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Abstract. Recently, the interest in Lattice–Boltzmann models by the computational fluid dy-
namics community has notoriously increased with the purpose of modeling complex flows. For
instance, computational hemodynamics has been an area of research where this kind of method-
ologies have received significant attention during last years. In this work, we implement a
Lattice–Boltzmann model with the aim of simulating blood flows in the major arteries. The se-
lected model, based on a single-relaxation-time approach, is briefly described in combination
with second order boundary conditions for both velocity and pressure and proper equilibrium
distributions that take care of the incompressible behavior of the fluid. After the description of
the model several numerical examples are presented. In 2D and 3D we employ the Womersley
and Driven Cavity problems as benchmarks. As well, the simulation of blood flows in an arte-
rial bend and in an aneurismal region, both artificially created, are performed. The numerical
results are assessed within a framework in which the values of the parameters that set up the
physical regimes in the simulations are suitably tuned in order to guarantee the accuracy.
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1. INTRODUCTION

Since its introduction in the 80’s the Lattice–Boltzmann Method (LBM) has been through
several refinements and extensions and became a promising numerical scheme for simulating
the complex fluid dynamics in the most varied applications. In particular, LBM has been em-
ployed systematically during the last few years in a series of computational hemodynamics
applications. For example, in the simulation of blood flows in mechanical heart valves (Pellic-
cioni et al., 2007), in aneurisms (Hirabayashi et al., 2006), in the abdominal aorta (Artoli et al.,
2006), among others.

Differing from the conventional methods based on the discretization of continuum macro-
scopic equations, LBM is a mesoscopic particle based method derived from the Lattice-Gas
Cellular Automata method (Rothman and Zaleski, 2004) and the Boltzmann Equation (Abe,
1997). Its basic idea is to build a simplified kinetic model that incorporates the essential physics
of microscopic processes, such that the macroscopic system properties obey the imposed equa-
tions.

In this work we will introduce, in Section 2, the governing equations of LBM with BGK
approximation (referring to the work of Bhatnagar et al. (1954)) and the chosen methods for
implementing boundary conditions. In Section 3 will be presented an analysis of the param-
eters used in the simulations of fluid flows and how to tune them for obtaining better results.
And in Section 4 we will show results obtained from the implementations of the method in
some benchmark problems, in 2D and 3D, and in two computational hemodynamics problems.
Finally, we discuss some conclusions and prospects in Section 5.

2. METHODS

The Lattice–Boltzmann Method with BGK approximation is a Lagrangian and explicit
method. It is based on the movement and collision of micro-particles distributions, described
by the equation:

fi(~x+ ∆x~ei, t+ ∆t)− fi(~x, t) =
1

τ
[f eq

i (~x, t)− fi(~x, t)] , i = 0, . . . , `, (1)

where, fi(~x, t) represents the micro-particles distribution density at position ~x and time t, mov-
ing towards the direction ~ei of the lattice, ∆x is the lattice spacing, ∆t is the time step and `
is the number movement directions of the lattice. The relaxation parameter τ is related to the
kinematic viscosity of the fluid as

ν = (2τ − 1)∆x2/6∆t. (2)

The chosen equilibrium distribution (He and Luo, 1997) was design to reduce the implicit
compressibility of the method
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where, v = ∆x/∆t is the particles speed, the weights ωi are lattice model dependent, ρ0 is the
average density (constant), ρ and u are the density and velocity of the fluid, calculated from the
mass and momentum conservation equations:

ρ(~x, t) =
∑̀
i=0

fi(~x, t) and ρ0~u(~x, t) =
∑̀
i=1

v~eifi(~x, t). (4)



In this model, the normalized pressure is calculated as function of the density: P = c2sρ/ρ0,
where cs = v/

√
3 is the speed of sound.

In Fig. 1 are shown the allowed movement movement directions for the two-dimensional
lattice model D2Q9 (left) and for the three-dimensional lattice model D3Q19 (right) (see
A.M. Artoli (2006)), both implemented in this work. These models allow the particles to stand
still or to move in other 8 directions (D2Q9) or 18 directions (D3Q19).

Figure 1: Allowed movement movement directions for the two-dimensional lattice model D2Q9 (left)
and for the three-dimensional lattice model D3Q19 (right).

