
given by the geometry extracted from the image.

(data consistent with a common carotid artery vessel as given by Avolio (1980)), and the
length of the pipe is l = 8.9 cm. The arterial wall consists of two layers, being the inner
layer (media) two times the size of the external layer (adventitia).

The setting of material parameters is inspired in the data presented in Zulliger et al
(2004a) for a rat carotid artery, adapted according to the following criteria:

(i) adventitia layer mechanical properties are one order of magnitude smaller than the
ones corresponding to the media layer;

(ii) the inner radius of the equilibrium configuration when the vessel is loaded with a
constant inner pressure level of p = 1.6 · 105 dyn

cm2 (120mmHg) is approximately 5%
bigger than the corresponding to a similar situation when the pressure level is at
p = 8 · 104 dyn

cm2 (60mmHg); these pressure levels correspond to reasonable systolic
and diastolic pressure values, respectively;

(iii) two families of collagen fibers are considered with helicoidal structure in the cir-
cumferential direction (see Figure 4.1), with a characteristic angle β for each family
and material layer. The values of β for media and adventitia layers are taken from
Holzapfel and Gasser (2000), the orientation of the fibers is in each case determined
for the previously defined diastolic baseline configuration.

β

Figure 4.1: Representation of the helicoidal arrangement of collagen fibers for the straight pipe.
The orientation of the fibers is defined for media and adventitia layers through the angle β (see
Table 4.2 for parameter values).

In addition, these collagen fibers are considered to be recruited when they are stretched
beyond the diastolic baseline configuration Ωbase. Let xbase be the coordinates in this
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domain, and ubase be the displacements mapping this configuration with the material
domain, with the associated deformation gradient Fbase = I + ∇mubase. Then for each
scenario the recruitment stretches λ0

i are defined via

λ0
i = ai · (Cbase

m ai), i = 4, 6, (4.2.1)

with Cbase
m =

(
Fbase
m

)T
Fbase
m . To obtain a similar collagen behavior (within the physiolog-

ical pressure range) to the presented in Zulliger et al (2004a) (where collagen is recruited
at the zero-load configuration), the parameter k2 (see equation (3.6.1)) controlling the
exponential response of the fiber has been increased. Table 4.2 presents the final material
setting for this problem.

Property Media Adventitia

Thickness [cm] 0.042 0.021

celast
[
dyn
cm2

]
8 · 106 8 · 105

k1

[
dyn
cm2

]
32 · 104 32 · 103

k2 20.0 20.0

β 29.26◦ 65.37◦

Table 4.2: Material properties considered in the numerical simulation of the carotid artery

4.2.3 Discretization

The total number of nodes for the fluid domain is 31251. The fluid mesh is generated
using a Delaunay method. The arterial wall is discretized using a semi-structured mesh
of tetrahedral elements. This solid mesh was constructed through an extrusion of the
surface representing the lumen boundary in the outward normal direction. Prisms were
generated from triangles and then tetrahedra were constructed from the prisms. The
resulting mesh consists of 6 layers of prisms in the radial direction (the first 4 inner element
layers correspond to the media, and the 2 outer layers represent the adventitia). The total
number of nodes for the solid domain is 94482. The time-step in the simulation is taken
∆t = T/1000, where T = 1s is the cardiac period.

4.2.4 Parameters for numerical simulation

Numerical parameters used are γ = 0.01celast for the zero-order preconditioning term
(see (3.8.8)) and ν = 0.1celast for the pressure stabilization (see (3.8.9)).

In the case of the preload problem, a subrelaxation step at each iteration of the
Newton-Raphson scheme is introduced, the value adopted for this subrelaxation step is
0.6. The solution is achieved via 10 load steps in which the displacement at both ends of
the cylinder (to define the pre-stretch, see Section 4.2.5) and the inner pressure (to define
the preload pressure) are linearly incremented up to the desired values.

For the FSI problem, the subrelaxation parameters are chosen to be κa = κb = 0.4
(see equations (3.4.13) and (3.4.13)), while the parameter ι controlling the update of the
Neumann boundary condition for the arterial wall at ∂ΩW

s is defined by ns = 6 (see Section
3.4.3).
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4.2.5 Boundary conditions

Preload problem.

For the preload problem, Dirichlet boundary conditions are imposed to the dis-
placement in the axial direction at non-physical boundaries (following strategy (i) for the
incorporation of tethering forces as detailed in Section 3.7), ensuring that a certain level of
pre-stretch is achieved. That is, for scenarios (a) and (c) an axial displacement of 0.7416
cm at each end of the cylinder is imposed; while for scenario (b) null axial displacements
are considered. Neumann conditions are imposed at ∂ΩW

s given by the constant pbase
pressure load for scenarios (a) and (b), while in scenario (c) ∂ΩW

s is set as an homoge-
neous Neumann boundary. In order to avoid rigid rotations of the entire structure, at
non-physical boundaries ∂ΩA,i

s a penalization over the tangential displacement is added to
four diametrical nodes.

Finally, for the force acting on the external boundary ∂ΩE
s (see Section 3.3, equation

(3.3.1)) the following assumptions are considered:

• the reference displacement for the elastic component is set at the diastolic baseline
configuration, i.e. u0 = ubases ,

• the velocity of the body at the baseline state (relaxed diastolic state) is small.

Hence, the force given by external tissues is neglected in the preload problem, resulting in
an homogeneous Neumann boundary condition over the corresponding boundary.

1D-3D FSI problem.

Boundary conditions for both the fluid and the solid at ∂ΩW
s are taken as described

in Section 3.4. In addition, coupling (Neumann-like) boundary conditions are set at non-
physical boundaries for the fluid domain, providing a constant normal traction datum
obtained from the 1D model through the dimensionally heterogeneous iterative coupling
algorithm. For the arterial wall, and analogously to the preload problem, Dirichlet con-
ditions on the axial displacement are imposed at non-physical boundaries. Furthermore,
Robin boundary conditions (at the time-descrete level) are incorporated on ∂ΩE

s due to
the action of the surrounding tissues (see Section 3.3, expression (3.3.1)). The parameters
controlling the response of the external support are ke = 2 · 102 dyn

cm2 and kv = 2 · 103 dyn
cm2 s

,
while the reference for the elastic component is given by the displacement at the diastolic
baseline configuration, i.e. u0 = ubases .

4.2.6 Results

Figure 4.2 summarizes the results obtained for scenario (a); a comparison between
the initial (image-based) and material geometries is displayed in Figures 4.2(a) and 4.2(b);
the von Mises stress state at the baseline diastolic and systolic configurations is shown in
Figures 4.2(c) and 4.2(d), respectively; and, finally, the velocity profile representing the
blood flow behavior is displayed Figure 4.2(e) Since the flow rate contour (not shown here)
is given by the 1D model and has a physiological shape, the blood velocity is within the
physiological range. Additionally, Figure 4.4 displays the pressure and flow rate (Figure
4.4(a)) at the inlet of the pipe along with the velocity profiles and streamlines for four
different time instants within the cardiac cycle (Figures 4.4(b) to 4.4(e)).

Furthermore, Figure 4.3 features the stress distribution for both diastole and systole
states along thickness of the arterial wall. As a consequence of the tethering and internal
pressure loads, the material presents a tensile state in both circumferential σθθ and axial
σzz directions. The von Mises equivalent stress (σvm) is also displayed in the same figure.
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(a) Comparison between baseline diastolic (blue) and material (translucent grey) configurations (side view).

(b) Comparison between base-
line diastolic (blue) and material
(translucent grey) configurations
(axial view).

(c) Von Mises stress distribution
on a central slice of the arterial
wall at baseline diastolic configu-
ration.

(d) Von Mises stress distribution
on a central slice of the arterial
wall at systole.

(e) Velocity profile at systole (t = 0.35 · T ).

Figure 4.2: Straight pipe example: visualization of results for the 1D-3D FSI simulation of scenario
(a). The notable difference on the stress levels is due to the material properties of the media and
adventitia layers.
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Figure 4.3: Circumferential, longitudinal and von Mises stress distribution along the thickness
of the arterial wall for scenario (a) for diastole (black) and systole (red). Note the discontinuity
introduced by the different material properties of the media and adventitia layers; also, that stresses
are constant within each finite element.
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(a) Flow rate (blue) and pressure (red) at the inlet of the straight pipe during the
cardiac cycle.

(b) Streamlines at t = 0.11T (c) Streamlines at t = 0.17T

(d) Streamlines at t = 0.35T (e) Streamlines at t = T

Figure 4.4: Blood flow dynamics for the straight pipe example, displaying pressure (red) and flow
rate (blue) at the bifurcation inlet during one cardiac cycle and visualization of velocity profiles
and streamlines for four time instants t = 0.11T , t = 0.22T , t = 0.35T and t = T .
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It is interesting to highlight that the behavior of the σvm differs from σθθ and σzz across
the thickness of the arterial wall. While σθθ and σzz increase at systole in both layers,
σvm slightly decreases in the inner layer and increases in the outer layer. The strong
discontinuity is related to the change in material properties from the media to the adventitia
layers. All stresses are measured at a central slice of the vessel and mapped back, if required,
to the image-based configuration.
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Figure 4.5: Velocity profile for different scenarios at time t = 0.35T measured over a cross sectional
line.

In order to establish a comparison of the results for different scenarios, an overview
of the predictions performed by the simulations is condensed in Table 4.3 (geometrical
landmarks of different configurations), Figure 4.5 (velocity profiles at a given section of
the pipe, located at z = 0.67l, for t = 0.35T ), Figure 4.6 (stress distribution along the
thickness) and Table 4.4 (relative differences of the average stress at media and adventitia
layers with respect to scenario (a)).

• Scenario (a). As said, this ideally represents the most physiologically realistic sce-
nario. That is, the stress state (see Figure 4.6) and the fluid dynamics quantities

Scenario

Geometrical landmarks

Zero-load Diastolic* Systolic∗∗

ri [cm] l [cm] e [cm] ri [cm] l [cm] e [cm] ri [cm] e [cm]

(a) 0.352 7.42 0.088 0.370 8.90 0.063 0.383 0.060

(b) 0.349 (0.66) 8.90 (19.9) 0.065 (26.5) 0.370 (0.00) 8.90 (0.00) 0.063 (0.00) 0.382 (0.15) 0.060 (0.00)

(c) 0.371 (5.52) 7.42 (0.00) 0.073 (17.9) 0.370 (0.00) 8.90 (0.00) 0.063 (0.00) 0.383 (0.00) 0.060 (0.00)

(d) 0.370 (5.22) 8.90 (19.9) 0.063 (28.7) 0.370 (0.00) 8.90 (0.00) 0.063 (0.00) 0.384 (0.33) 0.061 (0.99)

(e) 0.370 (5.22) 8.90 (19.9) 0.063 (28.7) 0.387 (4.49) 10.89 (20.0) 0.049 (22.7) 0.396 (3.52) 0.051 (16.2)

(f) 0.370 (5.22) 8.90 (19.9) 0.063 (28.7) 0.394 (6.48) 8.90 (00.0) 0.061 (2.86) 0.405 (5.64) 0.059 (1.83)

Table 4.3: Results overview displaying geometrical landmarks (inner radius -ri-, lenght -l-, and
thickness -t-) of material, diastolic baseline and systolic configurations. Measures are taken at the
central slice of the vessel. *Diastolic baseline configuration. **Configuration at systole (t = 0.35T ).
In parentheses, percent differences with respect to scenario (a) are reported.
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Figure 4.6: Distribution of circumferential (top), axial (middle) and von Mises (bottom) stresses
at systole along the thickness of the arterial wall for the proposed scenarios -(a) black, (b) blue,
(c) red, (d) green, (e) magenta, (f) cyan).



60 Chapter 4. Applications in computational hemodynamics

Scenario
Discrepancies of average stress values [%]

Media Adventitia

σθθ σzz σvm σθθ σzz σvm

(b) 34.0 104 38.3 53.8 77.5 66.5

(c) 77.7 4.59 12.1 25.4 12.1 14.4

(d) 42.9 102 73.5 80.9 90.3 86.1

(e) 27.8 29.6 28.2 33.9 34.8 33.6

(f) 38.8 102.8 37.2 49.8 75.3 63.7

Table 4.4: Percentage differences with respect to scenario (a) of the average circumferential, axial
and von Mises stresses for each material layer and proposed scenario. **Measures taken on a central
slice of the vessel at t = 0.35T .

Scenario (d) : discrepancies of average ∆σ [%]

Media Adventitia

∆σθθ ∆σzz ∆σvm ∆σθθ ∆σzz ∆σvm

6.19 181 2.87 25.8 33.6 26.8

Table 4.5: Percentage discrepancies with respect to scenario (a) of the difference between systolic
and baseline diastolic stresses (∆σ) for each material layer. Measures taken on a central slice of
the vessel at t = 0.35T .

(see Figure 4.5) can be considered as reference solution to discuss the differences
caused by modeling simplifications in the rest of the scenarios considered (see items
below). Such realistic scenario was possible to be simulated through the integrative
framework developed in Chapters 2 and 3 of this thesis. For instance, from Figure
4.6 it is seen that the mechanical state of the arterial wall is pretty badly predicted
by most of the remaining scenarios, even changing the direction of stresses due to
the lack of preload stresses.

• Scenario (b). From Figure 4.6, it can be observed that, despite providing a good
approximation of the geometry within the physiological range (see Table 4.3), ne-
glecting the tethering forces given by the pre-stretch leads to major discrepancies
when evaluating the stress state of the arterial wall tissue. As it is evident from the
same figure, there are significant differences for both the circumferential and axial
stresses and, as result, a severe underestimation of the von Mises equivalent stress. As
displayed on Table 4.4, in average, the differences in the prediction of stresses reach
54%, 104% and 66% for σθθ, σzz and σvm, respectively, with respect to scenario (a).
As a consequence of the good estimation of the geometry achieved for this simple case,
the blood flow behavior is fairly predicted, as can be observed in Figure 4.5. Note
that, compared with scenario (a), the shape of the profile has similar characteristics
and the maximum velocity presents a difference of approximately 1.5%.

• Scenario (c). Although the approximation of the geometry of the vessel is adequate
within the physiological range (see Table 4.3), the estimation of the stress state
remains poor. Figure 4.6 clearly shows that the main flaw is in the prediction of
the circumferential stress, since axial efforts are fairly represented. Since in this
example the von Mises stress invariant is primarily driven by the axial components,
this scenario renders a good prediction for this quantity. Table 4.4 shows that the
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average stresses present differences up to 78%, 12% and 14% for σθθ, σzz and σvm,
respectively, with respect to scenario (a). Once again, similarly to the findings cor-
responding to scenario (b) the results for the blood flow behavior are in agreement
with those obtained from scenario (a), as shown in Figure 4.5.

• Scenario (d). The geometrical landmarks as well as the hydrodynamics are well
predicted by this scenario, as observed in Table 4.3 and Figure 4.5, respectively. As
expected, the stress state predicted in this case is substantially different from that
obtained in scenario (a). In fact, average relative differences of 81%, 102% and 86%
are obtained for σθθ, σzz and σvm, respectively (see Table 4.4). Recall that, due to the
hypothesis considered for this case, stresses at the baseline diastolic configuration are
null. For this case, it is interesting to contrast the differences of the stresses between
diastole and systole (hereafter referred to as ∆σ). This comparison is presented
in Figure 4.7 and Table 4.5, where it can be appreciated that this scenario is also
unable to predict ∆σ accurately, with relative differences up to 25%, 181% and 27%
for ∆σθθ, ∆σzz and ∆σvm, respectively.

• Scenario (e). Differences in geometrical landmarks are significant as observed in
Table 4.3, with discrepancies of approximately 4% in the internal radius for both
the diastolic and systolic configurations (leading to a disparity of roughly 10% in the
lumen area). Also note that the assumptions taken for this case lead to misrepresen-
tation of the tissue thickness; which significantly impacts the mechanical response
of the wall. Although similar flow rates are obtained between the current case and
scenario (a), the increased cross-sectional area reduces the blood velocity as observed
on Figure 4.5, where it is appreciated a decrease of 8% on the maximum velocity.
Regarding the stress state, an adequate pattern for both circumferential and axial
stresses is predicted, but they are overestimated when compared with scenario (a),
as noticed in Figure 4.6. Table 4.4 displays that relative differences reach 33%, 34%
and 33% for σθθ, σzz and σvm, respectively.

• Scenario (f). Significant differences in the geometrical landmarks are obtained for
both the diastolic and systolic configurations, i.e., discrepancies of approximately 6%
and 13% are reported for the internal radius and lumen area, respectively. Similarly
to scenario (e), due to the increased cross-sectional area, the blood velocity is reduced
as shown in Figure 4.5. In this case the maximum velocity is underestimated, pre-
senting a discrepancy of 14.1% compared scenario (a). Regarding the stress results, it
is evident from Figure 4.6 that this approach is completely unable to characterize the
mechanical response of the tissue, since in average, the differences in the prediction
of stresses reach 50%, 103% and 64% for σθθ, σzz and σvm, respectively, with respect
to scenario (a).

From the discussion above, it can be inferred that no alternative scenario to case
(a) is suitable to accurately evaluate the stress state of the arterial wall, once all the
hemodynamic loads acting over arterial vessels are defined. It has been shown that it is
mandatory to solve the preload problem taking into account both the internal pressure
and the axial prestretch. Moreover, it has been clearly demonstrated even in this simple
geometrical model that the tethering forces, usually disregarded, are, as well as the inner
pressure load, of the utmost importance for the determination of the stress state of the
arterial tissue.

For this particular example, due to the simplicity of geometry and the low compliance
of the vessel, all scenarios predict comparable variations of the lumen radius. Consequently,
the fluid dynamics variables feature similar behavior in all scenarios. This may not be the
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Figure 4.7: Difference of stresses (circumferential, axial and von Mises) between systole and diastole
for scenarios (a) and (d) (black and green respectively.)
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case for more compliant vessels or more tortuous domains, e.g. for the entire aorta or for
some vessels containing aneurysms (see Hsu and Bazilevs (2011)), among others.

4.3 Problem 2: carotid bifurcation

4.3.1 Problem description

This numerical example consists in a standardized geometry of the carotid bifurca-
tion, with the fluid domain defined as in Bharadvaj et al (1982). As before, the preload
problem is solved to obtain the material configuration assuming that the initial geometry
has been extracted from medical images. Then, the 1D-3D FSI coupled problem is solved.
Once again, the baseline pressure level is defined pbase = 9 ·104 dyn

cm2 (67.5mmHg), and given
the pressure field pt at the time t the relative pressure level is prelt = pt − pbase.

In this case we consider the following scenarios:

(a) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium with a constant internal reference pressure pbase and is
also subjected to a known level of pre-stretch λC = 1.2. Note that the FSI problem
is solved from that configuration onwards,

(b) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium with a constant internal reference pressure pbase and that
it is not pre-stretched (λC = 1.0); the FSI problem is solved from that configuration
onwards, assuming that the solid is equilibrated by the full level of inner pressure pt.

Note that, as before, case (a) constitutes the most realistic scenario and case (b) will
serve the purpose of comparing with an alternative approach and to further quantify the
influence of the tethering forces on the response of the arterial wall.

As performed in the previous example, the 3D segment of interest is coupled with
the simplified closed-loop circulation model (see Section 3.5).

4.3.2 Constitutive parameters

Values for the constitutive parameters employed in this example are identical to
those presented for the straight pipe. As pointed out in Steinman et al (2002), the carotid
bulb and bifurcation zone can be places of elevated thickness values. In accordance to this,
we have smoothly increased the thickness towards the bifurcation region up to two times
the designated values at the inlet and outlet boundaries; this feature can be appreciated
in the inset displayed in Figure 4.8.

Collagen orientation is given at the initial (image-based) configuration ΩI . A
local coordinate system is proposed at each element, where the axial direction is defined
through the projection of the lumen’s centerline over the internal surface of the vessel and
the circumferential direction is an orthogonal vector located over the plane tangential to
the same internal surface. In this local coordinate system the preferred acting directions for
the collagen fibers are introduced considering that each family forms an angle β with the
circumferential direction as presented for the previous example (see Figure 4.1). Moreover,
the recruitment stretch for the fibers is defined from this configuration in an analogous
manner to the previous example (in that case for Ωbase). Note that, for both cases the
image based configuration is equivalent to the baseline diastolic domain.

