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ABSTRACT

The problem of reconstructing an image from pro-
jections has been largely studied. Nowadays, the
so called ”Direct methods” (based on Fourier trans-
form) are the most widely used, mainly because of
its low computational cost. Nevertheless, in some
situations old fashion iterative algorithms are more
appropriate as is the case of Nuclear imaging, where
attenuation coefficients need to be considered in the
reconstruction process. In this work we present a
reconstruction method based on the well established
concept of topological sensitivity analysis for a simple
tomography model. This concept is based on analyzing
the sensitivity of a cost function to small perturbations
in the domain topology or material properties. In
particular, the tomography model is used to reconstruct
the attenuation coefficient from 1D projections thought
2D slices. After revisiting the topological expansion
concept and presenting the cost function under consid-
eration, the topological gradient is computed. In the
results section the topological gradient information is
used to devise an iterative reconstruction algorithm and
finally, some results are shown.

INTRODUCTION

The inverse problem associated to the reconstruction
of the 3D data based on 2D projections has been
largely studied. Different alternatives have been pro-
posed over the years [11, 15]. Early approaches for
image reconstruction are based on iterative processes.
Although these methods were the most popular in
the early days of Computed Tomography (CT), they
present a high computational cost and its convergence
accuracy is compromised by the presence of noise. For
these reasons, they became almost completely replaced
by direct methods. Nowadays, CT reconstruction is
driven by direct methods based on Fourier Transform
(i.e., Filtered Back Projection - FBP), mainly by the

significant computational time reduction.
Nevertheless, situations exist where an iterative

algorithm is more convenient than a direct one. For ex-
ample, in the case of Nuclear Imaging (Single Photon
Emission Tomography - SPECT and Positron Emis-
sion Tomography - PET), where an internal source is
used, direct algorithms do not take into account the
absorption of the tissues that surround the illuminating
source. This characteristic, produces an attenuation on
the resulting image that may lead to a miss judgement
by the specialist. On the other hand, iterative methods
allow the introduction of attenuation correction what
may lead to more precise reconstructions.

The objective of this work is to present an al-
ternative reconstruction method based on the well
established concept of topological sensitivity analysis
[14, 17, 18]. This concept is based on analyzing
the sensitivity of a specific cost function to a change
in the domain topology or material properties. In
particular, we use a simple tomography model to
represent the attenuation of 1D projections thought 2D
slices (extending these ideas to 3D is straightforward).
This work is organized as follows: First the simplified
tomography model is described and the tomography
reconstruction problem is stated. After that, the topo-
logical gradient concept is revisited together with the
addressed cost function and the topological gradient
calculation. This gradient is calculated taking the
misfit between a measurement and the model solution
as cost function. In the numerical results section an
iterative algorithm that uses this gradient is introduced
and some results are also shown.

A SIMPLE TOMOGRAPHY MODEL

When an object (e.g., a body or tissue) is irradiated
with an X-ray source, the incident ray is attenuated by
two different phenomena: absorption and dispersion.
For simplicity, no distinction is made between both
effects (considering them together). In order to present
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the idea, let us consider an object composed by an
homogeneous material. If we assume that the object
is being illuminated by n rays from the side of the
object where the source is located, after an arbitrary
period of time during which the object was irradiated,
only n + 4n rays where able to pass though the
object (assuming 4n is negative, where every ray is
assumed to have the same energy). In this situation,
the following relation is satisfied

4n
n

1
4s

=−µ,

being µ the rate of photons loss due to both phenomena
(which we will call attenuation) and s the variable used
to parameterize the path line passed by the ray. Taking
4s→ 0 we obtain the following differential equation

1
n

dn =−µds.

To find the solution of this equation we integrate
along the path of the ray through the object using the
model presented in Fig. 1, considering µ not constant
and depending on the spatial variable x (i.e., µ(x), that
can be parameterized using s as x(s)). Assuming the
thickness of the ray is small enough, we obtain

nout = nin exp
[
−

∫
r
µ(s)ds

]
⇒

∫
r
µ(s)ds = ln

nin

nout
,

being nout the number of photons reaching the sensor
for a non homogeneous object, ds is a differential ele-
ment along the path line r of the ray. The left-hand-side
corresponds to a ray integral of a projection. Therefore,
measurements like ln

nin

nout
taken from different angles,

may be used to generate projections of data µ(s). That
is

lnnin−
∫

r
µ(s)ds = lnnout .

θd

nin

nout

ray
thickness

x
2

r

x
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Figure 1: Ray attenuation path.

