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Abstract. The introduction to medicine of techniques coming from areas like Computational
Fluid Dynamics, Structural Analysis, and Inverse Problems, made the use of imaging data such
us Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Single Photon Emission
Tomography (SPECT), Positron Emission Tomography (PET) and Ultrasound (US) mandatory
in order to apply this techniques to patient specific data. The process of identifying the differ-
ent tissues and organs, called segmentation, is a maior concern in this analysis. This process
can be tedious and time consuming when done by hand, so its been an early concern in image
processing to automatize it. Many contributions have been made to this area since the intro-
duction of the Mumford and Shah functional. This functional is endowed to quantify the cost
associated to a specific segmentation.

Our aim in this paper is to present an image segmentation method based on the configu-
rational derivative of the cost functional F endowed to the image data. The configurational
derivative can be viewed as an extension of the well established concept of topological deriv-
ative when, instead of a hole, a small inclusion is introduced at a certain point of the domain.
Some results are presented in order to show the computational performance of this methodology
in the presence of white Gaussian noise.

1
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1 INTRODUCTION

Medical imaging techniques such as Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), Single Photon Emission Tomography (SPECT), Positron Emission Tomog-
raphy (PET) and Ultrasound (US) provide useful information (anatomical and functional) to
the specialists, no matter what area are they from (medicine, research, etc.). Consequently, the
demand for tools to manipulate these images has grown considerably since the appearance of
these technologies. Over the years different issues have appeared in the area of medical image
processing, to recall some of them we can mention image registration, volume data visualiza-
tion, image segmentation and enhancement, pattern recognition among others.

These data sets provide information otherwise unavailable for clinical specialists to analise.
Quantitative information such as organ size and shape can be extracted from these images in
order to support activities such as disease diagnosis and monitoring and surgical planning. How-
ever, in order to accomplish this, the first step we must do is to identify the different tissues and
anatomical structures being involved. This process, called segmentation, must be accurate and
repeatable in order to be clinically useful.

Segmentation is the process that subdivides an image into its constituent regions or objects.
The level to which the subdivision is carried depends on the problem being solved. For example,
in the segmentation of medical images, the objective is usually to identify different regions,
organs and anatomical structures from imaging data.

The inherent complexity of these areas has motivated interdisciplinary research and the
use of techniques actually born in other areas into medicine as well as image processing.
The introduction of technologies like Configurational derivative, originally conceived for the
study of topology optimization problems, has shown interesting results when applied to image
processing[10, 17].

Classical image segmentation techniques are based on two basic pixel1 characteristics: dis-
continuities and similarities. Many of this classical techniques (e.g., multiple thresholding,
region growing, morphologic filtering and others [3, 5]) have been applied to try to solve this
problem with variable outcomes [14, 16]. Such techniques tend to be unreliable when seg-
menting a structure that is surrounded by others with similar image intensity (eg, low-contrast
structures).

More sophisticated techniques, like Level Sets, use powerful numerical computations for
tracking the evolution of moving surface fronts. These techniques are based on computing lin-
ear/nonlinear hyperbolic equation solutions for the appropriate equations of motion. An initial
approximation of the solution (seed) evolves until it gets the limits of the region of interest. In
this case user interaction is needed to introduce one or more seeds for the algorithm to evolve
from [11, 19]. Although this approach brings good results, it’s computational cost may become
too high. A wide variety of works present the Active Contour (also called Snakes) technique
as the most robust for medical image segmentation [4, 6, 9, 18]. With this technique good re-
sults are obtained, in particular for brain MRI segmentations, in this case input data must be
pre-processed to extract spurious structures before the segmentation algorithm is started.

By means of Markov Random field in [15] and [21] are described fully automatic 3D-
segmentation techniques especially designed for brain MRI images. This techniques captures
three main spatial features of MRI images: non-parametric distribution of tissue intensities,
neighborhood correlations and signal inhomogeneities. Once these fields are calculated (using
suitable probabilistic models), an iterate optimization algorithm (Iterated Conditional Modes,

1By pixel we mean picture element.
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Simulated Annealing, Expectation-Maximization, etc.) is used to recalculate them until the
convergence is achieved. Again, the limitation of this technique is it’s excessive computational
cost.