4.3.3 Discretization

The total number of nodes for the discretization of the fluid domain is 27673. The
arterial wall is discretized using the same strategy described in Section 4.2.3. The total
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Figure 4.8: Clipping of the arterial wall mesh through the plane of symmetry.

number of nodes for the solid domain is 87751. The time-step in the simulation is taken
∆t = T/1000, where T is the cardiac period.

4.3.4 Boundary conditions

Preload problem.

For the preload problem, Dirichlet boundary conditions are imposed to the dis-
placement in the axial direction at the non-physical boundary corresponding to the inlet,
ensuring that a certain level of pre-stretch is achieved. That is, for scenario (a) an axial
displacement of 1.05 cm is considered, while for case (b) null axial displacement is imposed.
Note that for case (a) the level of pre-stretch in not strictly 20%, but the magnitude of
the imposed displacements represents the 20% of the length of the vessel projected to the
axis of the common carotid (z cartesian coordinate). Neumann conditions are imposed
at ∂ΩW

s given by the constant pbase pressure load for both scenarios. For the external
boundary ∂ΩE

s homogeneous Neumann conditions for each case are considered based on
the assumptions exposed in Section 4.2.5. Finally, at each distal boundary a penalization
over the mean displacement of the surface ∂ΩA,i

s is considered, thus fixing the center of the
outflow area.

1D-3D FSI problem.

Boundary conditions are analogous to those presented in Section 4.2.5.

4.3.5 Parameters for numerical simulation

The parameter setup for the numerical simulation is identical to the one presented
for the straight pipe problem (see Section 4.2.4).

4.3.6 Results

For both cases the baseline diastolic configuration is assumed to be the given one, and
the preload is problem solved in order to obtain the material configuration. Figure 4.9(b)
and Figure 4.9(c) show the resulting zero-load reference configurations for scenarios (a) and
(b), respectively. From these images the influence of the pre-stretch in the computation of
the material domain is evident.
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(a) Baseline diastolic configura-
tion.

(b) Computed zero-load reference
configuration for scenario (a).

(c) Computed zero-load reference
configuration for scenario (b).

Figure 4.9: Computation of material configurations, comparison between scenarios (a) and (b).

Figure 4.10 summarizes the obtained results for both scenarios regarding the me-
chanical response of the wall tissue, showing the von Misses equivalent stress distribution
for the carotid bifurcation at a given time instant during the cardiac systole t = 0.235T and
for the baseline diastolic configuration (result given by the preload problem). Moreover,
the values of the principal stresses (S1, S2 , S3) over a curve s going through the interior
of the vessel from the inflow boundary to one of the outlets (corresponding to the internal
carotid) are detailed on the featured charts. Once again, it can be clearly appreciated
that overlooking the tethering forces leads to an unrealistic evaluation of the stress state.
Analyzing the principal stresses along the s curve at systole, the relative discrepancies
with respect to scenario (a) result in values up to 66%, while for the von Misses stresses
the relative discrepancies reach 78%. The discrepancies between the obtained stress fields
are further highlighted by Figure 4.11, displaying the stress distribution along four curves
crossing the arterial wall at different points for two time instants t = 0.235T and t = 0.85T .
Here, discrepancies up to 75% can be observed. Also, it is interesting to note in Figures
4.11(b) to 4.11(e), the different stress levels for the media and adventitia layers.

The blood flow behavior is represented in Figure 4.12, featuring the velocity profile
in the deformed domain at different slices of the geometry and a chart comparing the
velocity magnitude along a line through the bifurcation point at t = 0.235T . It is observed
that the velocity field shows a good agreement between both cases all over the domain, in
the particular case of the velocity over the selected curve it is shown consistency on the
shape of the profile and a difference of approximately 5% in the maximum reported value.
The same behavior is observed throughout the entire cycle (results not shown). Additional
details regarding the blood flow dynamics are presented in Figure 4.13, where the pressure
and flow rate at the inlet during the cardiac cycle (Figure 4.13(a)) along with the velocity
profiles and streamlines for three time instants t = 0.22T , t = 0.235T and t = 0.85T
(Figures 4.13(b) to 4.13(d)) are displayed.

In this example the relevance of accounting for the pre-stretch state of the arterial
wall is further emphasized, evidencing the influence of the tethering forces on the mechan-
ical response of the tissue. As previously noted in the straight pipe example, due to the
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Figure 4.10: Computed stresses for scenarios (a) (left) and (b) (right) mapped into the image-
based configuration. Figure displays the von Mises equivalent stress of the arterial wall tissue
clipping through the plane of symmetry of the geometry for t = 0.235T (in the context of this
figure denoted as systole) and for the baseline diastolic configuration (in the context of this figure
denoted as diastole). Charts present the stress distribution (principal stresses in blue (S1), black
(S2) and red (S3); von Mises equivalent stress in magenta) over an interior line s going through
the common and internal carotid arteries.
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Figure 4.11: Through thickness stress distribution at different points for time instants t = 0.235T

(black lines) and t = 0.85T (blue lines). Comparison between results for scenarios (a) -solid lines-
and (b) -dashed lines-.
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Figure 4.12: Velocity profile for scenarios (a) and (b) at t = 0.235T .

low compliance of the vessel and the characteristics of this geometry, scenario (b) shows
similar characteristics regarding the blood flow behavior.

4.4 Problem 3: patient-specific common carotid

4.4.1 Problem description

This numerical example consists in a patient-specific left common carotid artery
extracted from a medical imaging study (Computed Tomography Angiography). The inner
radius of the segment varies between 0.25 cm and 0.33 cm, and its length is l = 5.75 cm
measured over the centerline of the vessel. Both the blood flow domain and the arterial
wall domain are presented in Figures 4.14(a) and 4.14(b), respectively. Analogously to the
previous examples, two scenarios are analyzed:

(a) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium with a constant internal reference pressure pbase and is
also subjected to pre-stretching. Recall that the FSI problem is solved from that
configuration onwards,

(b) the preload problem is solved considering that the initial geometry is a configuration
at mechanical equilibrium with a constant internal reference pressure pbase and that
the position of the non-physical boundaries is fixed; the FSI problem is solved from
that configuration onwards, assuming that the solid is equilibrated by the full level
of inner pressure pt.

For this example the pre-stretch in scenario (a) is introduced by setting axial tethering
forces at non-physical boundaries such that a certain displacement is prescribed. Through
this procedure a shortening of approximately 7% (λC ≈ 1.07) is achieved. Also, it is
important to remark that fixating the position of these boundaries in scenario (b) does not
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(a) Flow rate (blue) and pressure (red) at the inlet of the carotid bifurcation during
the cardiac cycle.

(b) Streamlines at t = 0.22T (c) Streamlines at t = 0.235T (d) Streamlines at t = 0.85T

Figure 4.13: Blood flow dynamics for the carotid bifurcation example, displaying pressure (red) and
flow rate (blue) at the bifurcation inlet during one cardiac cycle and visualization of velocity profiles
and streamlines for three time instants t = 0.22T (maximum flow rate), t = 0.235T (maximum
mean pressure) and t = 0.85T (diastolic instant).
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imply that the length of the segment is constant, in fact, a subtle shortening is observed
when solving the preload problem because of the geometrical ability of the vessel to ac-
commodate the curvature, obtaining a pre-stretch of approximately 1.5% (λC ≈ 1.015).
As before, the baseline pressure level is defined pbase = 9 · 104 dyn

cm2 (67.5mmHg).

4.4.2 Constitutive parameters

Values for the constitutive parameters employed in this example are identical to
those presented for the straight pipe (see Section 4.2). The thickness of the wall is defined
based on the maximum radius observed in the carotid segment, and taking into account the
ratio between the inner radius to the thickness presented in Section 4.2, that is, rie = 0.37

0.063 .
Hence, the resulting thickness for this test is e = 0.056 cm. The setting of the collagen
fibers is presented in Figure 4.14(c), the definition of the fiber orientations is performed
following the strategy discussed in Section 4.3.2.

4.4.3 Discretization

The total number of nodes for the discretization of the fluid domain is 30760. The
arterial wall is discretized using the same strategy described in Section 4.2.3. The total
number of nodes for the solid domain is 34465. The time-step in the simulation is taken
∆t = T/1000, where T is the cardiac period.

(a) Initial image-based blood flow
domain and discretization.

(b) Initial image-based (baseline)
wall configuration and discretiza-
tion.

(c) Collagen orientation setting
for arterial wall.

Figure 4.14: Image-based fluid and solid domains, discretization and collagen orientation.

4.4.4 Boundary conditions

Preload problem.

For scenario (a), tethering forces in the normal direction are introduced through pe-
nalization, forcing a displacement of the center of both non-physical boundaries to be equal
to 0.2 cm (following strategy (ii) detailed in Section 3.7). As stated before, these tethering
forces induce a level of pre-stretch of λC = 1.07. For scenario (b) the position of the center
of the non-physical boundary is fixed through the same penalization method. Due to the
geometrical characteristics of the vessel and the action of the internal pressure, the material
configuration results to be shorter than the image-based initial domain, presenting a subtle
pre-stretch level of approximately 1.5% (λC ≈ 1.015). Neumann conditions are imposed
at ∂ΩW

s given by the constant pbase pressure load for both scenarios. For the external
boundary ∂ΩE

s homogeneous Neumann conditions for each case are considered based on
the assumptions exposed in Section 4.2.5.

1D-3D FSI problem.

Boundary conditions are analogous to those presented in Section 4.2.5.
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4.4.5 Parameters for numerical simulation

The parameter setup for the numerical simulation is identical to the one presented
for the straight pipe problem (see Section 4.2.4).

4.4.6 Results

As presented for the previous example (see Section 4.3), in this problem the baseline
diastolic configuration is assumed to be given and the preload problem is solved in order
to obtain the material configuration for the scenarios described above. The initial image-
based (baseline) configuration is presented in Figure 4.15(a); while Figures 4.15(b) and
4.15(c) display the resulting zero-load reference configurations for scenarios (a) and (b),
respectively. Again, from these images, the great influence of the different hypotheses
regarding the tethering forces on the computation of the material domain is evident.

(a) Baseline diastolic configura-
tion.

(b) Computed zero-load reference
configuration for scenario (a).

(c) Computed zero-load reference
configuration for scenario (b).

Figure 4.15: Computation of material configurations, comparison between scenarios (a) and (b).
The same view and scale is shown for all cases.

Figure 4.16 summarizes the results obtained for both scenarios regarding the me-
chanical response of the arterial wall. Particularly, the von Mises equivalent stress σvm
at the baseline configuration for scenarios (a) and (b) is presented in Figures 4.16(a) and
4.16(b), respectively. In turn, Figures 4.16(c) and 4.16(d) display the corresponding results
for a systolic time instant (t = 0.35T ). The above mentioned images feature, for each case,
the stress state at the interior surface of the vessel and the transmural distribution along
a longitudinal cut (left). Furthermore, areas featuring large stresses are highlighted in a
threshold view, where only elements with σvm ≥ 2 · 106 dyn

cm2 are shown (right).
These results show the impact of the different hypotheses assumed for each scenario

on a realistic geometry. The vessel curvature leads to different localizations (and values)
of stress augmentation in addition to the previously reported differences in the general
levels of stress. Moreover, Figure 4.17 presents the relative discrepancy between the von
Mises stress values in the baseline and systolic (t = 0.35T ) states (reference stress values of
1·106 dyn

cm2 and 2·106 dyn
cm2 for each case), evidencing differences up to 270%. The discrepancies

between the obtained stress fields are further highlighted by Figure 4.18, presenting the
transmural distribution of the von Mises equivalent stress along three curves crossing the
arterial wall, for two time instants t = 0.35T (systolic) and t = T (diastolic). The location
of those lines is presented in Figure 4.18(a).

Figure 4.19 introduces the level of axial stretch (λax = C · (aax ⊗ aax), where aax
is the unit vector indicating the axial direction) at the baseline diastolic configuration
corresponding to scenarios (a) and (b). Figures 4.19(a) and 4.19(b) display a comparison
between such quantity for both scenarios, while Figures 4.19(c) to 4.19(f) highlight the
regions of the arterial wall under axial traction and compression. These figures evidence,
again, the paramount influence of the considered hypotheses regarding the tethering forces.
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(a) Scenario (a): von Mises equivalent stress for baseline diastolic configuration, interior wall view (left)
and threshold displaying most stressed regions (σvm ≥ 2 · 106 dyn

cm2 ) (right).

(b) Scenario (b): von Mises equivalent stress for baseline diastolic configuration, interior wall view
(left) and threshold displaying most stressed regions (σvm ≥ 2 · 106 dyn

cm2 ) (right).

(c) Scenario (a): von Mises equivalent stress for systolic configuration, interior wall view (left) and
threshold displaying most stressed regions (σvm ≥ 2 · 106 dyn

cm2 ) (right).

(d) Scenario (b): von Mises equivalent stress for systolic configuration, interior wall view (left) and
threshold displaying most stressed regions (σvm ≥ 2 · 106 dyn

cm2 ) (right).

Figure 4.16: Stress state at the arterial wall for scenarios (a) and (b) for the baseline diastolic and
systolic configurations.

Figure 4.17: Relative discrepancy of von Mises stresses between scenarios (a) and (b) for baseline
(left) and systolic (right) configurations. The reference stress level have been defined as σref =

1 · 106 dyn
cm2 and σref = 2 · 106 dyn

cm2 , respectively.
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(b) Von Mises Stress through S1
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(c) Von Mises Stress through S2
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(d) Von Mises Stress through S3

Figure 4.18: Through thickness stress distribution at different points for diastolic (t = T , black
lines) and systolic (t = 0.35T , blue lines) instants. Comparison between results for scenarios (a)
-solid lines- and (b) -dashed lines-.
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(a) Scenario (a), axial stretch for baseline config-
uration.

(b) Scenario (b), axial stretch for baseline config-
uration.

(c) Scenario (a), region under axial traction. (d) Scenario (b), region under axial traction.

(e) Scenario (a), region under axial compression. (f) Scenario (b), region under axial compression.

Figure 4.19: Axial stretch at baseline configuration for scenarios (a) and (b). Comparison between
regions under axial traction and compression.

A comparison of the obtained blood flow behavior between the two considered sce-
narios is shown in Figure 4.20. Blood velocity profile in the deformed domain at different
slices of the geometry is shown for two characteristic time instants: at systole t = 0.35T
and at diastole t = T . As reported for the previous numerical examples it is observed that
the velocity field shows small sensitivity to the stress state of the arterial wall. Additional
details regarding the blood flow dynamics are presented in Figure 4.21, where the pressure
and flow rate at the inlet during the cardiac cycle (Figure 4.21(a)) along with the velocity
profiles and streamlines for three time instants t = 0.175T , t = 0.35T and t = 0.85T
(Figures 4.21(b) to 4.21(d)) are displayed.

4.5 Problem 4: aneurysm at the middle cerebral artery

4.5.1 Problem description

For this example, a patient-specific aneurysm located in the bifurcation of the middle
cerebral artery into its superior and inferior branches is analyzed. Again, in order to study
the influence of tethering stresses two scenarios are taken into account,

(a) considering tethering forces arising from a level of pre-stretch of approximately 12%,
and

(b) considering tethering forces with null pre-stretch, i.e. the material configuration ob-
tained through the preload problem features the same length as the image-based con-
figuration.
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(a) Blood flow profile at diastole t = T for scenario (a) -left- and (b) -right-.

(b) Blood flow profile at systole t = 0.35T for scenario (a) -left- and (b) -right-.

Figure 4.20: Blood flow velocity profiles at diastole t = T and systole t = 0.35T , note that the
warping factors and color scales differ between the time instants.

The baseline pressure level is defined pbase = 9 · 104 dyn
cm2 for both scenarios.

The segment of interest is in both cases integrated with the rest of the CVS through
the coupling with the ADAN model (see Section 3.5). For the external boundary conditions
it is considered an increased influence of the surrounding tissues in regions with high
curvature (see Section 4.5.4).

4.5.2 Geometry and discretization

The thickness of the arterial wall is defined as the 30% of the vessel local radius
(ri), i.e. h = 0.3 ri. For the aneurysm sack it is considered a wall thinning ratio (WTR)
affecting the local thickness as e = 0.3 riWTR−1. The WTR is defined as the relation
between the surface of the aneurysm sack and the area of the aneurysm neck (as exemplified
in Figure 4.5.2), for this case it is obtained WTR = 1.75.

The original surface mesh obtained via the segmentation process is refined based on
local vessel radius for the complete domain. Moreover, the aneurysm sack area is further
refined. This pre-processing for the surface mesh and the generation of the lumen volume
is performed using the VMTK package (Antiga et al, 2008), resulting in a tetrahedral mesh
with 58691 nodes. The arterial wall discretization is constructed using a similar criteria to
the exposed for the previous examples (see Section 4.2.3). For the computation of tethering
forces using strategy (iii) (see Section 4.5.4), auxiliary domain extensions are constructed
at each non-physical boundary. The total number of nodes for the solid domain used in the
1D-3D FSI computations is 73937. Figure 4.23 showcases the obtained discrete domains.
The time-step in the simulation is taken ∆t = T/1000, where T = 1s is the cardiac period.

4.5.3 Constitutive modeling

For the healthy region of the arterial wall, the values for the constitutive parameters
are identical to those presented for the straight pipe (see Section 4.2). Collagen orientation
is given at the initial (image-based) configuration Ωbase. Figure 4.24 displays the collagen
arrangement in the domain. Additionally, the recruitment stretch for the fibers is defined
from this configuration in an analogous manner to the previous examples.

However, for the aneurysm sack area, we consider an isotropic exponential behavior
due to elastin degradation as described by equation (3.6.3). The constitutive parameters
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(a) Flow rate (blue) and pressure (red) at the inlet of the carotid artery during the
cardiac cycle.

(b) Streamlines at t = 0.175T (c) Streamlines at t = 0.35T

(d) Streamlines at t = 0.85T

Figure 4.21: Blood flow dynamics for the patient-specific common carotid example, displaying
pressure (red) and flow rate (blue) at the inlet during one cardiac cycle and visualization of velocity
profiles and streamlines for three time instants t = 0.175T (maximum flow rate), t = 0.35T

(maximum mean pressure) and t = 0.85T (diastolic instant).
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Figure 4.22: Cerebral aneurysm example: wall thinning ratio concept

Figure 4.23: Cerebral aneurysm example: arterial wall and fluid meshes

are set as kdel = 8 · 105 dyn
cm2 and kx = 20. This hypothesis is supported by the fact that

the collagen response prevails due to elastin degration and the orientation of such collagen
fibers in the diseased vessel is unknown.

Figure 4.24: Cerebral aneurysm example: orientation of collagen fibers

In this case, the action of the external tissues is considered to be more relevant over
highly curved regions (see Figure 4.25). The parameters defining the action of the external
tissues are ke = 2.0 · 105 dyn

cm2 , kv = 4.0 · 103 dyn
cm2s

and u0 = 0 for the highly curved regions,
and ke = 2.0 · 102 dyn

cm2 , kv = 4.0 · 103, dyn
cm2s

, and u0 = ubase for the remaining parts of the
arterial wall (see equation (3.3.1)). This way, it is considered that the baseline configuration
is at equilibrium with external forces acting at ∂ΩE

s in the highly curved regions, arising
from the displacement field mapping the material and baseline configurations.
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Figure 4.25: Cerebral aneurysm exam-
ple: highlight of highly curved regions
were the influence of external tissues is
considered to be more relevant.

Figure 4.26: Cerebral aneurysm exam-
ple: auxiliary extension domains for the
computation of tethering forces.

4.5.4 Boundary conditions

Preload problem

For the preload problem, Neumann conditions are imposed at ∂ΩW
s given by the

constant pbase pressure load for scenarios (a) and (b). Strategy (iii) is used for the incor-
poration of tethering forces in scenario (a), as described in Section 3.7. Hence, the preload
problem is solved in the auxiliary domain extensions (see Figure 4.26) to prescribe a level
of pre-stretch of 12%. For scenario (b), the position of the center of the non-physical
boundary is fixed through a penalization method (strategy (ii)).

1D-3D FSI problem

Boundary conditions are analogous to those presented in Section 4.2.5.

4.5.5 Parameters for numerical simulation

The parameter setup for the numerical simulation is based on the presented for the
straight pipe problem (see Section 4.2.4).