If we consider that the object is being illuminated
by m rays in each direction, the expression presented
above can be rewritten as

α j −
∫

r j

µ(s)ds = p j, j = 1,2, . . . ,m

being α the intensity of the ray illuminating the object
and p the measurement observed at the sensor on the
other side of the object. If the object is illuminated in
D different directions, d = 1 . . .D different projections
of µ are obtained, namely

α
d
j −

∫
rd

j

µ(s)ds = pd
j , (1)

In Eq. (1) the tomography model is assumed to
be continuous. In order to solve this problem compu-
tationally this continuous model needs to be replaced
by a discretized one. To do this, the continuous
representation of the attenuation coefficient µ(x) (Fig.
2(a)) is divided using a regular grid (Fig. 2(b)). The
values of µ(x) are assumed to be constant on each cell
of the grid [19]. Then, let µi be the constant value of
the ith cell, and N the total number of cells.

In this case, the ray is assumed to be a thick
line running trough the plane spanned by two linearly
independent vectors x1 and x2. The integral in Eq. (1)
can be substituted by a ray-sum p j measured for the jth

ray. We may express the relationship between µi and
p j as following

α j −
N

∑
i=1

Ki jµi = p j, j = 1,2, . . . ,M (2)

where M = m ∗D is the total number of rays in all
the projections, and Ki j is a weighting factor that
represents the contribution of the ith cell to the jth

ray integral (i.e., the area of intersection between the
ray and the cell). For simplicity, let us assume the
following notation

p = (p1, p2, . . . , p j, . . . , pM)T ,

K =


K11 K12 . . . K1N
K21 K22

...
. . .

KM1 KMN

 ,

µµµ = (µ1,µ2, . . . ,µi, . . . ,µM)T .

Therefore, Eq. (2) can be rewritten in compact
form as following

p = ααα−Kµµµ.

Note that only a small number of Ki j’s are different
from zero since only a small number of cells is passed
through by any given ray.
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(a) Real obstacle. (b) Approximate model.
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(c) Projection example.

Figure 2: Simplified tomography model.

A TOMOGRAPHY RECONSTRUCTION
PROBLEM

The tomography reconstruction problem under consid-
eration can be stated as: given the measurement p∗,
find an approximation µµµ of the unknown attenuation
coefficient µµµ∗ by solving the following equation

Kµµµ = ααα−p∗. (3)

For large values of M and N different iterative
methods exist for solving Eq. (3). For example,
the so called ”method of projections”, first proposed
in [10] and reviewed in [21]. The computational
procedure for finding the solution consists in starting
with an initial guess µµµ0 and successively projecting
it on the subspaces defined by the rows of K. If a
unique solution of the system exists, the iterations will
converge to that solution.

Different algorithms based on these ideas have
been proposed over the years (ART - Algebraic Re-
construction Technique [7], SART - Simultaneous Al-
gebraic Reconstruction Technique [2], etc.).

As mentioned before, in this work we propose an
alternative tomography reconstruction method based
on the topological gradient. This gradient allows
us to quantify the sensitivity of a problem when the
domain under consideration is perturbed by changing
its topology, for example by the introduction of an
arbitrary shaped hole, an inclusion or a source term.
Early work on this subject can be found in papers by
Masmoudi, Sokolowsky and their co-workers [13, 20].
This derivative has been originally conceived as a tool
to solve topology optimization problems. Neverthe-
less, this concept is wider and has shown interesting
results when applied in inverse problems. See also
[1, 5, 6, 14, 16, 17] for applications of the topological
derivative to the above problems considering Navier,
Laplace, Poisson, Helmoltz, Stokes and Navier-Stokes

equations among others. Most lately, this concept has
also been applied in image processing [3, 4, 9, 8, 12].

In particular, we study the behavior of a properly
defined cost function when the attenuation coefficients
of the object being illuminated is perturbed. With this
information, an iterative algorithm is proposed.

TOPOLOGICAL DERIVATIVE CONCEPT

Let us consider a cost function Ψ(µµµ). If we perturb µµµ

(say, µµµT = µµµ +δµµµ) we obtain a perturbed cost function
Ψ(µµµT ), then for small perturbations δµµµ , the following
expansion holds

Ψ(µµµT ) = Ψ(µµµ)+gΨ ·δµµµ +O(δµµµ) , (4)

where δµµµ is such that

δµµµ = µµµT −µµµ

and the perturbed attenuation coefficient is

µµµT = (µ1,µ2, . . . ,µT , . . . ,µM)T ,

that is, the value of µµµ at cell i was changed from µi to
µT , then

δµµµ = (0,0, . . . ,µT −µi, . . . ,0)T ,

meaning that the perturbation is made in one cell.
Therefore, gΨ can be recognized as a discrete version
of the topological gradient.