Our aim in this paper is to quantitatively evaluate the outcomes of a recently introduced im-
age segmentation method based on a discrete version of the well established concept of config-
urational derivative (see [1, 2, 8, 12, 13] and references therein). More specifically, we compute
the configurational derivative for an appropriate functional associated to the image indicating
the cost endowed to an specific image segmentation. Further, we propose an image segmenta-
tion algorithm based on this result. Several results for different levels of White Gaussian Noise
(WGN) are presented in order to show the computational performance of this methodology.
And finally, some medical images are segmented to show some possible applications of these
methods.

2 FORMAL DEFINITION OF THE CONFIGURATIONAL DERIVATIVE

The configurational derivative allows us to quantify the sensitivity of the problem when the
domain under consideration is perturbed by changing a material property at a specific point.
More specifically, let Ω be an open set in RN (N = 2, 3) and Bε be a ball of radius ε centered
at point x̃ ∈ Ω (Figure 1). Taking into account a cost function Ψ, the associated configurational
derivative DC can be defined as:

DC(x̃) = lim
ε→0

Ψ
(
Ωε ∪Bε

)−Ψ (Ω)

f (ε)
, (1)

Ψ
(
Ωε ∪Bε

)
= Ψ (Ω) + f (ε) DT (x̃) + . . . (2)

where Ωε = Ω\Bε, f (ε) is a negative valued function that decreases monotonically so that
f (ε) → 0 with ε → 0+. The configurational derivative DC given by Eq. (1) has been recog-
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Figure 1: Configurational derivative concept.

nized as a powerful tool to solve topology optimization problems. Nevertheless, this concept
is wider. For example, the topological derivative (a particular case of DC , where the inclu-
sion is repaced with a a vacuum) has been studied in order to consider arbitrary shaped holes
and its applications to Navier, Laplace, Poisson, Helmoltz, Stokes, Navier-Stokes equations are
developed by Masmoudi and by Sokolowsky and their co-workers. See also [1, 13, 20] for
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applications of the topological and configurational derivative to the above equations, inverse
problems and material properties characterization. As already mentioned in this paper, we will
introduce a discrete version for the configurational derivative, which will be applied in the con-
text of image segmentation.

3 IMAGE SEGMENTATION PROBLEM

In this work we deal with 2D images, therefore, the image will be characterized by a two-
dimensional matrix of pixels2. For each image element (pixel) we associate an intensity accord-
ing to the image type3 and the technique used to acquire it. In addition, the image intensity is
normalized assuming values from 0 to 1.

More specifically, let us consider a two-dimensional image characterized by an M × N
matrix of pixels ωij . For each pixel ωij we respectively associate the intensities of the original
image uij ∈ U , and segmented image v̄ij ∈ V , where the sets U and V are defined as:

U := {uij ∈ I : i = 1...N, j = 1...M} , (3)
V := {vij ∈ C : i = 1...N, j = 1...M} . (4)

Furthermore, the set I represents the normalized intensity values of the original image and the
set C represents the intensities classes holding the solution of the segmentation. That is, the sets
I and C are defined as:

I:={ρ ∈ R : 0 ≤ ρ ≤ 1} and C:={cs ∈ I : s = 1...Nc} , (5)

where Nc is the number of classes and cs represents a given class.
To identify a class different alternatives can be used. The values defined for the classes will

depend on the cost function and the specific application of the segmentation. Therefore, we
will obtain different results according to the criterion adopted to define the set of classes C (for
instance, mean intensity or median intensity inside a region). In this work the expected mean
intensity value inside a region was used to define the class that represents that region. Other a
priori image information can be used to determine this values. In the case of CT the brighter
intensities represent bone and darker areas represent soft tissues as inner organs or muscles.
This information can be used to determine classes’s characteristic values and appropriate cost
function for the problem under consideration.

Finally, the image segmentation problem studied here can be stated as following: given the
original image represented by the matrix uij ∈ U , the set of classes C and a specific cost
function, find the segmented image represented by the matrix v̄ij ∈ V such that minimizes the
cost function.