4.5.6 Results

Figure 4.27 shows the resulting zero-load reference configurations for scenarios (a)
and (b). From this image, it is evident the remarkable influence of the tethering forces in
the determination of the material configuration. The von Misses equivalent stress state at
systole (t = 0.35T ) for both scenarios is presented in Figure 4.28. It is worthy of notice
that this stress state is plotted over the baseline configuration that is common for both
scenarios. The image presents the field in a clipping of the original geometry, where it can
be appreciated a substantial difference between the results for both scenarios, particularly
in the inlet as well as in aneurysm neck regions. The discrepancies between this stress state
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is presented in Figure 4.29. Moreover, Figure 4.30 showcases the mentioned discrepancy,
focusing in the aneurysm sack area and showing a view from the interior of the sack.
In these two figures major discrepancies up to 100% in the domain and up to 70% in
the aneurysmal area are observed. Additionally, in order to show the transmural stress
distribution, Figure 4.31 displays the von Mises equivalent stress through curves S1, S2,
S3 and S4 (their location is revealed in Figure 4.31(a)) for a systolic (t = 0.35T ) and
the baseline configurations. It can be observed that, in general, the equivalent stress is
underestimated in scenario (b) compared to scenario (a) in which tethering forces are
considered. Lastly, Figures 4.32(a) and 4.32(b) show the axial stretch at the baseline
configuration for both scenarios and Figures 4.32(c) and 4.32(d) highlight the regions
under axial compression. In those figures it can be clearly seen that the incorporation of
tethering forces leads to prominent axial tractions all over the domain, with impact in the
stress state in the aneurysm neck area.

From the present study it is clearly demonstrated that in order to adequately char-
acterize the mechanical state of the arterial wall the incorporation of tethering forces is of
the utmost importance.

(a) Scenario (a) (b) Scenario (b)

Figure 4.27: Resulting zero-load reference configuration (red) and baseline configuration (translu-
cent grey) for scenarios (a) and (b).

As in the previous examples, relevant differences in the blood flow dynamics were
not found. Figure 4.33 presents the pressure and flow rate during the cardiac cycle at
the inlet boundary along with the velocity profiles and streamlines for three time instants,
t = 0.175T (maximum flow rate), t = 0.35T (maximum pressure) and t = 0.85T (a diastolic
instant).

4.6 Discussion

4.6.1 Hemodynamic insight and novel aspects

The examples analyzed in the previous sections shed light on the sensitivity of the
arterial wall stress state and blood flow to the definition of the domain of analysis and
loads considered to be applied arterial vessels for which the known configuration has been
obtained from medical images.

On one hand, these examples demonstrate that blood flow phenomena is not sensitive
to the definition of the preload problem. That is, considering the image configuration as
material configuration, or considering the true material configuration obtained after solving
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(a) Scenario (a) (b) Scenario (b)

Figure 4.28: Cerebral aneurysm example: von Misses equivalent stress field at systole (t = 0.35T )
for scenarios (a) and (b).

Figure 4.29: Cerebral aneurysm example: discrepancy of the von Misses equivalent stress field at
systole (t = 0.35T ) between scenarios (a) and (b).
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Figure 4.30: Cerebral aneurysm example: discrepancy of the von Misses equivalent stress field at
systole (t = 0.35T ) between scenarios (a) and (b) at the aneurysm neck and sack

the preload problem (whatever the loads are) does not significantly affect the flow patterns.
Although some debate may exist in the case of more compliant vessels and different flow
regimes, this is reasonable for the cases analyzed within the present thesis. Similar results
in this direction support this fact, as shown in Dempere-Marco et al (2006) in the context
of blood flow simulation comparing outcomes between compliant and rigid domains.

On the other hand, the reported results show that solving the preload problem
(scenario (a)) including pressure and tethering loads is essential to correctly characterize the
mechanical state of the arterial wall. In fact, the use of simplifying hypotheses irremediably
leads to large deviations from the stresses computed in scenario (a). This implies that
there is no simplifying scenario in which the stress state of the arterial vessels is close to
the scenario (a).

Moreover, the obtained results, using scenario (a), correspond to the most realistic
scenario through the consideration of fluid-structure interaction and coupling with a one-
dimensional network of the rest of the arterial tree. This ensures a physiologically consistent
hemodynamic environment for the region of interest.

In Chapters 3 and 4, a number of modeling ingredients was considered in an in-
tegrated framework implying the consideration of the preload problem to find the mate-
rial configuration on top of which constitutive equations are defined, including pressure
and tethering loads, fluid-structure interaction and coupling with a dimensionally reduced
model of the rest of the cardiovascular system. We remark that the integration of these
modeling ingredients had no precedents in the specialized literature. Furthermore, the
comprehensive approach adopted in this work is crucial (i) to understand the interaction
between the different components involved in the physical phenomena and their influence
in arterial function, and (ii) to accurately quantify the impact of different modeling hy-
potheses.

4.6.2 Modeling arterial adaptations

Proper determination of internal stresses in the arterial wall is essential because it
poses the mechanical environmental conditions in which living tissues evolve. For instance,
growth and remodeling processes are largely known to strongly depend on the homeostatic
stress state and to be governed by the level of stress in the vascular tissue (Rodriguez
et al, 1994; Baek et al, 2005; Valentín and Humphrey, 2009; Watton et al, 2011). In
turn, damage modeling is also acknowledged to be stress-driven (Li and Robertson, 2009;
Alastrué et al, 2007; Balzani et al, 2012) which is crucial if the present tools are to be used
in the assessment of risk of arterial wall rupture. Another example is the sensitivity of
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(d) Distribution of von Mises Stress along S3
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(e) Distribution of von Mises Stress along S4

Figure 4.31: Through thickness stress distribution at different points for time instants t = 0.235T

(black lines) and t = 0.85T (blue lines). Comparison between results for scenarios (a) -solid lines-
and (b) -dashed lines-.
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(a) Scenario (a), axial stretch for baseline config-
uration.

(b) Scenario (b), axial stretch for baseline config-
uration.

(c) Scenario (a), region under axial compression. (d) Scenario (b), region under axial compression.

Figure 4.32: Axial stretch at baseline configuration for scenarios (a) and (b). Comparison between
regions under axial compression.
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(a) Flow rate (blue) and pressure (red) at the inlet of the middle cerebral artery during
the cardiac cycle.

(b) Streamlines at t = 0.175T (c) Streamlines at t = 0.35T (d) Streamlines at t = 0.85T

Figure 4.33: Blood flow dynamics for the patient specific aneurysm (located at middle cerebral
artery) example, displaying pressure (red) and flow rate (blue) at the inlet during one cardiac cycle
and visualization of velocity profiles and streamlines for three time instants t = 0.175T (maximum
flow rate), t = 0.35T (maximum mean pressure) and t = 0.85T (diastolic instant).
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mechanoreceptor function to the stretch in arterial tissue (Feng et al, 2007). Lack of arterial
stretch has been proved to be related to abnormal firing rate of aortic mechanoreceptors
leading to impaired ability of the central nervous system to regulate the arterial pressure.
The same can be conjectured for carotid baroreceptors (featuring a similar function).

In all these situations, wrongly estimated stresses certainly would mislead the insight
retrieved from models, and obscure the understanding of mechanobiological arterial wall
function.

The importance of considering adequate hypotheses regarding the complete loading
condition of the vessel is, therefore, capital. As seen, this can be even more critical in
patient-specific cases, in which geometrical complexity can contribute to enlarge discrep-
ancies in the calculation of the stress state in the arterial wall.

4.6.3 Limitations

Most of the limitations of the present approach are shared with standard FSI ap-
proaches. As for the detailed 3D model, the constitutive parameters of the arterial wall
and the definition of the arterial thickness are typical examples.

In turn, little is known about the interaction of the arterial wall with the surrounding
media, and much is still to be done. The proposed approach relies on few works available
in the literature, and this remains an open problem for the community. In addition, the
origin of residual stresses due to growth and remodeling processes and their incorporation
in real geometries continues to be matter of debate (see the approach to the problem taken
in Chapter 5 for more details). Although residual stresses caused by pre-stretching have
been considered in this work, the true impact of residual stresses and deformations is of
relevance and will be addressed in the near future.

As for the model of the systemic circulation, limitations are those standard from 1D
and 0D models about the calibration of arterial compliances, peripheral resistances and
cardiac function. Ultimately, this will have an impact in the definition of pressure and flow
waveforms to which the arterial structure under analysis is to be subjected to.





Chapter 5

In-vivo characterization of residual
deformations

5.1 Introduction

As it has been pointed out in Chapter 1, it is well known that, in order to realistically
model and simulate the behavior of arterial tissues, it is necessary to account for the
different composition and role of the arterial wall layers (intima, media, adventitia) as well
as for the action of the structurally relevant components, namely elastin, collagen fibers and
smooth muscle cells. A considerable amount of literature has been published addressing
the study of the constitutive behavior of the soft tissue, developing comprehensive models
(Fung, 1991; Holzapfel and Gasser, 2000; Zulliger et al, 2004a; Gundiah et al, 2007), and
performing parameter estimation based on ex-vivo experimental data (Weisbecker et al,
2012; Holzapfel and Ogden, 2010a).

However, it is also acknowledged (Fung and Liu, 1989; Fung, 1991; Holzapfel et al,
2007) that the in vivo unloaded configuration of any vascular district (see Chapter 3)
is neither stress-free nor strain-free. Hence, an increasing number of studies has been
carried out to understand the effects of residual stresses (RSs) in arterial wall mechanics.
A shifting in the role researchers assign to RSs has taken place, from conceiving RSs as
a mere side effect of growth to a conception in which RSs are viewed as a functionally
responsible adaptive and protective mechanism. In fact, nowadays, there is consensus that
residual strains and stresses have a functional role in determining suitable mechanobio-
logical conditions in vascular vessels (Driessen et al, 2004; Hariton et al, 2007; Valentín
and Humphrey, 2009). Indeed, arteries are living tissues that continuously adapt to their
environment and to external stimuli (Humphrey and Rajagopal, 2002; Watton et al, 2011;
Cyron and Humphrey, 2014). This adaptation is mediated by growth and remodeling.
These processes lead to the occurrence of self-equilibrated RSs, which remain in the body
even though all external loads are removed.

In the engineering field, RSs exist in practically all mechanical components. Here,
in a similar manner, RSs are usually defined as the stresses which remain in mechanical
components when they are not subjected to any external loads. They are the result of
the loading history of each piece during its manufacturing and/or loading process. Again,
within this context, the “residual” adjective can have a misleading connotation as can be
interpreted as being something undesirable or as a collateral effect of the forming process.
But, contrariwise, they can be, and in several situations are, intentionally introduced in
the design/fabrication process to optimize the performance of mechanical components by
acting on the strength of structures and materials. This is the case of steel pipes where
plastic deformation is induced to introduce residual compressive stresses (hoop stresses),
with the aim of relieving part of the service loads. Similarly, there is consensus in the

87
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scientific community around the fact that the in-vivo stresses are strongly influenced by the
existence of RSs (Holzapfel and Gasser, 2000). Furthermore, it has been pointed out that
in non-pathological cases RSs contribute to the transmural uniformity of the strain under
physiological conditions, consequently leading to relatively low stress gradients across the
thickness of the vessel within each layer (Takamizawa and Hayashi, 1987; Destrade et al,
2012).

Reported experimental observations show that when an arterial segment is removed
from its surroundings, RSs are manifested through the retraction in the longitudinal di-
rection as well as through the appearance of an opening angle that takes place when the
wall is radially cut all along its axis. Moreover, in relatively recent works (Holzapfel et al,
2007; Holzapfel and Ogden, 2010a), it has been observed that different levels of RSs are
associated with each constituent layer of the arterial wall. Most efforts to account for RSs
in arterial wall models are primarily based on the incorporation of pre-strains acquired from
these experimental procedures. In fact, these RSs are caused by the recoverable residual
deformations (hereafter referred simply as residual deformations -RRDs-) present in the
tissue, and which are originated in growth and remodeling processes to keep the structure
compatible. Among these, we highlight the contributions of Holzapfel and Gasser (2000)
with the first in-depth proposal of this idea, Holzapfel et al (2007); Holzapfel and Ogden
(2010a) incorporating further detail accounting for the different behaviors presented for
each constituent layer, and Pierce et al (2015) displaying a generalization of this technique
to be applied in patient-specific geometries. It is also worthwhile to mention the differ-
ent approach taken by Taber and Humphrey (2001) and Bellini et al (2014), introducing
RSs through growth processes, considering that each mechanically relevant component is
synthesized and deposited in the tissue with a predefined deformation (and consequently
stress) level.

Fortunately, the limitations in the characterization of constitutive parameters, RSs
and RRDs for living tissues obtained through ex vivo experimentation can now be over-
come by promoting its integration with computational modeling and data coming from
new instruments for measurements and image data acquisition such as IVUS, OCT and
4DMRI among others. Any of these three technologies, when properly combined with
motion tracking methods, such as optical-flow (Kirchner and Niemann, 1992) or LDDM
(Cao et al, 2005), can definitely be used to reasonably estimate the motion of anatomical
structures with an unprecedented level of time and spatial resolution. The integration of
these data with computational cardiovascular modeling can help in the identification of
patient-specific constitutive parameters, RSs, RRDs, among others relevant parameters,
reaching a virtuous cycle of reciprocal feedback leading each time to a more realistic mod-
eling of the complex biological structures and the associated physiological processes, which
can be used to aid physicians in their decision-making process.

In particular, the merging between data and computational modeling for real world
applications, known as Data Assimilation, is well developed in areas such as geophysics
(Blum et al (2009) and references therein), oceanography and meteorology (see (Ghil and
Malanotte-Rizzoli, 1991) and references therein) however is only in the beginning in car-
diovascular modelling (D’Elia et al (2012); Wittek et al (2013); Rausch and Kuhl (2013);
Bertagna et al (2014) and references cited therein). In fact, the “patient-specific” de-
nomination usually stands for the use of image-based geometries, despite the many other
physiological variables involved. Currently, constitutive parameters, RSs and RRDs states
used in these models are taken from ex vivo experiments and from information collected
from the literature and, hence, are not associated with the specific patient. Noteworthy,
there is no previous contribution in which the estimation of RSs can be effectively performed
from in-vivo data, namely image-based data of the corresponding arterial structures and
arterial blood pressure in these sites.
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In view of the gap highlighted in the previous paragraph, the aim of this part of
the thesis is to develop a novel conceptual framework that makes the estimation of RSs
practicable in conditions resembling in-vivo scenarios. For this, data derived from medical
images consist of arterial structures imaged at more than one configuration, each of which
is associated to a certain level of known arterial pressure.

More specifically, a mechanical framework is presented, explicitly emphasizing the
role of RRDs. These deformations can be understood as recoverable as they can be com-
pletely released if the arterial district is separated from the surrounding tissues and its
material constituents are isolated from their native environment in a hypothetical ex-vivo
configuration, denoted hereafter as virtual configuration, which is naturally free of RRDs
and, therefore, of RSs. Furthermore, the energy stored in the material wall at free load
configuration is fully recovered at this virtual configuration (Cowin, 2004; Rodriguez et al,
1994; Ambrosi and Mollica, 2002). As such, these RRDs are the only ones responsible
for the RSs present in tissues that manifest through diverse ways as pointed out above
(Holzapfel et al, 2007). The problem of the identification of RSs therefore becomes a
problem of identification of the RRDs.

Fundamental to our purposes is to have at hand, as input data, at least two configura-
tions of the arterial structure and the displacement field between them. The generalization
for more than two configurations is also presented and the influence of the additional data
provided is analyzed in the featured examples. This information can be obtained by gating
and registering sequences of IVUS images (Hernández-Sabaté et al, 2011; Maso Talou et al,
2015). These known configurations, with properly defined constitutive relations, yield a
mechanical imbalance unless the correct RS generated by the adequate RRD tensor field is
considered. This is the key for our variational formulation of the identification problem and
will be exploited in the construction of a cost functional to be minimized. As we will see,
the cost functional is given by the generalized residuals of the variational equations corre-
sponding to the mechanical equilibrium of the known arterial wall configurations. Then,
the identification of the RS field is reduced to a minimization of this distance using the
variational equilibrium equation at one of these configurations as a constraint (subsidiary
condition in variational terms). For the minimization of this cost functional, a simple
gradient descent method and an interior-point algorithm for constrained optimization are
considered.

The structure of this chapter is organized as follows. The kinematics and the varia-
tional framework for the RRD characterization problem is presented in Section 5.2. The
formulation of the optimization problem and the proposed cost functionals to be minimized
are introduced in Section 5.3. A description of the optimization techniques to be considered
for our minimization problem is given in Section 5.4. Finally, the sensitivity analysis of
the proposed cost functional with respect to changes in the residual deformations is carried
out in Section 5.5.

5.2 Mechanical setting

As mentioned in the Section 5.1, the proposed approach relies in the fact that more
than one arterial configuration is known. For simplicity we will consider that two arte-
rial configurations are known, say configuration Ωa and configuration Ωb. However, the
analysis can straightforwardly be extended to more than two configurations (see Section
5.3.2). For each of these two known configurations we also consider that the arterial blood
pressure, which is the external load responsible for part of the total deformation occurring
in these configurations, is given. As previously stated, these configurations can be obtained
from image data acquisition techniques such as IVUS, OCT and 4DMRI among others.
Furthermore, the displacement vector field, say w, which maps Ωa into Ωb is known data
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that is somehow retrieved from motion tracking methods, such as optical-flow or LDDM.
In this context, let us present the kinematics setting and the variational formulations

corresponding to the equilibrium in these two configurations.

5.2.1 Kinematics

Consider the four-configuration setting displayed on Figure 5.1. The virtual config-
uration Ωv (with coordinates in this domain denoted as xv) represents a state of unloaded
and separated material constituents of the arterial wall, serving as a reference for the
constitutive equations describing the material behavior. This virtual configuration has a
zero stress state and is free of RRDs as result of removing kinematical constraints and
loads. Then, this configuration corresponds to a zero elastic strain energy configuration.
Moreover, in this configuration the material constituents may have permanent deformation
due to plasticity and damage processes occurring along the life of the patient. These are
the unrecoverable part of the deformation, and will be disregarded in the present analysis.

The material domain Ωm (with coordinates xm) denotes a zero-load configuration.
However, due to processes of growth and remodeling the tissues feature a deformation,
characterized in each material point by the RRD tensor Fr such that each material differ-
ential fiber is related with its virtual counterpart by

dxm = Frdxv. (5.2.1)

This RRD tensor is the recoverable part of the deformation of the tissue, and is responsible
for storing energy in the structure still in the case of the zero-load configuration. The asso-
ciated strain induces a self-equilibrated RS state σrm that is dependent on the constitutive
behavior of the material. For compressible hyperelastic materials we admit the existence
of a scalar strain energy function Ψ, from which the (second) Piola-Kirchhoff and Cauchy
stress tensors are obtained by

Sr =
∂Ψ

∂Cr
, σrm =

1

det Fr
FrSrm (Fr)T , (5.2.2)

where Fr is defined in terms of xm, and with Cr standing for the Cauchy-Green deformation
tensor given by Cr = (Fr)T Fr.

The spatial domains Ωa and Ωb (with coordinates denoted as xa and xb, respectively)
are configurations at equilibrium with two different levels of blood pressure, say pa and pb
which are applied over their inner surface of the vessel, Γa and Γb, respectively. Coordinates
on each domain are related through the displacement fields v and u as follows

xa = xm + vm, (5.2.3)

xb = xm + um. (5.2.4)

In addition, the relation between configurations Ωa and Ωb can be stated in terms of the
displacement field w, as next

xb = xa + wa. (5.2.5)

Thence, the deformation gradient tensors are obtained as follows

Fu = I +∇mum, Fv = I +∇mvm, Fw = I +∇awa. (5.2.6)

where Fu and Fv are defined in terms of xm, Fw in terms of xa and Fvr, Fur (see (5.2.8)
below) and Fr in terms of xm. In some cases it will be necessary to express those tensors
in an alternative coordinate system; then, an index will be added to symbolize the change
in the independent variable (e.g. Fu

b denotes that the independent variable is xb). Also,
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Ωm

Ωa Ωb

v,Fv u,Fu

w,Fw

Fr

Fvr Fur

p = 0, σr (Cr)

p = pa p = pb

Γb
Γa

Ωv

(Virtual zero-stress configuration)

Figure 5.1: Problem setting for in-vivo residual deformation characterization. The virtual con-
figuration Ωv represents a disaggregated state of material particles composing the arterial wall
in a zero-stress state and serves as reference configuration for constitutive equations (no elastic
energy is stored). The material domain Ωm is subjected to no external loads, however, due to the
existence of RRDs (Fr

m) developed during the processes of growth/remodelling, a self-equilibrated
2 residual stress state (σr

m) arises in this configuration. Configurations Ωa and Ωb represent two
equilibrium configurations with their corresponding external loading system given by the arterial
blood pressure (pa and pb, respectively). The displacement fields v and u map these domains
from Ωm. Tensors Fv and Fu denote the corresponding deformation gradient tensors due to the
aforementioned displacement fields, and Fvr = FvFr, Fur = FuFr are the material expressions
for the total deformation tensor with respect to the constitutive reference configuration Ωv (virtual
configuration). For the purposes of the present work, Ωv will never be practically used, Ωm is an
unknown in the problem, while Ωa and Ωb are known data, as well as displacement vector w.

note that the deformation gradient tensors, Fv and Fu, are related through

Fu = Fw
mFv. (5.2.7)

The total deformation experienced by the material at these configurations is obtained
composing the presented deformation gradient tensors with Fr, obtaining

Fur = FuFr = Fw
mFvFr, Fvr = FvFr (5.2.8)

Based on the presented definitions, the Cauchy-Green deformation tensors associated
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to the mechanical state of the spatial domains are introduced as

Cvr = (Fvr)T Fvr, Cur = (Fur)T Fur. (5.2.9)

Note that both are naturally defined in Ωm.