In order to minimize the cost function, gΨ · δµµµ

should always be negative. Thus, according to the
sign of the topological gradient gΨ, we need to choose
the perturbation δµµµ with the opposite sign. Then,
the topological gradient can be used as an indicator
function defining a descent direction to reduce the
value of the cost function. As will be shown in the
next sections, this information can be used to develop
fast algorithms for tomography reconstruction.
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Cost Function Definition

Let us now define an appropriate cost function Ψ(µµµ)
for the problem beforehand. As we want to find a µµµ

that produces the best approximation of the observa-
tions obtained from the object (p∗), we propose Ψ(µµµ)
to be the misfit between p∗ and the projection data
obtained from the model (p). Namely,

Ψ(µµµ) = ‖p∗−p‖2,

= ‖p∗− (ααα−Kµµµ)‖2. (5)

On the same bases, the perturbed cost function Ψ(µµµT )
is defined as

Ψ(µµµT ) = ‖p∗− (ααα−KµµµT )‖2. (6)

From these elements we can calculate an explicit
formula for the topological gradient.

Topological Gradient Calculation

In this fully discrete case, to obtain an expression for
the topological gradient we first calculate the total vari-
ation of the cost function associated to a perturbation
δµµµ . That is, subtracting Eqs. (5) and (6), we obtain

Ψ(µµµT ) = Ψ(µµµ)
+ KT (2p−2p∗+Kδµµµ) ·δµµµ

= Ψ(µµµ)
+ 2KT (p∗−p) ·δµµµ +O(δµµµ). (7)

Then, rearranging this expression and according to Eq.
(4), the topological gradient is given by

gΨ = 2KT (p∗−p)
= 2KT (p∗− (ααα−Kµµµ)). (8)

It is easy to notice that gΨ is a vector of N compo-
nents and that the value giΨ indicate the sensitivity of
the cost function to a small perturbation in µi. Is also
important to remark that the topological gradient does
not depend on the perturbation, but instead, indicates
the direction the perturbation should be made for every
cell.

NUMERICAL RESULTS

Using the topological gradient (Eq. (8)) as an indicator
function, we can devise an iterative algorithm (Algo-
rithm 1) that allows us to find an approximate solution
for the above mentioned problem.

In this case, and for the sake of simplicity in the
numerical examples, we assume that a cell might be
either intersected or not (Ki j ∈ {0,1}). That is, if the

center of a particular cell is intersected by the ray then
K is one for it (Fig. 2(c)), and zero otherwise

Ki j =
{

1, ray j intersects the center of cell i;
0, otherwise.

The measurement vector p∗ is the input data to
the algorithm, obtained from the object being recon-
structed. The matrix K is easily computed given that
the projection directions are known. A short comment
should be made on δµµµ , that does not need to be cons-
tant and can be adjusted during algorithm evolution
to speed up convergence and provide a more accurate
result. In particular, for the results presented next δµµµ

was decreased when oscillations were detected.

Algorithm 1 Image reconstruction based on fully dis-
crete version of the topological derivative
Require: Projection data p∗, matrix K, step size δµµµ

and tol.
Ensure: The reconstructed image µµµ .

set µµµ0 = 0, t = 0, Stop = FALSE
while Stop = FALSE do

compute gΨ using Eq. (8)
for every cell i do

if giΨ < 0 then
µ

t+1
i = µ t

i +δ µi
else

µ
t+1
i = µ t

i −δ µi
end if

end for
if |Ψ(µµµ t)−Ψ(µµµ t+1)|> tol then

t = t +1
else

Stop = TRUE, µµµ = µµµ t

end if
end while

On the computational cost of the algorithm, each
iteration requires two matrix-vector products (N ∗M)
and two vector sums (N) for the topological gradient
computation, a run over vector µµµ t to find µµµ t+1 (M)
and the computation of Ψ(µµµ t+1) that involves a matrix-
vector product (N ∗M). Then, the computational cost
of the algorithm is governed by O(N ∗M).

Test 1 - Standard reconstruction

In order to show the performance of this novel re-
construction algorithm, some results are shown. The
projection data p∗ was artificially generated from the
original data µµµ∗ shown in Fig. 3(a) (256 levels
grayscale image of size 200× 204, N = 200 ∗ 204).
From this data, different sets of projection data were
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generated for D = 8, 16, 32 and 64. The projection
data obtained is also shown in Fig. 3.