3.1 Choosing the Cost Function

The election of the cost function depends on each particular problem. In this case we are
interested in detecting different objets. In order to do this we could, for instance, characterize
different objects by an intensity value characterizing the region occupied by that object. This
characteristic intensity value is tightly related to the cost function being used. In this case, the
following cost function was used:

Ψ = θΦ + (1− θ)Γ , with θ ∈ (0, 1] ⊂ R , (6)
2This algorithm is also extensible to 3D images.
3RGB, Grayscale, 8bpp Grayscale, etc.
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where the first terms of the cost function Ψ, denoted by Φ, is associated to the distance between
the input image pixel’s intensities uij and the (in between iterations) segmented image intensi-
ties vij . The second term Γ quantifies the contour measure for every region. In particular, for
this discrete case, these functions can be written as:

Φ =
∑
ij

(uij − vij)2 and Γ =
1

4n

∑
ij

χ(vij) , (7)

where n is the number of dimensions where the segmentation is being done and χ(vij) is a
characteristic function that assumes the values 1 (one) over the boundary of pixels separating
different classes and 0 (zero) otherwise. The θ parameter controls the contribution of each term
Φ and Γ in the cost function.

3.2 The Configurational Derivative Computation

Next, it is computed the sensitivity of the cost function when the intensity of an arbitrary
pixel ωαβ is changed from class vαβ to class cs. Therefore, the perturbed cost function Ψs is
given by:

Ψs = θΦs + (1− θ)Γs , (8)

where Φs and Γs can be written as:

Φs = Φ− (uαβ − vαβ)2 + (uαβ − cs)
2 , (9)

Γs = Γ− 1

4n

(
χ(vαβ)− χ(cs)

)
, (10)

Then the sensitivity, characterized by the configurational derivative, in this discrete case is
given by the difference Ψs −Ψ, that is:

Ds
C(ωαβ) = θ

[
(uαβ − cs)

2 − (uαβ − vαβ)2
]
+ (1− θ)

1

4n

[
χ(cs)− χ(vαβ)

]
. (11)

Ds
T (ωαβ) = Ψ(ωαβ\cs)−Ψ(ωαβ). (12)

3.3 An Image Segmentation Algorithm

In this section is presented a configurational derivative segmentation algorithm for a 2D
image (Algorithm 1). The algorithm inputs are the 2D image uij ∈ U to be segmented and
a set of classes in witch image pixels will be classified. The algorithm output is v̄ij ∈ V ,
corresponding to the class that pixel ωij was classified. In fact, the configurational derivative
can be used as a descent criterion in an optimization process. Then, the sufficient local minimum
condition for such pixel perturbation is given by:

Ds
C(ωαβ) ≥ 0 ∀ α = 1, . . . , N , β = 1, . . . , M and s = 1, . . . , Nc (13)

Moreover, this algorithm consists in evaluating the configurational derivative for each pixel and
each class. Then, the new (segmented) image is obtained by successively selecting for each
pixel the class which produces the most negative value of the DC at that pixel.

Is easy to notice that the result will be greatly influenced by the values determined for the
different classes. In this case, every class has approximately the mean value of the pixels corre-
sponding to that region.
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Algorithm 1 Image segmentation based on a discrete version of the Configurational Derivative
Require: A 2D image uij ∈ U , the set of classes C, and θ∗ ∈ (0, 1]
Ensure: The segmented image v̄ij ∈ V

normalize the image and classes values
take θ = 1
for every pixel ωαβ do

for every class cs ∈ C do
compute Ds

C(ωαβ) following (eq. 12)
end for
if min{Ds

C(ωαβ), s = 1, . . . , Nc} < 0 then
vαβ = cs

end if
end for
take θ = θ∗

while ∃ s and αβ such as Ds
C(ωαβ) < 0 do

for every pixel ωαβ do
for every class cs ∈ C do

compute Ds
C(ωαβ) following (eq. 12)

end for
if min{Ds

C(ωαβ), s = 1, . . . , Nc} < 0 then
vαβ = cs

end if
end for

end while

As was mentioned above, the cost function has two terms, one measuring the distance be-
tween pixel intensities and a second one that measures the boundary of the different regions.
Depending on the case, the cut condition used in Algorithm 1 may never be true4. For this rea-
son a different stoping criterium was implemented. A tolerance was determined based on the
initial value of the cost function (say Ψs ∗ 10−8 for the initial image). When the cost function
value decrease between two consecutive iterations is below this value, the algorithm stops.

In order to give stability to the method, a fixed point algorithm was used to select the new
class value for the segmented image in every new iteration. This consists in taking only a part of
the values that the configurational derivative points out to be changed (pixels presenting a nega-
tive configurational derivative). In some cases (when the level of noise is too high for example)
changing all the pixels whose configurational derivative is negative shields an oscillating result,
that is, the step size is too big. This phenomenon produces very bad quality segmentation (if it
converges at all!). To avoid this unwanted behavior, only a percentage of the pixels that have
a negative DC value are re-classified. For the numerical results presented in the next section,
only the 50% of the pixels that had the most negative DC were changed in every iteration. This
simple technique stabilizes the algorithm and produced a convergent result in all the cases.