5.2.2 Mechanical equilibrium

In this section the formulations corresponding to the mechanical equilibrium of the
tissue in configurations Ωm, Ωa and Ωb are introduced. Moreover, the equations that state
the equilibrium will be conveniently rewritten in configuration Ωa.

5.2.2.1 Mechanical equilibrium in the material configuration Ωm

The variational equation that defines the mechanical equilibrium of the body in Ωm

reads ∫

Ωm

σrm · ∇smv̂ dΩm = 0 ∀v̂ ∈ Vm, (5.2.10)

where σrm is a certain residual stress field, ∇sm denotes the symmetric gradient with respect
to coordinates xm, and Vm the linear space of kinematic admissible variations in the
material configuration considering the Dirichlet boundary ΓDm, which is given by

Vm =
{

v ∈ H1 (Ωm) ; v|ΓDm = 0
}
. (5.2.11)

Since in the characterization problem Ωm is unknown, it is worthwhile to express equation
(5.2.10) in terms of xa, allowing to perform the integration in the known configuration Ωa.
A change of variables leads to

∫

Ωa

σra ·
(

(Fv
a )−T ∇av̂

)s
dΩa = 0 ∀v̂ ∈ Va, (5.2.12)

where Va is the counterpart of Vm in Ωa, and σra is related to σrm and Sr through the
following expressions

σra =
1

det Fv
a

Fv
a (σrm)a (Fv

a )T =
1

det Fvr
a

Fvr
a (Sr)a (Fvr

a )T . (5.2.13)

5.2.2.2 Mechanical equilibrium in the spatial configuration Ωa

For simplicity, let us consider that the arterial wall is only subjected to a uniform
pressure load pa applied on the inner surface of the vessel Γa. Then the variational equation
that characterizes the mechanical equilibrium for the spatial configuration Ωa reads

∫

Ωa

σvr · ∇sav̂ dΩa =

∫

Γa

pana · v̂ dΓa ∀v̂ ∈ Va (5.2.14)

where Va is the space of kinematically admissible virtual actions in Ωa, and the stress
tensor σvr is

σvr =
1

det Fvr
a

Fvr
a (Svr)a (Fvr

a )T , (5.2.15)

with Svr representing the Piola-Kirchhoff stress tensor caused by the deformation Fvr.
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5.2.2.3 Mechanical equilibrium in the spatial configuration Ωs

Analogously to the previous case, for a given pressure pb applied over the inner surface
of the vessel wall Γb, the variational equation characterizing the mechanical equilibrium in
Ωb is the following

∫

Ωb

σur · ∇sbv̂ dΩb =

∫

Γb

pbnb · v̂ dΓb ∀v̂ ∈ Vb, (5.2.16)

where Vb is the space of kinematically admissible virtual actions in Ωb, and the constitutive
stress tensor σur is obtained through

σur =
1

det Fur
b

Fur
b (Sur)b (Fur

b )T . (5.2.17)

As with equation (5.2.12), it is possible to rewrite this variational equation in configuration
Ωa, leading to
∫

Ωa

σur
a ·

(
(Fw)T ∇av̂

)s
dΩa =

∫

Γa

(pb)a (Fw)−T na · v̂ det Fw dΓa ∀v̂ ∈ Va, (5.2.18)

where σur
a is written as next

σur
a =

1

det Fvr
a

Fvr
a (Sur)a (Fvr

a )T . (5.2.19)

Furthermore, since w is given data, we can reduce the number of unknown variables.
In fact, u can be eliminated considering the identities u = v + w and Fur

a = F
(v+w)r
a =

FwFv
aFr

a. To put this in evidence, we introduce the notation

σur
a = σ(v+w)r

a =
1

det Fvr
a

Fvr
a S(v+w)r (Fvr

a )T . (5.2.20)

Then, equation (5.2.18) takes the final form

∫

Ωa

σ(v+w)r
a ·

(
(Fw)T ∇av̂

)s
dΩa =

∫

Γa

(pb)a (Fw)−T na · v̂ det Fw dΓa ∀v̂ ∈ Va. (5.2.21)

5.3 Recoverable residual deformation characterization prob-
lem

In this Section, the RRD problem is introduced as the minimization of a cost func-
tional measuring the mechanical disequilibrium of the setting described above.

5.3.1 Problem statement for two known configurations

As previously mentioned, data acquisition techniques (image acquisition and suitable
reconstruction methods) are able to provide the spatial characterization corresponding to
configurations Ωa and Ωb, each one in equilibrium with well-defined blood pressure levels
pa and pb. Furthermore, the displacement field w is considered to be also a given data.
Hence, the objective is to find the RRD field Fr (from which the RS field σr directly
follows) and the material configuration Ωm (and consequently the displacement fields u
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and v), such that the three mechanical problems stated in (5.2.12), (5.2.14) and (5.2.18)
are satisfied.

Let now (Fr,v) be the solution of equations (5.2.12), (5.2.14) and (5.2.18) (observe
that if the pair is solution of (5.2.12) and (5.2.14), then equation (5.2.21) is automatically
satisfied). For the following developments, consider an arbitrary displacement ṽ 6= v,
and an arbitrary deformation tensor F̃r 6= Fr. We refer to ṽa as the description of ṽ in
configuration Ωa. Also, note that ṽa ∈ Kina, where Kina stands for the linear manifold
of kinematically admissible displacements defined in Ωa defined as

Kina =
{

v ∈ H1 (Ωa) ; v|ΓDa = v
}
. (5.3.1)

As the pair
(
F̃r
a, ṽa

)
is not solution of the problem, for a fixed pair, the following

functionals can be defined in V ′a:
• Rm = Rm(F̃r

a, ṽa) ∈ V ′a, associated with the mechanical disequilibrium of the RS
field σrm in Ωm; i.e., with the residual of equation (5.2.12). This functional is defined
by

〈Rm
(
F̃r
a, ṽa

)
, v̂〉 =

∫

Ωa

σra ·
((

Fṽ
a

)−T ∇av̂
)s

dΩa,

=

∫

Ωa

1

det Fṽr
a

Fṽr
a (Sr)a

(
Fṽr
a

)T ·
((

Fṽ
a

)−T ∇av̂
)s

dΩa, with v̂ ∈ Va (5.3.2)

Observe that this functional depends explicitly and implicitly (through Sr) on F̃r
a.

• Rb = Rb(F̃r
a, ṽa) ∈ V ′a, associated with the mechanical disequilibrium in the known

spatial domain Ωb (however written in configuration Ωa), given by the residual of
equation (5.2.18). This functional is defined by

〈Rb
(
F̃r
a, ṽa

)
, v̂〉 =

∫

Ωa

σ(ṽ+w)r
a ·

(
(Fw)T ∇av̂

)s
dΩa

−
∫

Γa

(pb)a (Fw)−T na · v̂ det Fw dΓa

=

∫

Ωa

1

det Fṽr
a

Fṽr
a

(
S(ṽ+w)r

)
a

(
Fṽr
a

)T ·
(

(Fw)T ∇av̂
)s

dΩa

−
∫

Γa

(pb)a (Fw)−T na · v̂ det Fw dΓa, with v̂ ∈ Va (5.3.3)

Again, note that this functional depends explicitly and implicitly (through S(ṽ+w)r)
on F̃r

a.

Furthermore, let Va = span {Φ1,Φ2, . . .}, where Φi denotes the i-th element of a basis
of the space of kinematic admissible virtual action at the Ωa configuration. Then, the above
functionals are completely characterized through the dual product with each element Φi

of the proposed basis, i.e., by the virtual power exerted between the generalized residual
forces Rm and Rb and each element of the basis.

Rim

(
F̃r
a, ṽa

)
= 〈Rm

(
F̃r
a, ṽa

)
,Φi〉, i = 1, 2, . . . (5.3.4)

Rib

(
F̃r
a, ṽa

)
= 〈Rb

(
F̃r
a, ṽa

)
,Φi〉, i = 1, 2, . . . (5.3.5)

Moreover, (Fr,v) is the solution of equations (5.2.12), (5.2.14) and (5.2.18) if and only if
the pair makes Rim = Rib = 0 i = 1, , 2, . . .. Then, we introduce the following cost functional
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that characterizes the mechanical imbalance as a function of the RRDs

F
(
F̃r
a, ṽa

)
=
ηm
2

Rm

(
F̃r
a, ṽa

)
·Rm

(
F̃r
a, ṽa

)
+
ηb
2

Rb

(
F̃r
a, ṽa

)
·Rb

(
F̃r
a, ṽa

)
, (5.3.6)

where Rm and Rb are vectors containing the components defined in (5.3.16) and (5.3.17),
respectively. Also, ηm and ηb are weighting factors corresponding the mechanical imbalance
at Ωm and Ωa, respectively. Note that this weighting factors can be defined to account
for the quality of the reconstructions for different domains and the precision on the de-
termination of the w field, this is particularly interesting for the case on which multiple
configurations are known (see Section 5.3.2). Then, the RRD identification problem can
be written in the following variational form:

Given Ωa, Ωb, w, the corresponding inner blood pressures pa, pb and the material
parameters characterizing the arterial wall constitutive behavior, find (Fr

a,va) such that

(Fr
a,va) := arg min

D×Kina

{
F
(
F̃r
a, ṽa

)}

subjected to
∫

Ωa

σṽr · ∇sav̂ dΩa −
∫

Γa

pana · v̂ dΓa = 0 ∀v̂ ∈ Va. (5.3.7)

In the problem described above, D indicates the space of all tensor fields F̃r
a associated

with RRDs defined in Ωa with positive determinant (i.e. det F̃r
a > 0) for any xa ∈ Ωa.

Given a fixed F̃r
a, consider now v̌a = v̌a(F̃

r
a) the unique solution of equation (5.2.14)

(see constraint in (5.3.7)). With the introduction of this new variable we define for every
F̃r
a ∈ D a new cost functional J (F̃r

a) as

J (Fr
a) = F

(
F̃r
a, v̌a

(
F̃r
a

))
, (5.3.8)

and problem (5.3.7) can be rewritten as:
Given Ωa, Ωb, w, the corresponding inner pressures pa, pb and the material parame-

ters characterizing the arterial wall constitutive behavior, find Fr
a such that

Fr
a := arg min

F̃ra∈D

{
J
(
F̃r
a

)}
. (5.3.9)

As J (F̃r
a) ≥ 0 ∀F̃r

a ∈ D this problem is well defined, and J (Fr
a) = 0 if and only if

(Fr
a, v̌a(F

r
a)) ∈ D ×Kina satisfies the mechanical equilibrium equations for Ωm, Ωa and

Ωb -given by (5.2.12), (5.2.14) and (5.2.21), respectively-.
We highlight that the proposed cost functional J (F̃r

a) defined in (5.3.8) introduces a
measure of the error or distance between the variational model and the data provided by
medical images. In fact, this distance is given by the magnitude of the mechanical equilib-
rium residuals. The equations presented in the previous Section integrate the available data
through the mechanical equilibrium concept, defined by the Virtual Power Principle, and
also account for the behavior of arterial wall constituents via corresponding constitutive
equations.

Remark 5.1. The evaluation of the cost functional J is a two-step process. First, given
Ωa and F̃r

a, the mechanical equilibrium given by equation (5.2.14) must be solved, yielding
v̌a. A linearized form of this preload problem is included in Section 5.5.1, for further
discussion about this type of problems see Chapters 2 and 3. Next, the generalized residuals
associated with configurations Ωm and Ωb must be computed.
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5.3.2 Generalization for multiple known configurations

Let us now consider the mechanical setting presented in Figure 5.2, assuming that
more information is available and data acquisition techniques are able provide the known
configurations Ωa and Ω1

b , . . . ,Ω
NB
b , each one in equilibrium with well-defined blood pres-

sure levels pa and p1
b , . . . , p

NB
b . Furthermore, the displacement field wi that maps points

in Ωa with the corresponding counterpart in Ωi
b is considered to be also given data for

i = 1, . . . , NB.

Ωm

Ωa

Ω1
b

Ωj
b

ΩNB
b

v

w1

wj

wNB

Fr

p = 0, σr (Cr)

p = pa

p = p1b

p = p
j
b

p = p
NB
b

Ωv

(Virtual zero-stress configuration)

Figure 5.2: Extended problem setting for in-vivo residual deformation characterization with multi-
ple known configurations. The virtual configuration Ωv represents a disaggregated state of material
particles composing the arterial wall in a zero-stress state and serves as reference configuration for
constitutive equations. The material domain Ωm is subjected to no external loads, however, is not
stress-free due to the existence of RRDs. As before, Ωa is known, as well as the NB configurations
Ωj

b (j = 1, . . . , NB). These NB configurations are represented in the figure by Ω1
b ,Ω

j
b and ΩNB

b .
The displacement fields wj mapping Ωa with Ωj

b are also known.

For every, configuration Ωj
b (j = 1, . . . , NB) the mechanical equilibrium equation

reads ∫

Ωjb

σujr · ∇sbv̂ dΩj
b =

∫

Γjb

pjbnb · v̂ dΓjb ∀v̂ ∈ Vjb , (5.3.10)

where Vjb is the space of kinematically admissible virtual actions in Ωj
b, and the constitutive

stress tensor σujr is obtained through

σujr =
1

det Fujr
bj

Fujr
bj

(
Sujr

)
bj

(
Fujr
bj

)T
, (5.3.11)

where Fujr and Sujr are the deformation and second Piola-Kirchhoff stress tensors asso-
ciated with with the displacement uj = wj + v.
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This variational equation expressed in terms of xa coordinates reads
∫

Ωa

σu
jr

a ·
(

(Fwj
)T∇av̂

)s
dΩa =

∫

Γa

(
pjb

)
a

(Fwj
)−Tna · v̂ det Fwj

dΓa ∀v̂ ∈ Va, (5.3.12)

where σujra is written as next

σu
jr

a =
1

det Fvr
a

Fvr
a

(
Sujr

)
a

(Fvr
a )T . (5.3.13)

Analogously to the procedure followed in the previous section, let now (Fr,v) be the
solution of equations (5.2.12), (5.2.14) and the NB set of equations defined by (5.3.12). As
before, introducing the arbitrary displacement ṽ 6= v and the arbitrary deformation tensor
F̃r 6= Fr the following functionals can be defined in V ′a

• Rm = Rm(F̃r
a, ṽa) ∈ V ′a, associated with the mechanical disequilibrium of the RS

field σrm in Ωm; i.e., with the residual of equation (5.2.12). This functional is the
same as in (5.3.2) but is repeated here for the sake of readability

〈Rm
(
F̃r
a, ṽa

)
, v̂〉 =

∫

Ωa

σra ·
((

Fṽ
a

)−T ∇av̂
)s

dΩa,

=

∫

Ωa

1

det Fṽr
a

Fṽr
a (Sr)a

(
Fṽr
a

)T ·
((

Fṽ
a

)−T ∇av̂
)s

dΩa, with v̂ ∈ Va (5.3.14)

• The NB functionals Rb,j = Rb,j(F̃r
a, ṽa) ∈ V ′a, associated with the mechanical dise-

quilibrium in the known spatial domain Ωj
b given by the residual of equation (5.3.12).

They are defined by

〈Rb,j
(
F̃r
a, ṽa

)
, v̂〉 =

∫

Ωa

1

det Fṽr
a

Fṽr
a

(
S(ṽ+wj)r

)
a

(
Fṽr
a

)T ·
((

Fwj
)T
∇av̂

)s
dΩa

−
∫

Γa

(pb)a

(
Fwj

)−T
na · v̂ det Fwj

dΓa, v̂ ∈ Va, i = 1, . . . , Nb (5.3.15)

As in Section 5.3.1, here introduce the virtual power exerted between the generalized
residual forces Rm and Rb and each ith element of the basis.

Rim

(
F̃r
a, ṽa

)
= 〈Rm

(
F̃r
a, ṽa

)
,Φi〉, i = 1, 2, . . . (5.3.16)

Rib,j

(
F̃r
a, ṽa

)
= 〈Rb,j

(
F̃r
a, ṽa

)
,Φi〉, i = 1, 2, . . . j = 1, . . . , NB (5.3.17)

Again, (Fr,v) is the solution of equations (5.2.12), (5.2.14) and the set of equations defined
by (5.3.12) if and only if it makes Rim = Rib,j = 0 i = 1, , 2, . . . , j = 1, . . . , NB. Then, we
introduce the following cost functional that characterizes the mechanical imbalance as a
function of the RRDs

F
(
F̃r
a, ṽa

)
=
ηm
2

Rm

(
F̃r
a, ṽa

)
·Rm

(
F̃r
a, ṽa

)
+

NB∑

j=1

ηjb
2

Rb,j

(
F̃r
a, ṽa

)
·Rb,j

(
F̃r
a, ṽa

)
,

(5.3.18)
where ηm and ηjb are weighting factors corresponding the mechanical imbalances at Ωm

and each Ωj
b, respectively.
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Then, the RRD identification problem can be written in the following variational
form: given Ωa, the NB configurations Ωj

b, the NB displacements fields wj , the corre-
sponding inner pressures pa, p

j
b and the material parameters characterizing the arterial

wall constitutive behavior, find
(
F̃r
a, ṽa

)
such that

(Fr
a,va) := arg min

D×Kina

{
F
(
F̃r
a, ṽa

)}

subjected to
∫

Ωa

σṽr · ∇sav̂ dΩa −
∫

Γa

pana · v̂ dΓa = 0 ∀v̂ ∈ Va. (5.3.19)

In the problem described above, D indicates the space of all tensor fields F̃r
a associated

with RRDs defined in Ωa with positive determinant (i.e. det F̃r
a > 0) for any xa ∈ Ωa.

As shown in Section 5.3.1, a functional J depending only in F̃r
a can be written if

we consider, for a fixed F̃r
a, v̌a = v̌a(F̃

r
a) the unique solution of equation (5.2.14). J is

defined as
J
(
F̃r
a

)
= F

(
F̃r
a, v̌a

(
F̃r
a

))
, (5.3.20)

and problem (5.3.19) can be rewritten as: given Ωa, the NB configurations Ωj
b, the NB dis-

placements fields wj , the corresponding inner pressures pa, p
j
b and the material parameters

characterizing the arterial wall constitutive behavior, find Fr
a such that

Fr
a := arg min

F̃ra∈D

{
J
(
F̃r
a

)}
. (5.3.21)

As J (F̃r
a) ≥ 0 ∀F̃r

a ∈ D this problem is well defined, and J (Fr
a) = 0 if and only if

(Fr
a, v̌a(F

r
a)) ∈ D ×Kina satisfies the mechanical equilibrium equations for Ωm, Ωa and

Ωj
b -given by (5.2.12), (5.2.14) and (5.3.10), respectively-.

5.4 Optimization methods

Observe that the RRD characterization problem is completely defined by problem
(5.3.21) along with the subsidiary restriction given by (5.2.14), hence leading to a mini-
mization of a highly nonlinear functional (with respect to the unknown variables) subjected
to an also nonlinear equality constraint. In order to achieve this minimization two methods
are explored in the numerical examples (see Chapter 6), the interior-point algorithm for
constrained optimization and the steepest descent method. For the interior-point method
we make use of the MATLAB Optimization Toolbox (The MathWorks, 2013) based on the
works of Byrd et al (1999, 2000).