The mentioned weights for the equilibrium distribution equation (Eq. (3)) for the lattice
model D2Q9 are: ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36. And, for the model D3Q19 are:
ω0 = 1/9, ω1−6 = 1/18, ω7−18 = 1/36.

To impose the pressure boundary conditions, we adopted the model propose by Zou and
He (1997), designed for flat surfaces. This model make use of the conservation equations
(Eq. (4)) and the reflection of some symmetric non-equilibrium distributions (f neq

i = fi − f eq
i )

to impose the desired pressure. And we chose an interpolation model (Guo et al., 2002) to
impose the velocity boundary conditions on curved surfaces. The use of an interpolation model
is interesting for imposing the boundary conditions on surfaces that do not cross the lattice
points exactly, for instance, like the curved walls of an artery.

3. PARAMETERS TUNING

When choosing the parameters for a simulation via LBM, one has to do a balance between
computational cost and precision. In order to achieve the expected results, one has to choose
(calculate) the parameters accordingly and, after that, modify (tune) them, if necessary.

The main parameter of the method τ is specially responsible for the numerical stability,
its minimum acceptable value is simulation dependent, but we obtained stable simulations with
τ > 0.52. Keep in mind that this parameter becomes smaller as ν and ∆t get smaller and as ∆x
gets bigger (lattice refinement), so a lattice refinement is usually the key to increase τ .

It is also important to keep the Mach number, described as M = umax/cs, at a small value,
usually less than 0.15. So that the distributions of micro-particles induce the macro behavior of
an incompressible fluid. And also, the lattice has to be enough refined in order to capture de
velocity gradients of the fluid.

And, for transient simulations, the characteristic oscillation period (T ) should be much
smaller than the propagation time (L/cs) of information over the characteristic length (L) of the
problem, so that no spurious compressibility effect takes place. In the presented implementa-
tions, we adopted T at least 30 times greater than L/cs.



An analysis of the effect, on the parameters, of three tactics to tune a transient simulation is
presented in Tab. 1. The three tactics are to increase the number of time steps per cycle, to refine
the lattice or do both. In this table, the symbol ’ indicates how much the parameter changes,
τr = τ − 0.5, ”cost” represents the computational cost of a simulation cycle and (·) indicates
the 3D case (shown only when the number differs from the 2D case).

Table 1: Tactics to tune a transient simulation and how they have effect on the parameters and on the
cost of each cycle.

Tactic steps’ ∆t’ lattice points’ ∆x’ T/(L/cs)’ τr’ Mach’ cost’
Increase steps n 1/n 1 1 n 1/n 1/n n (n)
Refine lattice 1 1 n2 (n3) 1/n 1/n n2 n n2 (n3)

Do both n 1/n n2 (n3) 1/n 1 n 1 n3 (n4)

This table shows that increasing the number of steps per cycles solo has a small cost in-
crease, but may lead to undesired results, like the decrease of τ and of the relation T/(L/cs).
Which can be reverted by refining the lattice, at a greater computational cost.

4. RESULTS

This section is divided in two parts, first we will present some benchmark problems for
validation and analysis purposes and in the second part some results from the implementation
of computational hemodynamics problems will be discussed.

4.1 Benchmarks

There will be presented four benchmark problems for the verification and analysis of the
chosen model for implementation. The stationary Driven Cavity problem and the transient
Womersley flow problem will be tested in 2D and 3D.

Driven Cavity in 2D. The Driven Cavity problem is widely used for testing numerical simula-
tions of incompressible fluid flows, with the objective of testing the accuracy and convergence
of numerical methods. This problems consists of a square cavity with impermeable non-slip
walls, such that only the upper wall moves with constant velocity (of module Umax) to the right
(direction ~x). Therefore, the flow in induced by the diffusion of viscous effects coming from
the wall movement.

