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Abstract

In this work, we propose an extended variational formulation in order to handle
the problem of the flow of an incompressible fluid in compliant vessels with discon-
tinuous fields. This approach makes possible to tackle in a consistent variational
manner problems like the coupling between models of different dimensionality. This
approach is used in the context of modelling blood flow in large vessels. A computa-
tional implementation of the proposed formulation is also shown and discussed by
presenting examples of practical applications.
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1 Introduction

Computational modelling provides a powerful tool to study and correlate the
onset and progress of some cardiovascular diseases with the local patterns
of the blood flow [6,11,21,32]. Accordingly, the detailed modelling of fluid
mechanics processes on some specific arterial districts has become increasingly
important to understand the local hemodynamic phenomena [23,27].

Modelling the fluid mechanics aspects of blood flow involves several challeng-
ing issues that must be accounted for in order to achieve ever–increasing levels
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of realism in computational simulations. Among others, one of the most rele-
vant aspects of the problem is the fluid–structure interaction derived from the
coupling between the compliant properties of the vessel walls and the blood
flow. This feature defines the propagatory nature of the pulse wave which, in
turn, poses the problem of setting appropriate boundary conditions when a
particular district is artificially isolated from the rest of the network. It is pos-
sible to mention at least three ways of tackling this subject: the classical one
is based on obtaining boundary conditions by estimations or measurements
(see for instance [25,26]). The second one, presented recently in [35], is based
on computing what was called a Dirichlet–to–Neumann mapping that takes
into account the phenomena occurring downstream the 3D region through the
computation of the downstream vascular impedance. However, this method is
actually derived only for outflow boundary conditions and also under time–
periodic assumptions, which may result too restrictive to accommodate the
complex situations encountered in practice. Finally, the third possibility is
based on the use of coupled 3D–1D models where some zones are modelled at
a high level of detail (3D domain) while the remaining part of the system is
simplified to a 1D formulation or even to a 0D lumped model. In this way, it
is possible to achieve in a natural manner the systemic response of the whole
arterial tree [9,10,33]. While the second approach is by far more suitable than
the classical one, is the later the more appropriate in order to consider all the
complex interactions that occur within the whole system operating as a fully
integrated functional ensemble. This assertion must be understood regarding
the capability of automatically adapting boundary conditions to what hap-
pens beyond the limits of the 3D domain, either in time–varying conditions
or during parameter adjustment in the context of sensitivity analysis.

Several authors [9,33] have treated the problem of coupling full 3D models
based on the Navier Stokes equations in compliant domains with reduced 1D
models by making a priori assumptions directly incorporated into the partial
differential equation problem. This is done by prescribing the continuity of
some of the involved quantities (for instance flow rate and mean pressure) at
the coupling interfaces. Nevertheless, it must be noted that discontinuities may
emerge from the use of incompatible models at both sides of a given coupling
interface because of differences in the underlying kinematics, as well as from
the use of different levels of approximation for each part of the original domain.
For instance, in ref. [33], the continuity of the pressure (actually the normal
traction) between 3D and 1D models is stated in a weak sense. This, in turn,
implies, in a point–wise sense, the existence of a possible jump in the pressure
field when dealing with the corresponding discrete problem. Moreover, when
using elastic models for the arterial wall the area is uniquely determined by
the value of the internal pressure. As a consequence, the area of the vessel at
both sides of the coupling interfaces may differ from each other. This issue was
treated in [33] by relaxing the continuity of the cross sectional area, in contrast
to that suggested in [9] where this condition was stated as one of the coupling
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requirements. Consequently, the former alternative conducts to efficient fully
coupled schemes where numerical instabilities are practically avoided in con-
trast to that reported by Formaggia et al., [9]. Despite that, several other
sources of discontinuities may be noticed from the non–matching kinematics
over the coupling interfaces. For example, the abrupt change on the shape of
the velocity profile across an artificial internal boundary carries out relative
jumps on the linear momentum and wall shear stress. Observe that such a
change in the velocity profile can be interpreted as being consequence of a se-
lection of somehow incompatible kinematical reduction hypothesis over the 1D
portion of the model. Conversely, in ref. [10,13] the coupling of multidimen-
sional models is understood as a problem with a priori defective boundary
conditions on the 3D model due to the mismatch between the information
available at both sides of the interfaces. In fact, in those works the theory for
3D models with boundary conditions based upon mean quantities is devel-
oped. Within this approach the problem is interpreted as ill–posed since one
has full 3D fields at one side of the interface and only mean quantities at the
other side. Consequently, some supplementary assumptions are introduced in
order to “close” the problem.