From these projections, an approximation of the
original data µµµ was reconstructed using the proposed
reconstruction method (Algorithm 1). In this cases
was considered M = (200 + 204) ∗D being enough to
capture the complete image projection. As can be seen
(Figs. 4(a), 4(b), 4(c) and 4(d) for D = 8, 16, 32 and
64 respectively), the reconstructed result presents good
quality even for small number of directions.

In Fig. 5 is presented the behavior of the cost
function during the iterative process. As can be seen,
the algorithm stabilizes very fast. In approximately 50
iterations the cost function has almost stabilized and
very close to 0, meaning that the solution is very close.

(a) Original data.

(b) 8 directions.

(c) 16 directions.

(d) 32 directions.

(e) 64 directions.

Figure 3: Projection data for 8, 16, 32 and 64 direc-
tions.

Test 2 - Reconstruction with noise

In order to test the robustness of the proposed recon-
struction method, in this section are presented some
results for different levels of additive noise in the
measurement data. The model assumed for the noise
polluted measurement pn is

pn = p∗+η(p) (9)

where η is a zero mean Gaussian distributed random
variable, considered as noise in the signal, and

p = mean|pn−p∗|.

Then, for a signal of strength 100 and p = 5, we
consider a 5% noise.

(a) Result for D = 8. (b) Result for D = 16.

(c) Result for D = 32. (d) Result for D = 64.

Figure 4: Results for the gΨ reconstruction method.
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Figure 5: Cost function evolution - Standard recon-
struction.

The polluted projection data vector pn was created
adding white Gaussian noise to p∗ with the model
described in (9). The noise added was p = 1%, 2%, 3%
and 6%. Figure 6 presents the projection data (always
with 64 directions) polluted with noise.
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(a) 1% WGN.

(b) 2% WGN.

(c) 3% WGN.

(d) 6% WGN.

Figure 6: Projection data for 1%, 2%, 3% and 6%
WGN.

(a) Result 1% WGN. (b) Result 2% WGN.

(c) Result 3% WGN. (d) Result 6% WGN.

Figure 7: Results for the gΨ reconstruction method
from noise data.

As before, the polluted data was used to find an
approximation of the original data µµµ with Algorithm
1. As can be seen (Figs. 6(a), 6(b), 6(c) and 6(d) for
D = 8, 16, 32 and 64 respectively), the gΨ method
obtains good quality results even for intense noise.

Figure 8 presents the evolution of the cost function.
In this case can be observed that the cost function
does not converge to zero, but still stabilizes in few

iterations (around 70).
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Figure 8: Cost function evolution - Reconstruction
with noise.

CONCLUSIONS

In this work the image reconstruction problem was
addressed for a simplified tomography model con-
sidering the well established concept of topological
gradient. The basic idea of the model is that a specific
cell is taken into account only if is intersected by a
ray, not considering the distance that the ray passes
trough it. With this in mind, the problem consists in
reconstructing the attenuation coefficient of each cell
based on projection information acquired from the real
object.

To this end, a cost function that accounts for the
misfit between the measure obtained from the real
object p∗ and the measure computed using the model
p was used. The model measurement is associated to
an approximation µµµ of the attenuation coefficient of
the real object µµµ∗. Using the topological expansion,
was possible to find an expression for the sensitivity
of this cost function to small perturbations in µµµ . This
expression, called topological gradient, was used as an
indicator function to find the best places were these
perturbations should be introduced. The topological
gradient was used to devise an iterative reconstruc-
tion algorithm. The proposed algorithm was used
to reconstruct artificial data from different number of
projections and from noisy data. In all cases good
quality results were obtained, even for considerably
large levels of noise.

As a final remark we may state that the topological
expansion offers a new way to treat the tomography
reconstruction problem providing easy, fast and robust
reconstruction algorithms.
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Computação Cientı́fica, 2006.

[13] M. Masmoudi. A synthetic presentation of shape
and topological optimization. In PICOF’98 - In-
verse Problems, Control and Shape Optimization,
1998.

[14] M. Masmoudi. The topological asymptotic.
Computational Methods for Control Applica-
tions, Ed. H.Kawarada and J.Périaux, Interna-
tional Series GAKUTO, 2002.

[15] F. Natterer. The Mathematics of Comptarized
Tomography. Wiley-Liss, 1989.

[16] A. A. Novotny. Análise de Sensibilidade
Topológica. Phd thesis, Laboratorio Nacional de
Computação Cientı́fica, Petrópolis - RJ - Brazil,
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