For the following presentations, let us consider the base BD = {ω1, . . . ,ωN} of a
finite space Dh approximating space of RRDs fields D. Then, an approximation Fh ≈ F̃r

a

can be written as a linear combination of the elements of BD. If x is a vector containing
the coefficients of such linear combination, Fh can be expressed as

Fh = x · BD, (5.4.1)

and using equation (5.3.21) the following minimization problem can be proposed: given Ωa,
Ωb, w, the corresponding inner pressures pa, pb and the material parameters characterizing
the arterial wall constitutive behavior, find x ∈ RN such that

x := arg min
x∈RN

{
J (x)

}
, (5.4.2)
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where the functional J (x) : RN → R is defined as J (x) = J (Fh). Note that, given
the vector x, evaluating J (x) is a two steps process, involving the solution of the preload
mechanical problem corresponding to the equilibrium at Ωa and the evaluations of the
corresponding residuals.

As an example, in a three-dimensional problem, when using a finite element dis-
cretization and considering piecewise constant residual deformations, the base BD is char-
acterized as follows:

BD = {ωeij(x)}, e = 1, . . . , NE , i, j = 1, . . . , 3 (5.4.3)

where the ωeij is

ωeij(x) =

{
0, x /∈ Ωe

Φij , x ∈ Ωe
, (5.4.4)

where Φij ∈ R3×3 with ij-th component equal to 1 and null for the rest of the components,
e.g.

Φ12 =




0 1 0
0 0 0
0 0 0


 . (5.4.5)

5.4.1 Gradient descent method

Let us consider the following expansion for the functional J (x) given a perturbation
δx

J (x+ δx) = J (x) +∇xJ (x) · δx+O(δx). (5.4.6)

Note that, for a sufficiently small δx the high order term O(δx) can be neglected. Con-
sidering this, for the minimization process it is proposed to determine δx such that

J (x+ δx)−J (x) = ∇xJ (x) · δx ≤ 0. (5.4.7)

Minding this, we can formulate the following update criterion

δx = −γ∇xJ (x), (5.4.8)

where γ is a parameter controlling the step size and can be modified along the optimization
process. Note that this choice ensures that at each step the functional decreases its value
because −γ∇xJ (x) ·∇xJ (x) ≤ 0. In order to update only the most influential directions
(instead of modifying all the components at once) the following modification is introduced

δxj =

{
−γ(∇xJ (x))j , if (∇xJ (x))j > ϑmax‖∇xJ (x)‖
0, if (∇xJ (x))j ≤ ϑmax‖∇xJ (x)‖

, (5.4.9)

where ϑ ∈ [0, 1] is a parameter that defines which directions are considered to be “the
most influential”. Additionally, the magnitude of the updates is capped in order to avoid
excessive fluctuations on the optimization variables during the minimization process, i.e.

δxj =

{
−sign(xj)∆MAX , if ‖δxj‖ > ∆MAX

xj , if ‖δxj‖ ≤ ∆MAX
, (5.4.10)

where ∆MAX introduces a limit for the magnitude of the updates, observe that this value
can be modified along the optimization process.

Considering the convergence tolerance tolj , the final optimization algorithm takes
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the following form

Algorithm 3 Gradient optimization method
1. Set initial value for x.
2. While J (x) > tolj do

2.1 Compute ∇xJ (x).
2.2 Update δxj using (5.4.9)-(5.4.10).
2.3 Solve preload mechanical problem (using 5.5.9).
2.4 Compute residuals Rm and Rb using (5.3.16) and (5.3.17).
2.5 Compute functional F using (5.3.18).

It is important to note that for this approach it is necessary to compute the derivative
∇xJ (x) (see step 2.1). To do this, two approaches are considered, using finite differences
and performing a sensitivity analysis of the functional.

For the first approach, it is a simple straightforward process; however it is important
to recall that evaluating J (x) is a two steps process, in a first step, given Fh(x), the
mechanical equilibrium problem for Ωa is solved obtaining the displacement field v(Fh),
next, the residuals Rm and Rb are computed.

For the second approach, a complete sensitivity analysis is presented in Section 5.5
considering an approximation for the RRD field using piecewise constant deformations for
a finite element discretization.

5.4.2 Interior-point method

For this interior-point method for constrained optimization, consider the smooth
functionals H (x) : RN → RL and G (x) : RN → RM incorporating further constraints on
the problem in the following form

H (x) = 0, G (x) ≤ 0. (5.4.11)

These functionals can introduce different types of nonlinear constraints; in this thesis, for
example, they are employed to incorporate restrictions on the determinant of Fh. Hence,
problem (5.4.2) can be re-written adding the presented constraints yielding the constrained
optimization problem: given Ωa, Ωb, w, the corresponding inner pressures pa, pb and the
material parameters characterizing the arterial wall constitutive behavior, find x ∈ RN
such that

x :=arg min
x∈RN

{
J (x)

}
,

subjected to H (x) = 0,

G (x) ≤ 0. (5.4.12)

The interior-point algorithm (Byrd et al, 2000) is a barrier method in which the sub-
problems are solved approximately by a sequential quadratic programming (SQP) iteration
within trust-regions. Each barrier subproblem is of the form

x :=arg min
x∈RN

{
J (x)

}
− υ

M∑

i=1

ln si,

subjected to H (x) = 0,

G (x) + s = 0, (5.4.13)

where υ > 0 is the penalty parameter and the slack variables s are assumed to be positive.
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The extended Lagrangian form of the barrier subproblem reads

L (x, s,χh,χg) = J (x)− υ
Mg∑

i=1

ln si + χh ·H (x) + χg · (G (x) + s) (5.4.14)

where χh ∈ RMh and χg ∈ RMg are Lagrange multipliers corresponding to the equality
and inequality constraints. At an optimal solution point (x, s) it is verified

∇xL (x, s,χh,χg) = ∇xJ (x) + A hχh + A gχg = 0 (5.4.15)

∇sL (x, s,χh,χg) = −υS −1e+ χg = 0 (5.4.16)

where A h, A g, e, and S are given by

A h = (∇xH1, . . . ,∇xHMh
) A g =

(
∇xG1, . . . ,∇xGMg

)
(5.4.17)

and
ei = 1 with (i = 1, . . . ,Mh), S = diag(si, . . . , sMh

) (5.4.18)

where subscripts indicate the number of the corresponding component of the involved
vectors.

In order to simplify the presentation the following notation is introduced

z =

(
x
s

)
, Q(z) = J (x)− υ

Mg∑

i=1

ln si, C (z) =

(
H (x)

G (x) + s

)
, (5.4.19)

leading to the following re-expression for problem (5.4.20)

z := arg min
z∈RN+Mg

{
Q (z)

}

subjected to C (z) =0, (5.4.20)

Using a SQP approach (Gill et al, 1981) on this problem, the following quadratic
program is obtained: for a given z is, find the trial vector d ∈ RN+Mg such that

d := arg min
x∈RN+Mg

{
∇zQ(z)d+

1

2
W d · d

}

subjected to Â (z) + C (z) = 0, (5.4.21)

with

d =

(
dx
ds

)
, (5.4.22)

and where W denotes the Hessian matrix of the Lagrangian of the barrier problem (5.4.14)
with respect to z,

W = ∇2
zzL =

(
∇2
xxL 0

0 −υS −2

)
, (5.4.23)

and Â is the Jacobian related to the constraints functionals C , given by

Â =

(
A h 0
A g I

)
. (5.4.24)

In order to facilitate the convergence for cases in which either the initial conditions
is distant from the solution or the Hessian matrix W is not positive definite in the null
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space of Â , a trust region is incorporated for the trial vector as follows

d := arg min
d∈RN+Mg

{
∇zQ(z)d+

1

2
W d · d

}

subjected to Â (z)d+ C (z) = 0

‖d‖T ≤ εT , (5.4.25)

with ‖·‖T indicating an arbitrary norm and εT > 0 denoting the trust region radius that
is updated at every iteration. To avoid incompatibilities between the constraints and the
defined trust region (meaning that all possible trial steps d satisfying constraints lay outside
of the trust region) a two step process is followed. First, choosing a contraction parameter
ξT ∈ (0, 1) a transversal step is solved finding v, an approximate solution of

v := arg min
v∈RN+Mg

∥∥∥Â (z)v + C (z)
∥∥∥
l2

subjected to ‖v‖T ≤ ξT εT . (5.4.26)

with ‖·‖l2 stands for the vectorial l2 norm. Note that v satisfies the proposed constraints
and lays within the reduced trust regions. Next, a modification on (5.4.27) is presented to
compute d

d := arg min
d∈RN+Mg

{
∇zQ(z)d+

1

2
W d · d

}

subjected to Â (z)d = Â (z)v

‖d‖T ≤ εT . (5.4.27)

Observe that, for this modified problem both constraints are always consistent since is
possible to take d = v.

Next, the obtained trial step d is accepted if it provides a sufficient reduction for the
following merit function

M (z, pc) = Q(z) + pc | C (z)| , (5.4.28)

where pc is a penalization parameter weighting the influence of the constraints. If this
requirement is not met, the trust region εT is decreased and a new trial step d is computed.
If the step is accepted, the barrier parameter υ is decreased and a new barrier problem
iterations is initiated. The final structure of the algorithm is outlined next where tolj is the
objective value for the functional in the minimization process, tolh and tolg are tolerances
for the equality and inequality constraints, anb tolq and tolc are tolerances related to the
barrier subproblems.

It is important to note that the gradient and Hessian of the cost and constraint
functionals J (x), H (x) and G (x) are needed for both the computation of the Lagrangian
multipliers and the barrier subproblems. We employ the finite differences algorithm in-
cluded in the MATLAB Optimization Toolbox for the computation of these derivatives,
using the BFGS method (Fletcher, 1987) for the Hessian update. For a complete descrip-
tion of the method and its properties the interested reader is encouraged to see Byrd et al
(1999, 2000), where details regarding topics such as optimal trust region reduction, the
decreasing of the barrier parameters and efficient methods to solve the barrier problem are
discussed in depth.
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Algorithm 4 Interior-point optimization method
1. Choose initial barrier parameter υ > 0, set initial state for variables (x, s) and
Lagrange multipliers λh, λg
2. While J (x) > tolj or H (x) > tolh or (G (x) + s) > tolg do

2.1 Define initial εT , ξT and pc
2.2 While Q(z) > tolq or C (z) > tolc do
2.2.1 Solve transversal problem (5.4.26), obtain v.
2.2.2 Solve modified barrier problem (5.4.27), obtain d.
2.2.3 Evaluate merit function (5.4.28).
2.2.4 If d is accepted,

2.2.4.1 Set z = z + d,
2.2.4.2 Compute Lagrange multipliers using (5.4.15)-(5.4.16).
2.2.4.3 Evaluate Q(z) and C (z).

else,
2.2.4.4 Decrease εT and go back to 2.2.1.

2.3 Decrease barrier parameter υ.
2.4 Evaluate J (x), H (x) and G (x).

5.5 Senstivity analysis

In this section, we focus our attention to finding the sensitivity of the functional
J (F̃r

a) with respect to changes in F̃r
a. For the sake of simplicity, this calculus will be

presented for the three known configurations setting introduced in Section 5.3.1.
Observe that, J (F̃r

a) can not be written explicitly since the determination of v̌a is de-
pendent on the solution of equation (5.2.14). As result, the derivative of this functional can
not be directly calculated. As a mean to provide an indirect calculation of this derivative
a new Lagrangian cost functional is introduced, where the functional dependence between
v̌a and F̃r

a imposed by the equilibrium equation (5.2.14) is removed. This Lagrangian is
denoted by L, and is defined for (Fr∗

a ,v
∗
a,χ

∗) ∈ D×Kina × Va as follows

L (Fr∗
a ,v

∗
a,χ

∗) = F (Fr∗
a ,v

∗
a) +

∫

Ωa

σv∗r · ∇saχ∗ dΩa −
∫

Γa

pana · χ∗ dΓa. (5.5.1)

Moreover, evaluating the cost functionals at (Fr
a, v̌a) yields

L (Fr
a,va,χ

∗) = F (Fr
a,va) = J (Fr

a) ∀χ∗ ∈ Va. (5.5.2)

Furthermore, as it is well known, the Gâteaux derivate of J with respect to Fr∗
a

evaluated at Fr
a is given by the derivative of L with respect to the same Fr∗

a evaluated at
the point

(
Fr
a,va,χadj

)
, where χadj is the solution of the adjoint equation associated to L.

In compact notation, the above statement can be written as
〈
∂J
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
Fra

=

〈
∂L
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
(Fra,v̌a,χadj)

, (5.5.3)

where, as said, v̌a is the solution of equation (5.2.14), i.e. the solution of the following
variational equation 〈

∂L
∂χ∗

, χ̂

〉
= 0 ∀χ̂ ∈ Va, (5.5.4)
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and χadj is the solution of the adjoint variational equation
〈
∂L
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

= 0 ∀v̂a ∈ Va (5.5.5)

where the notation
〈
∂M
∂a ,b

〉∣∣
c
denotes the Gâteaux derivative of the functional M with

respect to a = c + τb in the direction given by b and evaluated at point c, i.e.
〈
∂M
∂c

,b

〉∣∣∣∣
c

=
d

dτ
M (..., c + τb, ...)

∣∣∣∣
τ=0

. (5.5.6)

Introducing the approximation presented in Section 5.4, Fh ≈ Fr
a, and recalling that

J (x) = J (Fh), (5.5.7)

it is straightforward to observe that this sensitivity analysis allows us to compute the
gradient ∇xJ (x) required for the gradient descent method (see Section 5.4.1) since

∇xJ (x) =

〈
∂J
∂Fh

, δFh

〉
∂Fh

∂x
=

〈
∂J
∂Fh

, δFh

〉
BD. (5.5.8)

5.5.1 Direct problem

As detailed in the above procedure, the first problem that we need to tackle is
related to equation (5.5.4). The problem setting is the following: Given the equilibrium
configuration Ωa, the inner blood pressure pa acting on the boundary Γa and an estimate
of the RRD field, say F̃r

a, find v̌a ∈ Kina such that
〈
∂L
∂χ∗

, χ̂

〉
=

∫

Ωa

σv̌r · ∇saχ̂ dΩa −
∫

Γa

pana · χ̂ dΓa = 0 ∀χ̂ ∈ Va, (5.5.9)

where σv̌r is defined as

σv̌r =
1

det Fv̌r
a

Fv̌r
a

(
Sv̌r
)
a

(
Fv̌r
a

)T
. (5.5.10)

By solving this problem, for a given estimate F̃r
a, the displacement field v̌a map-

ping the known configuration Ωa from an estimate of the material domain, say Ω̃m, is
obtained. The above variational equation can be linearized through a Newton-Raphson
scheme, leading to the following linear problem: Given v̌a, the displacement field at the
previous Newton-Raphson iteration (iteration index omitted in the notation for the sake
of clarity), along with the problem data (Ωa, pa, F̃

r
a), find δṽa ∈ Va such that

∫

Ωa

〈
∂σṽr

∂v̌a
, δv̌a

〉
· ∇saχ̂ dΩa =

∫

Ωa

σṽr · ∇saχ̂ dΩa −
∫

Γa

pana · χ̂ dΓa ∀χ̂ ∈ Va, (5.5.11)

where
〈
∂σṽr

∂ṽa
, δṽa

〉
is defined as

〈
∂σṽr

∂va
, δṽa

〉
= −

(
(Fṽ

a )T · ∇δṽa
)
σṽr + 2

(
Fṽ
a∇δṽaσṽr

)s

+
2

detFṽr
a

Fṽr
a

[(
∂Sṽr

∂Cṽr

)

a

(
(Fṽr

a )T
(
Fṽ
a∇δṽaFṽr

a

))s
]

(Fṽr
a )T (5.5.12)

This problem is usually referred to as a preload problem and it is extensively discussed in
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Section 2.2.

5.5.2 Adjoint problem

Once v̌a is obtained from the direct problem (5.5.9), we are ready to solve the adjoint
problem (see equation (5.5.5)). The adjoint problem is defined as follows: Given F̃r

a, pa, v̌a
and Ωa, find χadj such that

〈
∂L
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

=

〈
∂F
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

+

∫

Ωa

〈
∂σv̌r

a

∂v∗a
, v̂a

〉
· ∇aχadj dΩa = 0 ∀v̂a ∈ Va, (5.5.13)

where we highlight that σv̌r
a is the Cauchy Stress due to the displacement field v̌a combined

with the residual deformations and
〈
∂F
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

= ηmRm ·
〈
∂Rm

∂v∗a
, v̂a

〉∣∣∣∣
v̌a

+ ηbRb ·
〈
∂Rb

∂v∗a
, v̂a

〉∣∣∣∣
v̌a

. (5.5.14)

The derivative of the components of the residual vectors in terms of the elements of the
basis are obtained through

〈
∂Rim
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

=

∫

Ωa

〈
∂σra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

·
((

Fv̌
a

)−T ∇aΦi

)s
dΩa−

∫

Ωa

σra ·
(

(∇av̂a)T ∇aΦi

)s
dΩa, (5.5.15)

and 〈
∂Rib
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

=

∫

Ωa

〈
∂σ

(v̌+w)r
a

∂v∗a
, v̂a

〉∣∣∣∣∣
v̌a

·
(

(Fw)T ∇aΦi

)s
dΩa. (5.5.16)

Moreover, analogously to equation (5.5.12) for the derivative of the stress field in the
Ωa configuration, the detailed expressions for

〈
∂σra
∂v∗

a
, v̂a

〉∣∣∣
v̌a

and
〈
∂σ

(v̌+w)r
a
∂v∗

a
, v̂a

〉∣∣∣
v̌a

can be
written as

〈
∂σra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

= −
((

Fv̌
a

)T · ∇av̂a
)
σra + 2

(
Fv̌
a (∇av̂a)σra

)s
, (5.5.17)

and
〈
∂σ

(ṽ+w)r
a

∂va
, v̂a

〉
= −

(
(Fṽ

a )T · ∇v̂a
)
σ(ṽ+w)r
a + 2

(
Fṽ
a∇v̂aσ

(ṽ+w)r
a

)s

+
2

detFṽr
a

Fṽr
a

[(
∂Sṽr

∂Cṽr

)

a

(
(F(ṽ+w)r

a )T
(
Fw
a Fṽ

a∇v̂aF
ṽr
a

))s]
(Fṽr

a )T

(5.5.18)
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5.5.3 Sensitivity evaluation

As a last step, the sensitivity of the Lagrangian cost functional with respect to
changes in F̃r, denoted as δF̃r

a, is evaluated as

〈
∂L
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a,χadj

= ηmRm ·
〈
∂Rm

∂Fr∗
a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

+ ηbRb ·
〈
∂Rb

∂Fr∗
a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

+

∫

Ωa

〈
∂σv̌r

a

∂Fr∗
a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

δF̃r
a · ∇aχadj dΩa, (5.5.19)

where components
〈
∂Rim
∂Fr∗a

, δF̃r
a

〉∣∣∣
F̃ra,v̌a

,
〈
∂Rib
∂Fr∗a

, δF̃r
a

〉∣∣∣
F̃ra,v̌a

are given by

〈
∂Rim
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

=

∫

Ωa

〈
∂σra
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

·
((

Fv̌
a

)−T ∇aΦi

)s
dΩa, (5.5.20)

and
〈
∂Rib
∂Fr∗

a

, δF̃r
a

〉∣∣∣∣
F̃ra,v̌a

=

∫

Ωa

〈
∂σ

(v̌+w)r
a

∂Fr∗
a

, δF̃r
a

〉∣∣∣∣∣
F̃ra,v̌a

·
(

(Fw)T ∇aΦi

)s
dΩa. (5.5.21)