Alternatively, the present work aims at tackling this situation from a different
perspective. Observe that a ND (N = 0, 1, 2) simplified model can be viewed
as a reduction of a complete 3D model by means of kinematical restrictions
introduced on a part of a given domain. Performing such kinematical assump-
tions allows us to reduce the full problem over that part of the domain to a 2D,
a 1D or even a 0D lumped problem. By looking at the whole domain again we
realize that, due to the dissimilarity between the underlying kinematics, we
generated discontinuities in the involved fields. Therefore, the original varia-
tional formulation, valid for fields that are continuous in the sense of the trace
of the functions over such a coupling interface, makes no sense in this new
situation. For this reason it is necessary to reformulate the problem, rewrit-
ing the variational principle in order to accommodate those discontinuities.
Hence, the main goal of the present work is to formulate an extended varia-
tional principle for problems where fields can become discontinuous at some
artificial internal boundary, that will be regarded as the coupling interface.
Moreover, we recast this problem within a unified variational statement from
which the coupling conditions are naturally derived. The conception of such
a consistent unified variational formulation of the coupled problem is very
desirable when performing, for instance, stability and error analysis on the
corresponding numerical schemes.

Although the application of these ideas to hemodynamic modelling is of our
main concern, this issue is inherent to a great variety of problems, and other
examples can easily be devised. For instance, the fluid–structure interaction
problem may involve different interpolations for the fluid and the solid domain,
as well as joining 3D solid models with shell models or even beam components
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may lead to discontinuous fields.

This work is organized as follows, in Section 2 a simple example is conducted
so as to outline the ideas behind this approach, formulating the coupling be-
tween models of different dimensionality for the heat transfer problem. In
Section 3 we address a classical statement for the problem of the flow of an
incompressible fluid in a compliant vessel, whilst in Section 4 this problem is
extended within the theoretical context of discontinuous fields. In Section 5 an
approximation of the problem presented in Section 4 is performed and a dis-
crete counterpart is given. Finally, in Section 6 several numerical experiments
are presented illustrating the capabilities of this approach in cardiovascular
modelling. In addition, situations where spurious reflections arise are identi-
fied.

2 Extended variational formulation for the heat transfer problem

In this section we present a simple example where the main idea of extending
a variational statement is introduced. Let Ω ⊂ Rnd (nd = 2, 3) with boundary
Γ and consider the variational formulation for the heat transfer problem: find
θ ∈ X such that

∫

Ω
k∇θ · ∇η dx =

∫

Ω
fη dx ∀η ∈ Y , (1)

where k is the conductivity coefficient assumed to be constant for the sake
of simplicity and f is a volume source. Regularity and essential boundary
conditions are accounted by the set X , while space Y accounts for admissible
variations of functions in X . For this example it is well–known that we have
X = {θ ∈ H1(Ω); θ = θ̄ on ΓD}, being ΓD the Dirichlet boundary. Without
loss of generality we consider that ΓD = Γ.

Let Γc be an artificial internal boundary that allows us to make a partition
of domain Ω, according to Figure 1 (here a 2D domain for simplicity), into
subdomains Ω1 and Ω2 with boundaries Γ1 and Γ2 respectively. Thus we have
Ω = Ω1 ∪ Ω2 ∪ Γc, Γc = Γ1 ∩ Γ2 and Γ = (Γ1 ∪ Γ2) \ Γc.

As a consequence of the regularity of functions in X we have that the traces
of θ1 and θ2 coincide over boundary Γc, and we must also consider that θ =
θ̄ on ΓD. Hence, the Euler equations and the Weierstrass–Erdmann corner
conditions associated to the variational problem (1), regarding the splitting of
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Fig. 1. Split of domain Ω.

the domain Ω, are given by





−k4θ1 = f in Ω1,

−k4θ2 = f in Ω2,

k∇θ1 · nc1 = k∇θ2 · nc1 on Γc,

(2)

where nc1 is the unit normal vector of boundary Γc (from domain Ω1).

For some reason that will be clarified later, we would like to enlarge the ad-
missible function set X , allowing functions to be discontinuous at Γc. In this
context, it is clear that the variational formulation (1) makes no sense and
must be altered in order to ensure that the solution of this extended problem
responds to the same Euler equations that those of the original problem. The
idea behind this modified variational formulation is to incorporate additional
terms based on the virtual power performed by the discontinuities of the un-
knowns on the interface. More precisely, let Xd = X1 × X2 where X1 = {θ1 ∈
H1(Ω1); θ1 = θ̄|Γ1D

on Γ1D} and X2 = {θ2 ∈ H1(Ω2); θ2 = θ̄|Γ2D
on Γ2D}.