This problem is characterized by the adimensional Reynolds number, here calculated as

Re =
LUmax

ν
, (5)

where, L is the walls length and ν is the kinematic viscosity (see Eq. (2)).
In Fig. 2 we present some results of simulations with Reynolds number equal to 1000 and

three lattices with 64 × 64, 128 × 128 and 256 × 256 points. On the left side, are plotted the
velocity components ux (horizontal) and uy (vertical) along the vertical and horizontal lines that
cross the center, respectively, extracted from simulations of the present implementation (where
”LBabc” means a simulation with lattice size abc × abc) and from the well known reference
Ghia et al. (1982), as the problem has no analytical solution. One can see from this figure that
our results approach the ones from the reference consistently as the lattice is refined. And on the
right side, there are plotted some streamlines, where one can identify the vortices and visualize
the stationary flow structure, extracted from a simulation via LBM with lattice size 256× 256.



Figure 2: Results of simulations with Reynolds number 1000. On the left, velocity components ux

and uy are plotted over the vertical and horizontal lines that cross the center, respectively, obtained
from simulations via LBM, with different lattice sizes, and from Ghia et al. (1982). On the right, some
streamlines and vortices from a simulation via LBM are shown.

From the streamlines shown in Fig. 2 we have determined the three vortices centers and
compared them with data from literature, as presented in Tab. 2. Here, one can see that the
positions are in good agreement with the literature.

Table 2: Main vortices position extracted from the results of a simulation via LBM in a lattice with
256× 256 points (LB256) and from the indicated references, with Reynolds number 1000.

Vortex Central Left Right
Reference x y x y x y

LB256 0,532 0,565 0,0831 0,0771 0,865 0,112
Ozawa (1975) 0,533 0,569
Ghia (1982) 0,5313 0,5626 0,0859 0,0785 0,8594 0,1094

The main points to check while implementing a stationary problem via LBM are its main
parameter τ (for numerical stability), the Mach number (Umax/cs), which was kept at 0.17 for
this problem, and the lattice refinement (for better capturing the details of the velocity field).

Womersley flow in 2D. The Womersley flow is an intrinsically transient problem with analytical
solution to the Navier-Stokes equations (Fang et al., 2002). It consists of a fluid confined in a
channel with constant pressure on the right side (pout) and with an oscillatory pressure on the
left side (pin), like the function bellow:

∆p(t) =
pout − pin(t)

Lx

= −A cos(µt) (6)



where, ∆p(t) is the pressure gradient at time t, A is its amplitude, Lx is the channel length,
µ = 2π/T is the angular frequency and T is the boundary condition oscillation period.

This problem is characterized by the adimensional Womersley number (κ), calculated here
as:

κ =
Ly

2

√
µ

ν
, (7)

where, Ly is the channel width.
The simulations for this case were done with a fixed Reynolds number of 30 and in a

channel with aspect ratio (Lx×Ly) equal to 2×1. The tested Womersley numbers ranged from
3.5 to 15 and the lattice sizes from 64 × 32 to 256 × 128. In Fig. 3 are plotted the velocity
profile along a period extracted from simulations via LBM (in dashed black lines) with a lattice
size of 64 × 32 and a Womersley number of 3.5 (left) and with a lattice size of 256 × 128
and a Womersley number of 15 (right), together with the corresponding analytical solutions
(in colored lines). From these results and from the fact that the flux difference between inlet
and outlet of the channel in the simulations was less than 2%, we conclude that the chosen
lattices and parameters were tuned so that the phenomenology of the problem was accurately
reproduced.

Figure 3: Velocity profiles along a period of simulations with Womersley 3.5 (left) and 15 (right) in
lattices of size 64×32 and 256×128, respectively, via LBM (in dashed black lines) and the corresponding
analytical solutions (in colored lines).

The main point to check while implementing a transient problem via LBM, besides the
ones mentioned for the stationary case, is the relation T/(L/cs) that has to be high in order to
minimize the inlet and outlet flux difference (spurious compressibility effects). A better study
of this relation will be presented for the three-dimensional case of the Womersley flow.

Driven Cavity in 3D. This problem is similar to the 2D case, but now the fluid is confined in a
cubic cavity with the upper wall moving in the ~x (horizontal) direction at speed Umax. Again,
this problem is characterized by the Reynolds number (see Eq. (5)).