Observe that the Gâteaux derivative of the stress fields with
〈
∂σv̌r

a
∂Fr∗a

, δFr
a

〉
is given by

〈
∂σv̌r

a

∂Fr∗
a

, δFr
a

〉∣∣∣∣
F̃ra,v̌a

= −
(

(Fr
a)
−T · δFr

a

)
σv̌r
a + 2

[(
Fv̌
aδF

r
a

(
Fṽr
a

)−1
)
σv̌r
a

]s
+

2

det Fv̌r
a

Fv̌r
a

{(
∂Sv̌r

∂Cv̌r

)

a

((
Fv̌r
a

)T
Fv̌
aδF

r
a

)s}(
Fv̌r
a

)T (5.5.22)

and the corresponding expressions for
〈
∂σra
∂Fr∗a

, δF̃r
a

〉∣∣∣
F̃ra,v̌a

and
〈
∂σṽr

a
∂Fr∗a

, δF̃r
a

〉∣∣∣
F̃ra,v̌a

can be

obtained analogously as

〈
∂σra
∂Fr∗

a

, δFr
a

〉∣∣∣∣
F̃ra,v̌a

= −
(

(Fr
a)
−T · δFr

a

)
σra + 2

[(
Fv̌
aδF

r
a

(
Fṽr
a

)−1
)
σra

]s
+

2

det Fv̌r
a

Fv̌r
a

[(
∂Sr

∂Cr

)

a

(
(Fr

a)
T δFr

a

)s] (
Fv̌r
a

)T (5.5.23)

and
〈
∂σ

(v̌+w)r
a

∂Fr∗
a

, δFr
a

〉∣∣∣∣∣
F̃ra,v̌a

= −
(

(Fr
a)
−T · δFr

a

)
σ(v̌+w)r
a +2

[(
Fv̌
aδF

r
a

(
Fṽr
a

)−1
)
σ(v̌+w)r
a

]s
+

2

det Fv̌r
a

Fv̌r
a

[(
∂S(v̌+w)r

∂C(v̌+w)r

)

a

((
F(v̌+w)r
a

)T
F(v̌+w)
a δFr

a

)s] (
Fv̌r
a

)T
. (5.5.24)

Let us now consider that the domain Ωa is subdivided into NE non-overlapping sub-
domains Ωe

a (e = 1, . . . , NE). If a piecewise constant approximation for the deformation
field in such sub-domains is employed, we can analyze the derivative of the Lagrangian for
changes in the local residual deformation Fr,e

a as
〈
∂L
∂Fr∗

a

, δFr,e
a

〉∣∣∣∣
F̃ra,v̌a,χadj

= ηmTm · δFr,e
a + ηsTb · δFr,e

a + Ta · δFr,e
a , (5.5.25)
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where
Tm · δFr,e

a = Rm ·
〈
∂Rm

∂Fr∗
a

, δFr,e
a

〉∣∣∣∣
F̃ra,v̌a

, (5.5.26)

Tb · δFr,e
a = Rb ·

〈
∂Rb

∂Fr∗
a

, δFr,e
a

〉∣∣∣∣
F̃ra,v̌a

, (5.5.27)

and

Ta · δFr,e
a =

∫

Ωa

〈
∂σv̌r

a

∂Fr∗
a

, δFr,e
a

〉∣∣∣∣
F̃ra,v̌a

· ∇aχadj dΩa. (5.5.28)

Performing some mathematical manipulations, the form of tensors Tm, Tb and Ta can be
found as

Ta =

∫

Ωea

(Fr
a)
−T (σv̌r

a · ∇aχadj

)
dΩe

a

+

∫

Ωea

2
(
Fv̌
a

)T (∇aχadj

)
σv̌r
a

(
Fv̌
)−T
a

dΩe
a

+

{∫

Ωea

1

det Fv̌r
a

[(
∂Sv̌r

∂Cv̌r

)T

a

((
Fv̌r
a

)T (∇aχadj

)
Fv̌r
a

)] (
Fv̌r
a

)T
Fv̌
a dΩe

a

}T

+

∫

Ωea

(
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a

)T
Fv̌r
a

1

det Fv̌r
a

[(
∂Sv̌r

∂Cv̌r

)T

a

((
Fv̌r
a

)T (∇aχadj

)
Fv̌r
a

)]
dΩe

a, (5.5.29)

Tm =
∑

i

−Rim
∫

Ωea

(Fr
a)
−T
(
σra ·

((
Fv̌
a

)−T ∇aΦi

)s)
dΩe

a

+
∑

i

Rim

∫
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2
(
Fv̌
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)T ((
Fv̌
a
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+
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(5.5.30)

and

Tb =
∑

i

−Rib
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∑
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(5.5.31)

where T denotes the following transpose operation for an arbitrary fourth order tensor



108 Chapter 5. In-vivo characterization of residual deformations

D = a⊗ b⊗ c⊗ d:
DT = (a⊗ b⊗ c⊗ d)T = c⊗ d⊗ a⊗ b (5.5.32)



Chapter 6

Characterization of residual
deformations: numerical examples

6.1 Introduction

In this chapter three numerical examples are presented, proposed to assess the po-
tentiality of the mechanical setting developed in Chapter 5 for the in-vivo characterization
of residual recoverable deformations in hemodynamic problems.

The first example is a very simple problem consisting of a 1D clamped bar with a force
applied at the midpoint of its domain. This basic case embraces all the necessary ingre-
dients to test the proposed methodology and, because the analytical solution is available,
it stands as a conceptual proof of the viability of the approach. As a second example, the
characterization of RRDs is performed in an homogeneous thick-walled cylinder subjected
to uniform internal pressure. The residual deformation field is defined ad-hoc, and a Neo-
Hookean constitutive behavior is considered for the material response. The third example,
also featuring a cylindrical geometry, is closer to a more realistic setting of an arterial
wall, whose anatomical structures resemble that of an abdominal aorta. For this case,
three layers of transversely isotropic hyperelastic material are considered. Moreover, the
residual deformation field identified by the optimization problem is based on experimental
measures available in the specialized literature.

For each problems, the reference geometry along with the material parameters and
objective residual deformations to be identified are described. Next, the forward mechani-
cal problem for different loading states is solved, and, the setting of known configurations
is constructed. As last step, the result of the optimization problem is presented. At this
point, it is important to remark that we will consider as known input data the material
parameters. However, since the measurement of these parameters can be a sensitive issue,
and since the reference configuration depends upon the definition of such material prop-
erties, having thus an impact in the entire identification process, a sensitivity analysis to
explore the relative importance of the different material parameters should be considered
as a next step in this research line.

6.2 Clamped bar (1D)

6.2.1 Problem description

In this example, a one-dimensional bar clamped at both ends is considered where the
material configuration, Ωm, occupies the interval [0, 2L]. A concentrated load f is applied
at the material point P located in the center of Ωm, i.e. at xm = L. A representative
scheme of the problem is presented in Figure 6.1. The constitutive behavior of the material
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is characterized by a linear relation between the second Piola-Kirchhoff stress and the
deformation tensor, i.e.

S = k(F − 1), (6.2.1)

where k represents an elastic parameter and F = F vF r is the total deformation gradient
resulting from the composition between a deformation field due to the displacement v and
the RRDs F r. In particular, due to the kinematical setting of this problem (see Section
6.2.2), a constant field F r is admitted for the material configuration Ωm. Consequently,
through (6.2.1), Sr is also a constant field.

xm

L L

f

Ωm,σ
r
m

xPm = L

Figure 6.1: Setting for the clamped bar 1D problem

When the concentrated load f is applied, the analytical solution for the equilibrium
problem can be easily obtained, resulting in a piece-wise linear displacement field vm, which
presents null values at both ends and maximum at the point xm = L, i.e.

vm (xm) =

{
f

2(kF r+Sr)F r xm, xm ∈ [0, L],
f

2(kF r+Sr)F r (2L− xm) , xm ∈ [L, 2L].
(6.2.2)

We introduce the notation vf = v(xm) to emphasize the fact that this displacement
field is associated to the load f .

From the above displacement field, the equilibrium configuration Ωf = [0, 2L] is
defined. Observe that despite the fact that Ωm and Ωf occupy the same region in the
Euclidean space, points in [0, 2L] correspond to different material points depending which
configuration is considered. Furthermore, the solution of the problem belongs to the space
spanned by linear finite elements shape functions, provided a node is placed at the point
xm = L. Thus, despite its simplicity, a validation of the variational framework with an
exact solution can be performed with this problem.

6.2.2 Kinematics for the 1D bar

The linear space of kinematically admissible displacements is given by

Um =
{
um (xm) ∈ H1 (0, 2L) | um (0) = um (2L) = 0

}
, (6.2.3)

Then, admissible variations of the displacement are in the very same space, that is Um ≡
Vm.

For this particular case, the material and spatial expressions for the deformation
gradients are given by

F u = 1 +
∂um
∂xm

, (F u)−1
a = 1− ∂ua

∂xa
, (6.2.4)

where um(xm) and ua(xa), and the relations (5.2.13), (5.2.15) and (5.2.20) between material
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and spatial gradients can be written as

(
∂um
∂xm

)

a

=
∂ua
∂xa

1− ∂ua
∂xa

,

(
∂ua
∂xa

)

m

=
∂um
∂xm

1 + ∂um
∂xm

. (6.2.5)

Furthermore, as detF v = F v, the relations between the second Piola-Kirchhoff stress and
Cauchy stress are simplified to

σvra = Svra F
vr
a , σ(v+w)r

a = S(v+w)r
a F vra , σra = SraF

vr
a . (6.2.6)

6.2.2.1 Manufactured solution: data and target

The geometry and constitutive behavior are defined by L = 1, k = 1.0 · 103. The
value characterizing the constant RRD field is set as F r = 1.01, defining the objective
for the identification problem. Note that, from (6.2.1), the constant RS field is given by
Sr = 10.

Let us now consider that two equilibrium configurations, Ωa and Ωb, are known
(NB = 1). Ωa = [0, 2L] is at equilibrium with the concentrated load fa = 100. Then, using
(6.2.2), we obtain the load application point for the force fa as xfaa = L + vfa = 1.0485.
Similarly, Ωb = [0, 2L] is at equilibrium with fb = 200, applied at xfbb = L+ vfb = 1.0970.

Finally, the displacement field w, mapping points from Ωa into Ωb is given by

w (xa) =

{
0.0485 xa

1.0485 , xa ∈ [0, 1.0485],

0.0485 xa−2L
1.0485−2L , xa ∈ [1.0485, 2L].

(6.2.7)

Summarizing, the data for the identification problem is given by: the constitutive
equation (6.2.1), the constitutive parameter k, Ωa = [0, 2L], fa (with its application point
xfaa ), Ωb = [0, 2L], and fb (with its application point xfbb ). Additionally, the target RRD
field for the identification problem is the constant field F r = 1.01. As consequence, the
associated fields Sr, v = vfa and u = vfb are also defined as targets.

6.2.3 Optimization problem setting

For the numerical approximation we employ linear finite elements for the displace-
ment field and for the Lagrange multiplier. Then, in this discrete setting, constant RRDs
within each element are considered. The spatial discretization is performed in the Ωa

configuration using only two finite elements, considering three nodes: two located at both
ends (constrained due to the boundary conditions), and one placed at the load application
point P .

The gradient descent method described by Algorithm 3 (see Section 5.4.1) is used.
The functional gradient is computed through the sensitivity analysis approach introduced
in Section 5.5, which is here particularized for the presented kinematic setting. The initial
guess is set as F̃ ra |Ωa = 1, the tolerance for the convergence criterion is tolj = 10−3, and
the parameters controlling the update at each iteration are γ = 10−7, ∆MAX = 10−2 and
ϑ = 0. Also, the weighting factors have been set to ηm = 1 and ηb = 100. This choice
is made considering that with the proposed initial condition any material configuration
will be at equilibrium, and, as consequence, at such point the algorithm should be mainly
driven by the mechanical imbalance occurring in Ωb configuration.
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Preload problem

As stated in Section 5.5.1, equation (5.5.4) leads to a preload problem, for which the
detailed expression is provided by equation (5.5.9). Let us consider the basis BV = φi, i =
1, 2, 3 for the space Vha approximating Va, where φi(xa), i = 1, 2, 3 are the finite element
shape functions for the three node discretization proposed.

Then, the preload problem can be particularized for the presented 1D kinematics as
follows: Given the equilibrium configuration Ωa, the applied force fa, and an estimate of
the RD field, say F̃ ra , find v̌a ∈ Va ≡ Um such that

∫

Ωa

k
(
F v̌a F̃

r
a − 1

)
F v̌a F̃

r
a

∂v̂a
∂xa

dΩa = fav̂a (L+ vm (L)) ∀v̂a ∈ Vha . (6.2.8)

Hence, considering the following derivation

〈
∂
(
F v̌a F̃

r
a − 1

)
F v̌a F̃

r
a

∂v̌a
, δv̌a

〉
=
[
2
(
F v̌ra

)2
F v̌ − F v̌aF v̌ra

] ∂δv̌a
∂xa

, (6.2.9)

the consistent linearized problem now reads: Given Ωa, fa, F̃ ra and v̌a (displacement value
for the previous Newton-Raphson iteration, index omitted) find δv̌a such that

∫

Ωa

k
[
2
(
F v̌ra

)2
F v̌ − F v̌aF v̌ra

] ∂δv̌a
∂xa

∂v̂a
∂xa

dΩa =

∫

Ωa

k
(
F v̌a F̃

r
a − 1

)
F v̌a F̃

r
a

∂v̂a
∂xa

dΩa − fav̂a (L+ vm (L)) ∀v̂a ∈ Vha . (6.2.10)

Adjoint problem

Similarly, for the presented 1D kinematics, the adjoint problem introduced by equa-
tion (5.5.13) can be written as: Given F̃ ra , fa, v̌a, Ω̃m and Ωa, find χadj such that

3∑

i=1

ηm

[∫

Ωa

(〈
∂σra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

(F̃ v̌)−1 − σra
∂v̂a
∂xa

)
∂φi
∂xa

dΩa

]
Rim
∣∣
F̃ ra ,v̌a

+

3∑

i=1

ηb

[∫

Ωa

〈
∂σ

(ṽ+wa)r
a

∂v∗a
, v̂a

〉∣∣∣∣∣
v̌a

(
1 +

∂w

∂xa

)
∂φi
∂xa

dΩa

]
Rib
∣∣
F̃ ra ,v̌a

+

+

∫

Ωa

〈
∂σṽra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

∂χadj

∂xa
dΩa = 0 ∀v̂a ∈ Va. (6.2.11)

Note that the particularized expressions for the residuals associated to Ωm and Ωb config-
urations are given by

Rim
∣∣
F̃ ra ,v̌a

= 〈Rm
(
F̃ ra , v̌a

)
, φi〉 =
∫

Ωa

k
(
F̃ ra − 1

)(
1− ∂v̌a

∂xa

)
∂φi
∂xa

dΩa i = 1, 2, 3, (6.2.12)

Rib
∣∣
F̃ ra ,v̌a

= 〈Rb
(
F̃ ra , v̌a

)
, φi〉 =

∫

Ωa

k
(
F̃ (v̌+w)r
a − 1

)(
1 +

∂wa
∂xa

)
∂φi
∂xa

dΩa − fbφi (xpa) i = 1, 2, 3. (6.2.13)
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where F̃ (v̌+w)r = F̃ (v̌+w)F̃ ra is the deformation tensor related to the displacement (v̌a+wa)
combined with the residual deformation F̃ ra . The derivatives of the Cauchy stress for this
1D setting read 〈

∂σra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

= k
(
F̃ ra − 1

)
F̃ v̌

∂v̂a
∂xa

F v̌r, (6.2.14)

〈
∂σṽra
∂v∗a

, v̂a

〉∣∣∣∣
v̌a

= k
(

2F̃ v̌ra − 1
)
F̃ v̌a

∂v̂a
∂xa

F̃ v̌ra , (6.2.15)

〈
∂σ

(ṽ+w)r
a

∂v∗a
, v̂a

〉∣∣∣∣∣
v̌a

= k
(

2F̃ (v̌+w)r
a − 1

)
F̃ v̌a

∂v̂a
∂xa

F̃ v̌ra . (6.2.16)

Sensitivity evaluation and update of F̃ ra

Once v̌a is obtained by iterative solving equation (6.2.8) through the linear form
(6.2.10), and after computing χadj from (6.2.11), it is possible to evaluate the sensitivity
of the Lagrangian with respect to changes in F̃ ra . Particularly, as we are using piece-wise
constant approximation for this RRD field, we are interested in the sensitivity of the
functional with respect to local changes in each element. For the following developments
we will denote as Ωe

a and F̃ ra,e the corresponding element values.
Recalling equation (5.5.19), the form of the sensitivity for the present problem reads

〈
∂L
∂F̃ r,∗a

, F̂ ra

〉∣∣∣∣
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=
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k
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)
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dΩa

+
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(

2F̃ ra F̃
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)
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(
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)
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∂xa

dΩa

)
Rim
∣∣
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+
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)
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(
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)
∂φi
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dΩa
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Rib
∣∣
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(6.2.17)

where F̃ v̌a is the deformation tensor arising due to the displacement field v̌a and F̃
(v̌+w)r
a the

corresponding to the displacement field (v̌a +wa) combined with the residual deformation
tensor F̃ ra .

In particular, for changes at element level, it is

〈
∂L
∂F̃ r,∗a

, F̂ r,ea

〉∣∣∣∣
ṽa,χadj

= F̂ r,ea |Ωe
a| k

(
2F̃ v̌r,ea F̃ v̌,ea − F̃ v̌,ea

) ∂χadj

∂xa

+ F̂ r,ea
∑
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ηm |Ωe
a| k

(
2F̃ r,ea F̃ v̌r,ea − F̃ v̌,ea

)(
1− ∂va

∂xa

)
∂φil
∂xa
〈Rm, φil〉

+ F̂ r,ea
∑

i=1,2

ηb |Ωe
a| k

(
2F̃ (v̌+w)r,e

a F̃ v̌r,ea − F̃ v̌,ea
)(

1 +
∂wa
∂xa

)
∂φil
∂xa
〈Rb, φil〉, (6.2.18)

where |Ωe
a| stands for the element size, and φil, i = 1, 2 for the local shape functions

associated with the finite element (one for each node).
For this example the weighting factors have been set to ηm = 1 and ηb = 100.

This choice is made considering that with the proposed initial condition any material
configuration will be at equilibrium, and, as consequence, at such point the algorithm
should be mainly driven by the imbalance of Ωb configuration. The parameters controlling
the optimization process are ∆MAX = 10−2, γ = 10−7 and tolj = 10−3.
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6.2.3.1 Results

Figure 6.2 summarizes the results. In Figure 6.2(a), the behavior of the descending
algorithm through the minimization of the cost functional is shown. In Figure 6.2(b) it is
clearly observed that the material configuration is recovered when convergence is achieved.
Finally, Figure 6.2(c) displays the convergence of the RRD values for both finite elements.

The results of this basic example show the viability and potentiality of the proposed
mechanical setting for the estimation of RRDs (and the corresponding RSs) along with the
zero-load (material) configuration.
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(a) Minimization of cost functional F and
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clude weighting factors ηm = 1 and ηb = 100.
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Figure 6.2: Clamped bar example: results summary for the RRD characterization problem
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6.3 Thick-walled cylinder

6.3.1 Problem description

In this example the identification of RRDs is performed in an homogeneous thick-
walled cylinder subjected to uniform internal pressure. Considering such conditions, the
problem possess rotational symmetry. As in the previous example, a complete setting
will be manufactured from a known material configuration at equilibrium with a known
RS field (originated by predefined RRDs), resulting in three known configurations Ωa,Ω

1
b

and Ω2
b at equilibrium with corresponding inner pressures pa, p1

b and p2
b as dictated by the

mechanical equilibrium problem. Next, considering Ωa,Ω
1
b ,Ω

2
b and w1,w2 given as input

data, the RRD identification problem is addressed.
The spatial discretization comprises 1D linear finite elements shape functions to span

the space for the radial displacement field. Then, piece-wise constant RRDs are considered
within each finite element.