4 NUMERICAL RESULTS

The main objetive of the numerical tests is to evaluate the algorithm’s effectiveness in the
presence of noise. With this in mind, different test cases were build. A synthetic image com-

4It might happen, for a specific image, that in every iteration exists a pixel ωαβ for whom Ds
C(ωαβ) < 0.
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Figure 2: Synthetic image.

posed of two concentric circles was build, this image presents three different grayscale intensi-
ties (Fig. 2). Different levels of noise were applied in order to test the behavior of the algorithm.
The applied noise is WGN with zero mean and different levels of variance. The variance of the
noise goes from 0.01 to 0.2, in steps of 0.01. Each variance gives a different testing case. After
the synthetic image is degraded using noise, a convolution with a smoothing kernel is used to
smooth the image in order to leave the image as real as possible5. As we dispose of the ground
truth segmentation (the original synthetic image), we are able to measure the algorithm’s accu-
racy.

4.1 Methodology

In Figure 4 different results are presented. To obtain tese different test cases WGN with
different variances (0.01, 0.05, 0.1, 0.15 e 0.2 respectively) was used. In order to be able to
simulate a real image, a convolution with a Gaussian 5x5 kernel was applied twice over every
image. This makes the image more real.

The metrics [7, 22] used to compare the results of the proposed algorithm with the ground
truth image (Figure 2) were the following:

• Tanimoto index: This index is calculated as

I(A1, A2) =
n(A1 ∩ A2)

n(A1 ∪ A2)
(14)

that is, the ratio between the quantity of pixels in the intersection of the original region
A1 and the corresponding region in the segmented image A2, and the quantity of pixels
in the union of both regions.

• Overlap index: Is defined as [22]:

O(A1, A2) = 2 · n(A1 ∩ A2)

n(A1) + n(A2)
(15)

that is, the ratio between the quantity of pixels in the intersection of the original region
A1 and the corresponding region in the segmented image A2, and the sum of the number
of pixels in both regions.

• Preservation of the center of mass: This index is given by the distance (in pixels) be-
tween the centers of mass of the original region and its segmented counterpart respec-
tively.

5Real systems usually produce a noise+smoothing effect.
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• Distance between borders: This index is given by

D(C1, C2) =

∑np1
i=1 d(xi

1, C2) +
∑np2

i=1 d(xi
2, C1)

np1 + np2
(16)

where d(x,C) means the distance (in pixels) of the point x to the curve C, C1 and C2

are the boundaries of the original and segmented region respectively, xi
1 and xi

2 denote
arbitrary points on the boundaries C1 and C2, finally np1 and np2 are the number of
points which characterize the respective boundaries.

In Figure 3 the behavior of each index with respect to noise level is presented. As expected,
a loss in the segmentation quality is observed when noise raises. However, the algorithm still
gets high quality results even in the presence of severe noise. In fact, the Tanimoto/Overlap
index gives errors less than 5% for 0.20 variance WGN. Furthermore, the other two indices
(preservation of the center of mass and distance between borders) shown deviations of the order
of a half of a pixel for the same level of noise.

(a) Tanimoto index. (b) Overlap index.

(c) Mass center deviation. (d) Borders distance.

Figure 3: Behavior of the adopted indices
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Figure 4: Segmentation results for different levels of noise. In this image the fist column corresponds to the image
convolved two times with a Gaussian kernel matrix (5x5). The second column shows the boundaries of the original
(black) and the segmented (red) regions respectively. The rows correspond to different levels of noise being 0.01,
0.05, 0.1, 0.15 and 0.2 the variances used.

5 CONCLUSIONS

In this work a segmentation algorithm based on the concept of Configurational Derivative
was presented. The configurational derivative for an appropriate functional indicating the cost
endowed to a specific image segmentation was also calculated. This algorithm was tested
against images with different levels of noise. The outcomes revealed that even for high lev-
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els of noise the segmentation method appears robust.
This algorithm is straight-forward to be implemented and produces good quality segmenta-

tions with very little additional information and almost no user interaction, besides the set of
classes C, for its initialization.
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