For this problem, we have simulated cases with a Reynolds number range from 100 until
1000. In Fig. 4 we present some results of simulations with Reynolds number 100 (top subfig-
ures) and 1000 (bottom subfigures). As this problem has no analytical solution, we compared,
on the left side of the figure, results obtained from the present implementation with results from
the work of Yang et al. (1998). More specifically, we compared the velocity components ux

(horizontal) and uy (vertical) over lines on the ~y and ~x directions that cross the center, respec-
tively, obtained from the mentioned reference and from simulations via LBM with lattice sizes



50 × 50 × 50, 100 × 100 × 100 and 200 × 200 × 200. This figure shows that for the prob-
lem with Reynolds number 100 the results obtained via LBM are close to the ones obtained in
the reference with a less refined lattice (with 50 × 50 × 50 points) and for the problem with
Reynolds number 1000 the results obtained via LBM get closer to the reference results as the
lattice is refined. On the right side of this figure are plotted some velocity isosurfaces that show
the tridimensional structure of the velocity field. Here, we also notice the displacement of the
main vortex and the appearing of a new vortex as the Reynolds number changes.

Figure 4: On the left are compared the velocity components ux (horizontal) and uy (vertical) over lines
on the ~y and ~x directions that cross the center, respectively, obtained from Yang et al. (1998) and from
simulations via LBM with different lattice sizes. On the right are some velocity isosurfaces that show
the tridimensional structure of the velocity field.

Womersley flow in 3D. Like in the 2D case, this problem has analytical solution (A.M. Ar-
toli, 2006) and consists of an incompressible fluid confined in a cylindrical tube with constant



pressure on the right extremity (pout) and an oscillatory pressure on the left extremity (pin), like:

∆p(t) =
pout − pin(t)

Lx

= −A cos(µt). (8)

The problem is again characterized by the Womersley number, calculated as:

κ = R

√
µ

ν
, (9)

where, R is the tube radius.
We simulated this problem with a fixed Reynolds number of 1, and with Womersley num-

bers ranging from 3.5 to 20. In order to obtain results close to the analytical solutions we
employed the tactics presented on Section 3.

This problem was used to analyze how the aspect ratio (length×width) and the relation
T/(L/cs) have effect on the compressibility error (flux difference between outlet and inlet).
This study was done by simulating problems with a fixed Womersley number of 3.5 and aspect
ratios ranging from 2× 1 to 16× 1. We started the simulations with 1312 time steps per cycle
and double this quantity until the compressibility error got close to 1%. In Tab. 3 are shown the
compressibility error and the relation T/(L/cs) (referred as Tr) for the simulated cases, where
”*” indicates unstable and ”–” indicates not simulated. From this table one can see that there is
a direct relation between the relation Tr and the compressibility error, indicating that Tr ≥ 48
should lead to small compressibility errors.

Table 3: Compressibility errors of simulations with different aspect ratios.

Nt/1312 1 2 4 8 16 32
A.R. error Tr error Tr error Tr error Tr error Tr error Tr

1× 1 2.91% 24 0.70% 48 – – – – – – – –
2× 1 16.7% 12 3.67% 24 0.88% 48 – – – – – –
4× 1 166% 6 18.5% 12 4.00% 24 0.97% 48 – – – –
8× 1 * 3 168% 6 19.1% 12 4.16% 24 1.00% 48 – –
16× 1 * 1.5 * 3 167% 6 19.4% 12 4.13% 24 1.06% 48

In Fig. 5 one can see that the velocity profiles do not change along the tube if we set the
relation Tr = 48, even with at aspect ratio of 16× 1.

(a)

(b)

(c)

Figure 5: Velocity profiles along the tube at the time t = 0 obtained from simulations with Womersley
number 3.5 in tubes with aspect ratios of: (a) 1× 1,(b) 4× 1 and (c) 16× 1.



We also compared the results of simulations via LBM with Womersley numbers 3.5 (left)
and 20 (right) with lattices of size 64 × 32 × 32 and 256 × 128 × 128, respectively, in a tube
with aspect ratio 2 × 1 against the analytical solutions in Fig. 6. In this figure are plotted
8 velocity profiles, over a transversal line that crosses the center of the tube, along a cycle
obtained from simulations via LBM (in dashed black lines) and from the analytical solutions
(in colored lines). The good agreement between the solutions was reached by using the tactics
presented in Section 3.