6.3.2 Rotational symmetry kinematics

Consider a cylindrical material configuration, with points defined by

xm = (ρm, θm, zm) , (6.3.1)

where as usual, ρm denotes the radial coordinate, θm the angular coordinate, and zm the
axial coordinate. Considering the rotational symmetry, shear stresses and the tangential
component of the displacement field must be null. Moreover, we also consider a pipe of
fixed length and constant strains in the axial direction. Thence, the space kinematically
admissible displacements is given by

Um = {u = (uρ, 0, 0) | uρ ∈ Uρm} , (6.3.2)

with

Uρm =

{
uρ ∈ H1(Ωm) | ∂u

ρ

∂θm

∣∣∣∣
Ωm

=
∂uρ

∂zm

∣∣∣∣
Ωm

= 0

}
. (6.3.3)

Furthermore, for an element u ∈ Um its gradient takes the following form

∇mu =




∂uρ

∂ρm
0 0

0 uρ

ρm
0

0 0 0


 . (6.3.4)

6.3.3 Model parameters

For this example we define the material configuration through the inner and external
radii ri = 5.6mm and re = 7mm, respectively. An homogeneous compressible Neo-
Hookean material is considered, for which the strain energy function is given by

Ψ = C1

(
I1 − 3

)
+ kvol (J − 1)2 , (6.3.5)

where I1 = J−2/3tr (C) , J = det F are invariants of the deformation gradient tensor, and
C1 and kvol represent shear and bulk material parameters, respectively. In this example,
the constitutive parameters are set to C1 = 15 kPa (inspired by the values for the media
layer presented in (Holzapfel and Ogden, 2010a)) and kvol = 1490 kPa, (corresponding to
a Poisson coefficient ν = 0.49) while the pressures acting at known spatial configurations
Ωa, Ω1

b and Ω2
b are considered to be pa = 1 kPa, p1

b = 2 kPa and p2
b = 3 kPa, respectively.
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6.3.4 Residual stresses

Due to rotational symmetry, any compatible RS field defined in the cylinder presents
two characteristics, (a) null shear stresses, and (b) the stress field is only function of the
radial coordinate. As a consequence, the RS field can be expressed as

σrm (ρm) =



σrm,ρ (ρm) 0 0

0 σrm,θ (ρm) 0

0 0 σrm,z (ρm)


 . (6.3.6)

The associated Euler-Lagrange equation that expresses the mechanical equilibrium in the
material configuration (derived from (5.2.10)) reads

∂σrm,ρ
∂ρm

+
1

ρm

(
σrm,ρ − σrm,θ

)
= 0, ρm ∈ (ri, re) (6.3.7)

that has to be satisfied in Ωm along with the homogeneous Neumann boundary conditions
σrm,ρ (ri) = σrm,ρ (re) = 0. Note that, as expressed before, the equilibrium is independent
from σrm,z.

For this problem we postulate a linear relation between the circumferential residual
stress and the radius, i.e. σrm,θ = aρm + b. Thus, to satisfy equation (6.3.6), σrm,ρ takes the
following form

σrm,ρ =
a

2
ρm + b+

c

ρm
, (6.3.8)

with
c =

a

2
reri, b = −a

2
(re + ri) . (6.3.9)

Observe that the complete residual stress can be defined by setting only one parameter, in
this case a = −4 · 107.

6.3.5 Residual deformations: Internal Power Approximation (IPA)

Observe that the adopted RS and the associated RRDs are not piece-wise constant
fields (as occurred in the previous example). Since the approximation of such fields is
performed using element-wise constant functions (consistent with the interpolation for de-
formation and stress fields, when linear finite elements are considered for the approximation
of the displacement field), it is expected that our variational framework will not be able to
provide an exact identification of the above fields.

The proposed cost functional is based on the residuals of the equilibrium equa-
tions. These equations are expressed through the Virtual Power Principle, i.e. the balance
between internal and external virtual powers. Taking into account that the RRD field
(through its associated RS field) only takes part in the internal power definition, it is
natural to expect that our methodology, which at the discrete level considers element-wise
constant RRD fields, will retrieve an element-wise constant field that will exert an internal
power equivalent to the one exerted by the proposed nonlinear continuous RRD field, that
is, for each elemental domain is satisfied the following equation

∫

Ωem

σrm(Fr
m) · ∇smv̂i dΩe

m = σr,em (Fr,e
m ) ·

∫

Ωem

∇smv̂i dΩe
m ∀v̂i ∈ Vm, (6.3.10)

where Ωe
m denotes de finite element domain and σr,em the constant RS field induced by the

constant RRDs Fr,e
m in such domain.

Note that these constraints are defined for each function basis of Vm. Moreover,
in order to obtain a solution of this equation, the same number of test functions v̂i as
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non-zero values in σrm are needed. For this case, only two test functions are necessary.
Hence, linear finite element functions associated with each element are considered for this
purpose, leading to

∫ re

ri

(
σrm,ρ(F

r
m)
∂ψim
∂ρm

+ σrm,θ(F
r
m)
ψim
ρm

)
ρmdρm =

σr,em,ρ(F
r,e
m )

∫ re

ri

∂ψim
∂ρm

ρmdρm + σr,em,θ(F
r,e
m )

∫ re

ri

ψim
ρm

ρmdρm i = 1, 2, (6.3.11)

where ψim represents the local finite element functions associated with the finite element
nodes.

As next step, we recall that, for a hyperelastic material, the Cauchy stress tensor
due to Fr,e

m deformations is obtained as

σr,em =
1

J
Fr,e
m

(
∂Ψ

∂Cr,e

)

m

(Fr,e
m )T , (6.3.12)

where Cr,e = (Fr,e
m )TFr,e

m , J = det Fr,e
m and Ψ denotes the strain energy function character-

izing the material behavior, in this case given by (6.3.5). For this particular case, (6.3.12)
can be written as

σr,em =
2

J
C1 (Cr,e)T − 2

3J
C1I1I + 2kvol (J − 1) I. (6.3.13)

Then, to define the piece-wise constant RRDs Fr,e
m , we propose a diagonal form for

the tensor,

Fr(ρm) =




λρ(ρm) 0 0
0 λθ(ρm) 0
0 0 λz(ρm)


 , (6.3.14)

where λi, i = ρ, θ, z are the principal stretches. Also, the RRDs are considered to be
incompressible, adding the following constraint

det Fr,e
m = 1. (6.3.15)

Finally, considering equations (6.3.11), (6.3.13) and the incompressibility constraint,
the RRD tensor is determined from the following nonlinear system of equations





σr,em,ρ =
(

2
JC1 (Cr,e)T − 2

3JC1I1I + 2kvol (J − 1) I
)
ρρ
,

σr,em,θ =
(

2
JC1 (Cr,e)T − 2

3JC1I1I + 2kvol (J − 1) I
)
θθ
,

det Fr,e
m = 1.

(6.3.16)

Hereafter, the described element-wise constant field will be referred to as the Internal
Power Approximation (IPA) of the corresponding RRD field. In particular, Figure 6.3
displays the continuous fields and the IPA obtained for a discretization with 8 equally-sized
finite elements. As will be demonstrated through the numerical experiments, our proposed
variational framework accurately identifies such approximations.

As a final remark, there are techniques available to obtain better approximations of
the real target fields based on the constant piece-wise solution. As a simple example, a
nodal field can be defined as the mean value of the reported for the associated elements.
These techniques are extensively used for computation of stresses using finite elements, for
more details see Zienkiewicz and Taylor (1989).
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Figure 6.3: Thick-walled cylinder example: objective residual deformations and stresses



6.3. Thick-walled cylinder 119

6.3.5.1 Manufactured solution

The mechanical equilibrium problem is solved for different values of internal pressure
to obtain the known equilibrium configurations Ωa, Ω1

b and Ω2
b . The linearization of this

problem is performed following the ideas presented in Blanco et al (2015). Observe that
since the gradient operators (e.g. ∇m) depend on ρ, associated quantities (e.g. stresses,
deformation gradient tensors) are not uniform within each element.

In this example, three different spatial discretizations are explored, using 2, 4 and 8
equally-sized finite elements in the radial directions. The spatial integration is performed
using a Gaussian quadrature with 4 Gauss-points.

Figure 6.4(c) displays a representative scheme of the problem, highlighting geomet-
rical landmarks (inner and external radii) for the involved configurations. In this context,
Figure 6.4(a) shows the radial displacement fields w1

m and w2
m mapping Ωa into Ω1

b and
Ω2
b for an 8 finite elements discretization. Additionally, Figure 6.4(b) shows the displace-

ment fields obtained for a fixed internal pressure p = 1 kPa. These figures illustrate the
convergence of the finite element method.
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Figure 6.4: Thick-walled cylinder example: results for the mechanical problem
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6.3.6 Optimization problem setting

For this problem we make use of the implementation of the interior-point algorithm
introduced in Section 5.4.2 available in the MATLAB Optimization Toolbox through the
function fmincon. For the configuration options we considered:

• AlwaysHonorConstraints set to none (constraints are not satisfied at each iteration),

• GradObj set to off (gradient is computed using finite differences),

• Hessian set to bfgs (Hessian is updated with a BFGS algorithm),

• InitTrustRegionRadius set to 40 (εT = 40, see equation (5.4.27)),

• TolCon set to 10−12 (tolj = 10−12, see Algorithm 4),

• TolFun set to 10−8 (tolg = tolh = 10−8, see Algorithm 4),

• MaxFunEvals set to 106 (maximum number of function evaluations), and

• MaxIter set to 105 (maximum number of optimization iterations).

The rest of the options are taken by default. As a constraint, a functional depending on
the determinant fo the residual deformation at each element is incorporated, assuming the
form

C =
∑

e

(detFr,e
m − 1). (6.3.17)

Note that, in this manner the incompressibility of the RRD field is enforced. This
fact also contributes to reduce the number of possible solutions for the problem and,
consequently, the chances that the optimization process will lead to a local minimum.

For the setting of the initial conditions we consider Fr
a = I for the discretization

containing 2 finite elements. Once the solution for this case is achieved, the result is
employed as an initial condition for the refined mesh containing 4 finite elements. We
proceed this way with successive refinements.

Three stages of optimization are used, using a different set of weighting factors each
time; for the second and third optimization stages initial conditions are taken from the
previous run. For the first optimization routine, weights are set as η1

b , η
2
b = 100 and

ηm = 0.1, emphasizing the influence of the residuals corresponding to the equilibrium in
Ω1
b and Ω2

b . For the second stage weighting factors are η1
b , η

2
b = 1 and ηm = 0.1. Finally,

η1
b = η2

b = ηm = 1 is considered for the third stage.
We considered 4 Gauss points for the spatial integration required in the evaluation

of the cost functional.

6.3.7 Results

Figure 6.5 evidences the suitability of the proposed algorithm for the minimization
of the cost functional, presenting the convergence of the cost functional F for the three
proposed spatial discretizations. The displayed values for the functionals are corresponding
to normalized weights η1

b = η2
b = ηm = 1 in order to track to progression of the minimization

process considering the three optimization cycles. The minima achieved for each case are
F2 = 5.8 · 10−3, F4 = 1.51 · 10−2 and F8 = 5.83 · 10−1, where superscript indicate the
number of elements of the discretization for the corresponding functional. The initial large
values for the functionals can be explained by the rapid increase of the Ωm component due
to the initial weight values. Furthermore, for the 2 finite elements discretization, the initial
condition implies that this component is initially null and any perturbation will inevitably
produce a raise of its value.
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Figure 6.5: Thick-walled cylinder example: minimization process showing functional value for the
three optimization stages. Functional values are corresponding to normalized weights η1b = η2b =

ηm = 1.
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Figure 6.6 presents the results of the obtained RSs for each case, displaying a com-
parison between the results and their corresponding objective values. Similarly, Figure
6.7 presents the identified RRD fields. Table 6.1 summarizes the results for this problem,
showing the discrepancy between the obtained results and target solutions. Here, eσ in-
dicates the relative discrepancy in RSs and eFr the corresponding relative discrepancy in
RRDs measured in the L2 norm. Additionally, eFσ and eFFr denote the discrepancy between
the obtained results and the IPA of the target RRD for each different discretization (see
Section 6.3.4). Similarly, eFv measures in the L2 norm the relative discrepancy between the
obtained radial displacement field v (mapping from Ωm into Ωa) and the corresponding
field obtained through the mechanical equilibrium problem when RRDs are given by the
IPA of the target RRD. Finally, the minimum value achieved for the functional F and the
number of iterations are displayed.
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Figure 6.6: Thick-walled cylinder example: residual stresses for different discretizations. Comparison between obtained results (dashed) and values corresponding
to the IPA of the target RRD field (solid).
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Figure 6.7: Thick-walled cylinder example: principal stretches characterizing the RRDs for different discretizations. Comparison between obtained results (dashed)
and the IPA of the target RRD field (solid).
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Result overview: discrepancies with target fields.

Elements eσ eFσ eFr eFFr eFv F Iterations

2 4.99·10−1 1.95·10−3 1.02·10−1 2.66·10−4 6.41·10−4 5.76·10−3 92
4 2.49·10−1 3.24·10−3 5.11·10−2 3.64·10−4 4.18·10−3 1.51·10−2 240
8 1.85·10−1 8.39·10−2 2.77·10−2 8.39·10−3 2.52·10−1 5.83·10−1 502

Table 6.1: Thick-walled cylinder example: identification error summary.

It can be observed that the proposed methodology is able to adequately characterize
the mechanical setting making possible the identification of RRDs. For the obtained RRD
field, the relative error encountered is below 1% in all cases, when compared with the IPA
of the target RRD.

It is worthwhile to remark that, although the accuracy in the estimation of the values
at the element level decreases (see discrepancies with fields corresponding to the IPA of
the target field) when the number of variables characterizing the fields is incremented, the
increasing number of elements in the spatial discretization leads to a better identification
of the continuous target fields.

One strategy to circumvent the ill-conditioning of the problem as the number of un-
knowns increases is to replace the element-wise unknown approach with predefined whole-
domain functions, with small number of parameters, which will be used to minimize the
cost functional. Such approach would bound the number of unknowns as the finite element
mesh becomes finer. Note that the use of this type of functions could also contribute to
obtain more accurate approximations for the initially proposed continuous RS field with a
reduced number of variables. This issue is beyond the scope of the present work and is a
matter of current investigation.

6.4 Three-layered arterial wall

6.4.1 Problem description

In this example, RRDs in the case of a vessel resembling the setting of the arterial wall
of an abdominal aorta, are characterized. For modeling purposes, we consider the arterial
wall to be a cylindrical tube, consisting of three-layers of uniform thickness, the intima, the
media and the adventitia. Moreover, the material in each layer features uniform properties
and is assumed to behave according to the constitutive equation proposed in Holzapfel and
Gasser (2000) (presented in Section 3.6.1). For this example, a quasi-incompressible arterial
wall response is considered, and the cited constitutive equation is modified accordingly,
yielding

Ψ =
celast

2
(I1 − 3) +

k1

2k2

∑

i=4,6

δi

{
ek2(Ii−λ0

i )
2 − 1

}
+ kvol(J − 1)2. (6.4.1)

In this context, kvol is the bulk modulus, J = detFm and Fm = FmJ
−1/3 is the isochoric

deformation tensor. Associated to this deformation we have Cm = F
T
mFm and the isochoric

invariants
I1 = I ·Cm, Ii = Cm · (ai ⊗ ai), i = 4, 6. (6.4.2)

It is worthwhile to mention that recruitment stretches λ0
i are defined in such a way

that in the material configuration collagen fibers store null energy, i.e.

λ0
i = C

r
m · (ai ⊗ ai), C

r
m = F

r
m(F

r
m)T . (6.4.3)
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This fact implies that the collagen load bearing starts when the vessel is inflated beyond
the null pressure level and they have no influence in the residual stress state induced by
residual deformations. This is motivated by the remodeling process experienced by the
collagen (Humphrey, 1999) (through continuous degradation and synthesis), enabling the
adoption of different configurations of the fibers and avoiding residual deformations.

Four scenarios are analyzed, where Ωa is considered to be the solution of the forward
problem obtained for an internal pressure pa = 6 kPa. In addition to this known Ωa

configuration, we explore different scenarios, each of which is regarded with a different
number of additional known configurations according to the following

(a) 1 additional configuration (at equilibrium with p = 14 kPa),

(b) 2 additional configurations (at equilibrium with p = 8/14 kPa),

(c) 3 additional configurations (at equilibrium with p = 8/10/14 kPa),

(d) 4 additional configurations (at equilibrium with p = 8/10/12/14 kPa).

These scenarios are proposed to evaluate the capabilities of the identification problem
to deliver the correct RRDs as the amount of input data is increased.

6.4.2 Kinematic setting

The kinematic setting for this problem is the same to the presented for the Neo-
Hookean cylinder introduced in Section 6.3.2.

6.4.3 Model parameters and residual deformations

Based on experimental measurements for each individual layer (experimental data
available in Holzapfel et al (2007)), Holzapfel and Ogden (2010a) propose a methodology to
define a field of RRDs (here denoted Fexp

m ). In this work, an idealized cylindrical geometry
for the material configuration and an incompressible Neo-Hookean material are considered.
This RRD field is expressed in terms of the principal stretches λζ , ζ ∈ (ρ, θ, z), adopting
the following forms for each of the corresponding layers

Fexp,(I)
m (ρ) =




λ
(I)
ρ (ρ) 0 0

0 λ
(I)
θ (ρ) 0

0 0 λ
(I)
z (ρ)


 ,

Fexp,(M)
m (ρ) =



−λ(M)

ρ (ρ) 0 0

0 0 λ
(M)
θ (ρ)

0 λ
(M)
z (ρ) 0


 ,

Fexp,(A)
m (ρ) =




λ
(A)
ρ (ρ) 0 0

0 λ
(A)
θ (ρ) 0

0 0 λ
(A)
z (ρ)


 , (6.4.4)

where superscripts (I), (M), (A) indicate that the field corresponds to the intima, media or
adventitia layer, respectively. Considering the setting presented in Figure 6.8, Holzapfel
and Ogden (2010a) calculated the principal stretches using the mechanical equilibrium
equation of the material domain, resulting in functions of geometrical parameters charac-
terizing the excised and separated layers (A(I), B(I), L(I), k(I)(α(I)), A(M), B(M), L(M),
k(M)(α(M)), L(A)

1 , L(A)
2 , L(A)

3 ) and the intact (i.e. before excising and separating the mate-
rial layers) material configuration (a(I), b(I), l, βc, lm, a(M), b(M), a(A), b(A)). As previously
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mentioned, the set of geometrical parameters was obtained from experimental data. Two
of the parameters corresponding to the material configuration are given (in this example
a(I) and b(I)), and the remaining are computed through the incorporation of equations
corresponding to the interface matching between layers and to the continuity of radial
stresses. Therefore, the principal stretches take the following form

λ(I)
ρ (ρ) =

L(I)

ρk(I)l

[
(A(I))2 + k(I) l

L(I)

(
(ρ)2 − (ai)2

)]1/2

,

λ(M)
ρ (ρ) =

L(M)π

ρβcl(M)k(M)

[
(A(M))2 +

βcl
(M)k(M)

L(M)π

(
(b(M))2 − (ρ)2

)]1/2

,

λ(A)
ρ (ρ) =

L
(A)
2 L

(A)
3

πρl
,

λ
(I)
θ (ρ) =

ρk(I)

[
(A(I))2 + k(I) l

L(I) ((ρ)2 − (ai)2)
]1/2

,

λ
(M)
θ (ρ) =

r(M)βc

L(M)
,

λ
(A)
θ (ρ) =

πρ

L
(A)
2

,

λ(I)
z (ρ) =

l

L(I)
,

λ(M)
z (ρ) =

l(M)k(M)

π
[
(A(M))2 + βcl(M)k(M)

L(M)π

(
(b(M))2 − (ρ)2

)]1/2
,

λ(A)
z (ρ) =

l

L
(A)
3

. (6.4.5)

Note that the dependence of these stretches with respect to the Neo-Hookean stiffness
parameters for each layer c(I),c(M) and c(A) is contained in the definition of βc. The
geometric parameters used for this example were extracted from Holzapfel and Ogden
(2010a) and are summarized in Table 6.2. Figure 6.9 displays the resulting principal
stretches λζ , ζ ∈ (ρ, θ, z) and the associated RSs.

Intima Media Adventitia

A(I) = 7.50 mm A(M) = 8.41 mm L
(A)
1 = 0.205 mm

B(I) = 7.76 mm B(M) = 9.99 mm L
(A)
2 = 18.3 mm

L(I) = 2.58 mm L(M) = 2.52 mm L
(A)
3 = 2.29 mm

k(I) = 1.19 k(M) = 1.19

a(I) = 5.61 mm a(M) = 5.91 mm a(A) = 6.72 mm
b(I) = 5.91 mm b(M) = 6.72 mm b(A) = 7.05 mm

l(M) = 4.80 mm

Common parameters

βc = 0.58 l = 2.48 mm

Table 6.2: Summary of geometrical parameters employed for the three-layered vessel wall

The material parameters characterizing the isotropic term of the strain energy func-
tion are taken from the same bibliographic reference, as c(I)

elast = 39.8 kPa c(M)
elast = 31.4 kPa,

and c
(A)
elast = 17.3 kPa, where superscripts I,M,A indicate that the field corresponds to

the intima, media or adventitia layer, respectively. The bulk moduli are considered as
k

(I)
vol = 484.23 kPa, k(M)

vol = 382.03 kPa, and k
(A)
vol = 210.48 kPa, consistent with a Poisson
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Figure 6.8: Coordinate system and related geometries for the individual layers (intima, media,
adventitia) in their virtual (left) and the intact material configurations (right). Figure adapted
from Holzapfel and Ogden (2010a)
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(b) Residual stress field.