Figure 6: Velocity profiles, over a transversal line, along a cycle obtained from simulations via LBM
(in dashed black lines) and from the analytical solutions (in colored lines) of problems with Womersley
numbers 3.5 (left) and 20 (right) in a tube with aspect ratio 2× 1.

4.2 Problems in hemodynamics

Here we present the method’s capability of simulating problems with physical properties
that are common in computational hemodynamics. In the next two problems we will model the
blood flow, in an arterial bend and in an artery with an aneurism, as a Newtonian incompressible
fluid with kinematic viscosity equal to 0.035cm2/s.

Arterial bend. In this problem we wish to model the blood flow in a cylindrical arterial bend
with aspect ratio 18× 1 driven by a pulsatile inflow at the superior extremity. The geometry of
the artery is described in Fig. 7.

Figure 7: Arterial bend geometry description.



The pulsatile inflow is assumed to have a parabolic profile and has an average speed de-
scribed by:

uin(t) = U

[
1− cos

(
2πt

T

)]
, (10)

where, T = 0.75s represents the pulse period and U = 16.9cm/s is the average speed of the
fluid at the inlet along a period. On the other extremity of the geometry is imposed a constant
reference pressure.

From the above parameters we conclude that this problem is characterized by a Womersley
number of 4.8 and a Reynolds number of 900.

In Fig. 8 are plotted some velocity profiles (left) and a representation of the secondary flow
that takes place (right) on a simulation with approximately 90 points over the artery diameter,
when the fluid reaches its top speed. On the left subfigure, we can see how the method captured
the velocity profile deformation along the bend and its reconstruction at the end, because of the
high aspect ratio. This profile deformation occurs specially because of the 90 degrees curvature
and the high Reynolds number. And on the right subfigure, the transversal slices along the
artery put in evidence the secondary vortices structures, showing the complexity of the flow.

Figure 8: Velocity profiles (left) and the secondary flow that takes place (right) when the fluid reaches
its top speed.

The high aspect ratio of the problem led us to adopt a very refined lattice in order to keep
the relation T/(L/cs) above 30 and, with that, we obtained a compressibility error of less than
2%.

Artery with an aneurism. In this problem we wish to see how the blood behaves in an
aneurism. For that we modeled the blood flow in a cylindrical artery, with aspect ratio 10 × 1,
that has a spherical aneurism driven by a pulsatile pressure on the left extremity. The geometry
of the artery is described in Fig. 9.

The oscillatory pressure at the inlet in described by:

pin(t) = pout + C(cos(µt) + 1), (11)

where, the constants C and µ were chosen such that problem is characterized by a Womersley
number of 4.5 and a Reynolds number of 400.



Figure 9: Geometry description of the artery with an aneurism.

In Fig. 10 are plotted some velocity isosurfaces (left) and a representation of the secondary
flow over some slices (right), when the fluid reaches its minor (top) and major (bottom) speeds.
The left subfigures indicate the structure of the flow in the region of the aneurism and show the
main vortex displacement. The subfigures on the right shows how the secondary flow changes,
specially inside the aneurism, in two instants of the pulse. In this simulation we used the relation
T/(L/cs) equal to 30 which led to a less then 1% compressibility error.

Figure 10: Some velocity isosurfaces (left) and a representation of the secondary flow over some
transversal slices (right), when the fluid reaches its minor (top) and major (bottom) speeds.

5. CONCLUSIONS

With the analysis of the implemented cases we conclude that the Lattice–Boltzmann Method,
together with the chosen equilibrium distribution and the models for implementing the boundary
conditions, was capable of simulating the phenomenology of the problems. More specifically,
we have successfully implemented problems in two and three dimensions, that were station-



ary and transient, with Reynolds numbers ranging from 1 to 1000, with Womersley numbers
ranging from 3.5 to 20 and aspect ratios ranging from 1× 1 to 18× 1.

An essencial part of the mentioned implementations was to correctly tune the involved
parameters as explained in Section 3 and experimented in Section 4. The four main parameters
to keep in mind are the relaxation parameter τ , the Mach number, the relation T/(L/cs) and the
lattice refinement.

As a continuation of this work we will extract more results from the analysis of the hemo-
dynamic problems, like the study of the walls tensions or the remain time of the blood inside
the aneurism. Also we are working on the simulation of blood flow in geometries obtained from
patient specific medical images.
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