Figure 6.9: Principal stretches shaping the residual deformation field and the associated residual
stresses through the wall radius as introduced in Holzapfel and Ogden (2010a).

modulus of ν = 0.49 is considered only the stiffness of the isotropic contribution. Material
parameters characterizing the collagen behavior are taken from Weisbecker et al (2012)
and are k(I)

1 = 10.1MPa, k(M)
1 = 0.81MPa, k(A)

1 = 0.38MPa, k(I)
2 = 0.01, k(M)

2 = 12.4 and
k

(A)
2 = 3.35. Two collagen fiber families are considered, oriented with angles of β(I) = 40.5◦,
β(M) = 39.1◦, and β(A) = 40.6◦ with respect to the azimuthal axis. Table 6.3 summarizes
the information regarding the material parameter setting for this example.

Material parameter Intima Media Adventitia

Thickness [mm] 0.30 0.81 0.32
celast [kPa] 39.8 31.4 17.3
kvol [102 kPa] 4.84 3.82 2.10
k1[MPa] 10.1 0.81 0.98

k2 0.01 12.4 3.35
β [◦] 40.5 39.1 40.6

Table 6.3: Summary of material parameters for three-layered wall example

We employ different finite element discretizations, and, in every case, we approximate
the RRD field with a piece-wise constant field. As in the previous example, our methodol-
ogy is expected to find the IPA of the RRD field provided in Holzapfel and Ogden (2010a).

Figure 6.10 shows the IPAs of the RRD field corresponding to two different dis-
cretizations. The first one consisting in 1 finite element per layer (3 elements total), and
the second one with 2, 4 and 2 finite elements for the intima, media and adventitia layers,
respectively. These fields are compared with the RRDs given in Holzapfel and Ogden
(2010a). Additionally, Figure 6.11 displays the RS fields related to the RRDs.
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Figure 6.10: Principal stretches shaping the IPA of the target RRD field using element-wise constant RRDs for the 3 and 8 finite elements discretizations.
Comparison with target RRDs proposed in Holzapfel and Ogden (2010a).
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(c) Axial RS field.

Figure 6.11: RS fields associated with the IPA of the target RRD for the 3 and 8 finite element discretizations. Comparison with the RS field proposed in
Holzapfel and Ogden (2010a).
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6.4.4 Manufactured solution

With the material configuration and RRDs already defined, the mechanical problem
is solved for different levels of inner pressure. This is done for the two proposed discretiza-
tions.

Figure 6.12(c) displays a representative scheme of the problem, while Table 6.4
presents the geometrical landmarks for the involved configurations in scenario (d). Figure
6.12(a) shows the radial displacement fields wjm for each of the four additional known config-
urations proposed in scenario (d), while Figure 6.12(b) shows the radial displacement field
obtained for an inner pressure p = 6 kPa for the 3 and 8 finite elements approximations.
The numerical integration is performed using 4 Gauss points.
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(a) Radial displacement fields wjm mapping Ωa into
Ωjb (for the set of known configurations proposed in
scenario (d)) for the 8 finite element discretization.
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Figure 6.12: Three-layered aorta: Numerical solution of the forward mechanical problem.

6.4.5 Optimization problem setting

For the 3 finite elements discretization the initial condition is set as Fe,m = I. Next,
the solution obtained for this case is given as initial condition for the discretization with 8
finite elements. The options setting for the MATLAB fmincon function is identical to the
presented in Section 6.3.6.

Three stages of optimization are used, using a different set of weighting factors
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Three-layered aorta: geometrical landmarks of manufactured solution for scenario (d)

Configuration Pressure [kPa] Inner radius [mm] Intima thickness Media thickness Adv. thickness

Ωm 0 5.61 0.301 0.812 0.324
Ωa 6 6.00 0.282 0.774 0.335

Ω1
b 8 5.66 0.299 0.809 0.323

Ω2
b 10 5.71 0.297 0.806 0.324

Ω3
b 12 5.75 0.295 0.803 0.326

Ω4
b 16 5.81 0.292 0.799 0.328

Table 6.4: Three-layered aorta example: geometrical landmarks.

each time; for the second and third optimization stages, the initial condition is the result
obtained in the previous run. For the 3 finite elements discretization the following weights
are used: ηm = 0.01, ηb,j = 10 for the first stage, ηm = 10, ηb,j = 0.1 for the second stage,
and ηm = 1, ηb,j = 100 for the third stage. Note that j = 1, . . . , NB, with NB representing
the number of known configurations -additional to Ωa- (see list of scenarios in Section
6.4.1) for the corresponding case.

This set of weighting parameters was defined based on the functional values achieved
through the minimization process. It is important to remark that the chosen initial con-
dition leads to a null initial value for the generalized residual of the mechanical problem
in Ωm, then, the contributions of the residuals in the remaining configurations drive the
minimization process.

For the 8 finite elements discretization the weights are defined as follows, ηm =
1, ηb,j = 1 for the first stage, ηm = 10, ηb,j = 10 for the second stage, and ηm = 1, ηb,j = 1
for the third stage.

As a constraint, a functional depending on the determinant of the RRD for each
element is considered. This constraint is expressed as

C =
∑

e

(detFr,e
m − 1)2 < $, (6.4.6)

with $ = 0.01.
The integration required for the numerical computation of the preload problem and

the evaluation of generalized residuals is performed using 4 Gauss points in each element.

6.4.6 Results

Results for the 3 finite elements discretization

An overview of the results for the four proposed scenarios is presented in Table 6.5,
where the identification errors are summarized. Here, the number of functional evaluations
for each scenario and the value achieved for the cost functional F (normalized with ηb,j =
ηm = 1) are shown. Like in the previous example, error measures for the RRDs, RSs and
displacement fields are presented.

Result overview: Three-layered wall example (3 finite elements)

Scenario eσ eFσ eFr eFFr eFv F Iterations

(a) 6.08·10−1 5.77·10−1 2.18·10−1 2.05·10−1 4.28·10−2 9.35·10−1 165
(b) 4.88·10−1 4.57·10−1 1.73·10−1 1.56·10−1 8.07·10−4 4.02·10−1 337
(c) 4.22·10−1 3.84·10−1 1.39·10−1 1.21·10−1 3.85·10−3 4.49·10−1 221
(d) 1.68·10−1 1.64·10−3 4.21·10−2 4.53·10−4 4.25·10−5 5.70·10−2 583

Table 6.5: Three-layered aorta example: summary of results corresponding to the 3 finite elements
approximation. Values for the functional F are normalized using ηb,j = ηm = 1 (j = 1, . . . , NB).
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As can be seen in Table 6.5, the proposed methodology is capable of fully characterizing
the target RRD field and the associated RSs, with discrepancies up to 0.07% in RRDs,
0.004% in the displacement field values and 0.3% in the RSs, for scenario (d). Moreover,
with this simple discretization using only one finite element in each layer is obtained a
4.2% discrepancy with the RRD field reported in Holzapfel and Ogden (2010a).

The achieved functional values for the different scenarios reveal the existence of local
minima. Improvement of optimization algorithms to improve the minimization process
deserves further research and is out of the scope of the present manuscript. The information
provided by the additional known configurations enables the optimization algorithm to
reduce the value of the cost functional and of the discrepancies in the identification problem.
In other words, the mechanical setting is consistent in the sense that as we add more
data, the identification problem becomes better-conditioned and the objective solution
is ultimately found. This is fundamental, because no previous works had addressed the
questions risen in this work.

Figure 6.13 features a comparison between the obtained principal stretches, char-
acterizing the RRD state (see equation (6.4.4)), for the four proposed scenarios and the
objective values (corresponding to the IPA of the target RRD) for each case. From this
figure it can be noted that the most relevant discrepancies are primarily in the adventitia
layer deformations. This fact can be explained due to the lower stiffness of the material and
its reduced thickness when compared with the media layer, both facts leading to a smaller
contribution to the internal virtual power. As consequence, the proposed cost functional
is less sensitive to changes in the deformations affecting that layer. Additionally, Figure
6.14 presents a similar comparison for the obtained RS field. As it is natural, these results
reflect the discrepancies previously observed for the RRD field.

The identification with only two configurations (scenario (a)) could be considered
satisfactory depending upon the specific interest. In fact, observe that except for the
adventitia, the identification problem yields mechanically consistent RRDs fields. That is,
the local minima found by the algorithm are not only close to the solution, but they have
physical meaning.
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(c) Axial principal stretch.

Figure 6.13: Three-layered wall example: results for the three finite elements approximation. Residual deformations obtained as result of the optimization process
for the four proposed scenarios compared with the IPA of the objective field.
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Figure 6.14: Three-layered wall example: results for the three finite elements approximation. Residual stresses arising from the residual deformation field obtained
as result of the optimization process for the four proposed scenarios, compared with the RSs associated to the IPA of the RRDs.
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Results for the 8 finite elements discretization

As before, an overview of the results for the four proposed scenarios is presented in
Table 6.6, where the identification errors are summarized. Here, the number of functional
evaluations for each scenario and the value achieved for the functional F (normalized with
ηb,j = ηm = 1) are also shown. Furthermore, error measures for the RRDs, RSs and
displacement fields are presented. It can be clearly seen the impact of the amount of

Result overview: Three-layered wall example (8 finite elements)

Scenario eσ eFσ eFr eFFr eFv F Iterations

(a) 5.48·10−1 5.46·10−1 1.97·10−1 1.93·10−1 1.13·10−1 1.94·100 290
(b) 4.41·10−1 4.36·10−1 1.54·10−1 1.51·10−1 4.08·10−3 8.45·10−1 232
(c) 3.62·10−1 3.58·10−1 1.22·10−1 1.18·10−1 6.49·10−3 8.65·10−1 223
(d) 1.02·10−1 9.15·10−2 2.98·10−2 2.44·10−2 7.26·10−5 2.11·10−1 175

Table 6.6: Three-layered wall example: summary of results corresponding to the 8 finite elements
approximation. Values for the functional F are normalized using ηb,j = ηm = 1 (j = 1, . . . , NB).

available data in the ability of the minimization procedure to find the stationary point
close to the objective solution. In this case, the initial conditions were supplied by the
solutions obtained using 3 finite elements, correspondingly.

We highlight that the functional value shows a strong correlation with the quality of
the estimation of RRDs. The precision achieved for scenario (d) is excellent, identifying
the IPA of the target field with discrepancies of eFFr = 2.44 · 10−2, eFv = 7.26 · 10−5 and
eFσ = 9.15 · 10−2. The radial displacement v (which defines the material configuration)
presents excellent agreement with the objective field, with maximum relative discrepancies
up to approximately 11% for scenario (a), 0.4% for scenario (b), 0.6% for scenario (c) and
0.01% for scenario (d). The use of a finer discretization leads to an accuracy gain in the
representation of the target RRD and RS fields; the discrepancy in RSs decreased from
17% to 10% and the corresponding to RRDs from 4.2% to 3% when comparing achieved
results for the 3 and 8 elements discretizations.

Additionally, Figures 6.15 and 6.16 present the identified RRD and RS fields for the
four described scenarios. As observed for the 3 finite elements case, scenario (d) results
show an exceptional agreement with the IPA of the target RRD. In absolute terms, the
most relevant discrepancies are primarily in the adventitia layer deformations, in line with
the results described in the previous case with a smaller number of finite elements. Also,
in relative terms, the discrepancy in the radial deformations are particularly relevant for
scenarios (a), (b) and (c). This is due to the relatively low radial stress values and their
small influence in the contribution to the internal power.
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Figure 6.15: Three-layered wall example: results for the eight finite elements approximation. Residual deformations obtained as result of the optimization process
for the four proposed scenarios compared with the IPA of the objective field.
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Figure 6.16: Three-layered wall example: results for the eight finite elements approximation. Residual stresses arising from the residual deformation field obtained
as result of the optimization process for the four proposed scenarios, compared with the RSs associated to the IPA of the RRDs.
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6.5 Discussion

As described in Chapter 5, a novel variational framework was proposed for the in-vivo
characterization of RRDs in arterial walls. In this process, the load-free configuration of
that vessel is also obtained. The proposed approach relies on a cost functional which
measures the mechanical imbalance caused by an inconsistent RRD field. Then, the RRDs
characterization problem is transformed into the minimization problem of such functional.

The examples shown in this work highlight the suitability and consistency of this
novel approach, evidencing that the minimization of the proposed functional successfully
leads to the characterization of RRDs, obtaining excellent results for the three explored
cases. Moreover, in the first simple example, the sensitivity analysis detailed in Section
5.5 has also been validated. We emphasize that this methodology has proven to be able
to identify the objective fields inspired by experimental ex-vivo measures on real human
arterial vessels with great accuracy. This is encouraging, since these results suggest that
the present method (or variants based on the present ideas), when coupled with adequate
image acquisition techniques, could successfully result in the in-vivo identification of RRDs.

Observe that the proposed methodology could also be applicable to the estimation
of constitutive parameters. While such questions has been increasingly addressed in the
literature (Wittek et al, 2013; Bertagna et al, 2014) in the last years (using, however,
completely different approaches), the lack of contributions regarding the estimation of
RRDs motivated the subject of the present work.

As a matter of fact, although the proof-of-concept examples discussed are problems
with rotational symmetry, it is important to remark that the presented framework has
been developed in 3D space with no additional kinematic simplifications whatsoever. This
also constitutes a fundamental characteristic for its subsequent application in patient-
specific settings. On the one hand, this is noteworthy, because the proposed mechanical
formulation proved to be effective towards the formalization of the RRD identification
problem. This constitutes a step forward towards the development of truly realistic patient
specific models. On the other hand, it is also true that the proposed formulation requires
a large amount of input data for the successful identification of RRD. Nowadays, this
could be viewed as restrictive or excessively demanding. However, cutting-edge advances
in medical image acquisition systems together with interpolation techniques, which enable
to limit the number of unknown parameters as the number of finite elements is increased,
will definitely mitigate, and ultimately overcome, this limitation.

It is also important to note that the presented functional depends on weighting
factors ηm and ηjb , j = 1, . . . , NB. The criteria for the definition of such parameters
requires further analysis and is matter of future research. The values for these parameters
are problem dependent and must account for the “quality” of the reconstruction of the
related domains and displacement fields as well as for the impact of the different levels of
stresses and external loads involved in the equilibrium of each known configuration.

As a final remark, we state that it is not within the scope of this work the development
of novel optimization techniques for the minimization of the presented cost functional. In
this thesis the use of the optimization methods is limited to the finding of adequate solutions
for the listed set of problems.
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Conclusion

7.1 Integrative modeling framework

In this thesis, a variational framework for the analysis of the mechanical equilibrium
of arterial wall tissues and its interaction with the blood flow was presented and tested.
Within this framework, the forward and preload mechanical problems were formulated,
emphasizing that the equilibrium equations are identical and the difference between them
only relies on the known data. That is, for the forward and preload problems, it is assumed
that the material and the spatial configurations are respectively given. The definition
of such preload problem is necessary to realistically asses the mechanical regime of the
arterial wall. This is due to the fact that the geometrical information provided by image
acquisition devices corresponds to a loaded state of the vessel. Thence, solving this preload
problem allows us to obtain the material configuration of the arterial structure, where the
constitutive equations can effectively be defined. It is also worthwhile to mention that
consistent linearizations and numerical implementations were provided for both mechanical
problems. In this context, the influence of the preload pressure and the tethering forces
acting on the artificial boundaries of the arterial segments was studied, concluding that
taking any simplifying approach that overlooks the complete load state acting on the wall
leads to an unrealistic quantification of the in-vivo stresses in the tissue.

The constitutive modeling considered in this thesis accounts for the complex com-
position of the arterial wall tissue, where the behavior of each layer is represented as a
hyperelastic composite material. In the strain energy function characterizing the hypere-
lastic material, the elastin matrix is taken into account through a Neo-Hookean isotropic
contribution, and the collagen fibers are considered by means of an anisotropic contribution
acting in two given directions. Moreover, the forces exerted by the bodies surrounding the
arterial wall as well as the interaction with the blood flow dynamics are considered in the
evaluation of the mechanical regime of the solid.

The blood flow dynamics is modeled using the Arbitrary Lagrangean Eulerian for-
mulation for the Navier-Stokes equations in the specific arterial vessel of interest, which,
furthermore, is coupled with a dimensionally reduced model that provides the interaction
with the cardiovascular system. It has been shown in the featured examples that it is
possible to use simplifying hypotheses if the analysis is limited to the study of blood flow
dynamics. Although the influence of the preload pressure can not be neglected, a low
sensitivity of the blood flow dynamics with respect to the presence of tethering forces was
reported.

As a contribution of this thesis, we emphasize that the integration of these mod-
eling ingredients had not had precedents in the specialized literature. Furthermore, the
comprehensive approach described in this work proved to be crucial (i) to understand the
interaction between the different components involved in the physical phenomena and their
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influence in arterial function, (ii) to accurately quantify the impact of different modeling
hypotheses, and (iii) to provide a realistic hemodynamic environment for the simulation
and analysis of adaptive processes in the cardiovascular system.

7.2 Characterization of residual deformations

A variational framework was proposed for the in-vivo characterization of residual
deformations in arterial walls. As input data, the present approach requires a set of known
arterial configurations, the load setting corresponding to each of those configurations, and
the displacement field relating material points between them. This information can be
retrieved from image acquisition and processing techniques paired with motion tracking
tools. It is worthwhile to mention that the sensitivity of the methodology with respect
to the precision and accuracy of the input data is still uncertain and constitutes a matter
of future research. The variational formulation of the mechanical equilibrium related to
the given configurations leads to the definition of a cost functional that measures the
mechanical imbalance of such configurations when inconsistent residual deformations are
assumed. In this approach, the cost functional is constructed using the generalized residuals
of the corresponding set of variational equations.

Several examples using synthetic data were presented, where the viability of the
present approach was studied and discussed in detail, concluding that the minimization
of the cost functional successfully leads to the characterization of residual deformations.
The results are encouraging, and suggest that the methodology could lead to the successful
in-vivo identification of residual deformations.

It is important to bring attention to the fact that there are no previous works that tar-
geted the in-vivo characterization of residual stresses and/or deformations. Furthermore,
the presented approach can potentially be extended to simultaneously estimate constitutive
parameters, thus, performing a fundamental step towards truly patient-specific simulations.

7.3 Future work

Let us now discuss some future work and open problems related to the topics ad-
dressed in this thesis.

Considering the capabilities of the integrative modeling framework, the tools already
available can be used to gain insight into specific topics in patient-specific computational
hemodynamics. Also, through the incorporation of damage, growth and remodeling mod-
els, the realistic environment provided by the proposed framework will definitely be in-
creased, leading to a better understanding of such adaptive processes in a physiologically-
consistent mechanical environment. Moreover, aligned with the objective of developing
each time more realistic hemodynamic simulations, this framework could be enriched by
the addition of further details, such as the incorporation of more complex constitutive
models which may account for the active component smooth muscle cells.

Although promising results were shown for the proposed methodology for the in-vivo
characterization of residual deformations, there is yet a great deal of work to be done for
its application in real patient-specific scenarios. In this line, the next steps should include:

(i) an analysis of different approximation techniques for the residual deformation field
in the characterization problem,

(ii) a sensitivity analysis with respect to the uncertainty of the input data,

(iii) an evaluation of alternative cost functionals or the incorporation of regularizing terms
to improve conditioning,
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(iv) an examination of different optimization techniques for the minimization procedure,
and

(v) the extension of the theoretical basis to include the simultaneous estimation of con-
stitutive parameters.





Chapter 8

Appendices

8.1 Appendix A: basic relations in continuum mechanics

Consider a displacement field um which is perturbed producing um,τ = um + τδum.
With this perturbation we have the deformation gradient, originally given by Fm = I +
∇mum, results in Fm,τ = I + ∇mum,τ = I + ∇m (um + τδum). Let us compute the
expressions of the derivatives of several quantities involving Fm,τ , with respect to τ . This
will be employed in the linearization procedures whenever the material configuration is
known. Then, we have

d

dτ
Fm,τ

∣∣∣∣
τ=0

= ∇mδum = (∇sδus)m Fm, (8.1.1)

d

dτ
F−1
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d
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Now, consider the displacement field us which is perturbed producing us,τ = us +
τδus. Then F−1

s = I − ∇sus results in F−1
s,τ = I − ∇sus,τ = I − ∇s (us + τδus). The

derivatives of several quantities involving Fs,τ with respect to τ are
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