Observe that Xd is a larger set, i.e., X ⊂ Xd. We also introduce variables
r1 ∈ Z1, r2 ∈ Z2, being Z1 and Z2 proper function sets. In this particular case
Z1 = Z2 = H−1/2(Γc). Index i will correspond to part Ωi, i = 1, 2. Then, there
exists a γ–family of equivalent variational formulations for the extended prob-
lem that reads as follows: for some γ ∈ [0, 1], find (θ, r1, r2) ∈ Xd × Z1 × Z2

such that

∫

Ω1

k∇θ1 · ∇η1 dx +
∫

Ω2

k∇θ2 · ∇η2 dx

+ γ
∫

Γc

r1(η1 − η2) dΓ + (1− γ)
∫

Γc

r2(η1 − η2) dΓ

+ γ
∫

Γc

s1(θ1 − θ2) dΓ + (1− γ)
∫

Γc

s2(θ1 − θ2) dΓ

=
∫

Ω1

fη1 dx +
∫

Ω2

fη2 dx ∀(η, s1, s2) ∈ Yd ×Z1 ×Z2, (3)
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with η = (η1, η2) ∈ Yd the admissible variations of functions in Xd given by

Yd = Y1 × Y2,

Y1 = {η1 ∈ H1(Ω1); η1 = 0 on Γ1D},
Y2 = {η2 ∈ H1(Ω2); η2 = 0 on Γ2D}.

(4)

It is readily verified that the Euler equations and the Weierstrass–Erdmann
corner conditions associated to the family of variational formulations (3), just
in terms of θ, are the following





−k4θ1 = f in Ω1,

−k4θ2 = f in Ω2,

k∇θ1 · nc1 = k∇θ2 · nc1 on Γc,

θ1 = θ2 on Γc,

(5)

where rγ = γr1+(1−γ)r2 = −k∇θ1 ·nc1 = −k∇θ2 ·nc1. Observe that the solu-
tion of the variational problem (3) satisfies the same Euler equations that the
variational problem (1). In this way it is possible, from a variational context,
to recover information of the original problem without imposing conditions
or restrictions over function sets X1 and X2 at Γc. The advantage here is the
arbitrariness in choosing sets X1 and X2.

Remark 1 On one hand, problem (3) resembles those variational formula-
tions derived from domain decomposition techniques [5]. Indeed, the present
approach may be regarded as a generalization, since by taking rγ = γr1 + (1−
γ)r2 as a unique variable within the problem we recover those methods. On the
other hand, by taking γ = 1

2
we recover another class of formulations arising

when minimizing relaxed functionals [8].

Remark 2 Notice that, for any associated discrete problem, formulation (3)
allows us to consider non–matching meshes for domains Ωi, i = 1, 2 at both
sides of the internal boundary Γc. In this case r1 and r2 may pertain to different
finite–dimensional spaces. Therefore, for each value of γ, the sense in which
the Euler equations are satisfied is strongly related to the characteristics of
each mesh.

In anticipation of treating the coupling problem between hemodynamics mod-
els of different dimensionality, we will present at this stage the simple case of
coupling 3D–1D models for the heat transfer equations. This situation can be
thought of as a problem where discontinuous fields arise due to the difference
in the kinematics assumed for different parts of the domain.

Let us consider the particular situation exposed in Figure 2 for which we have
Γ = ΓA ∪ΓL1 ∪ΓL2 ∪ΓB, with essential boundary conditions over ΓA and ΓB,
namely θ̄A and θ̄B, and with homogeneous Neumann boundary condition over
ΓL1 ∪ ΓL2 .
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Fig. 2. Coupling 3D–1D models for the heat transfer problem.

In the extended variational formulation (3) we assume the temperature θ1 to be
constant along each transversal section with respect to the axial direction ez.
That is, θ|Ω1 = θ1(z) where z is the coordinate over ez axis. Consequently we
denote with η1(z) the admissible variations of the temperature in Ω1. We also
consider r1 constant on Γc. With these assumptions it is possible to integrate
along the transversal section and to write a reduced 1D model achieving the
following problem: for some γ ∈ [0, 1], find (θ1, θ2, r1, r2) ∈ Xd×Z1×Z2 such
that

∫ L

0
A(z)k

∂θ1

∂z

∂η1

∂z
dz +

∫

Ω2

k∇θ2 · ∇η2 dx

+ γ
∫

Γc

r1(η1 − η2) dΓ + (1− γ)
∫

Γc

r2(η1 − η2) dΓ

+ γ
∫

Γc

s1(θ1 − θ2) dΓ + (1− γ)
∫

Γc

s2(θ1 − θ2) dΓ

=
∫ L

0
f̄η1 dz +

∫

Ω2

fη2 dx ∀(η1, η2, s1, s2) ∈ Yd ×Z1 ×Z2, (6)

where f̄ =
∫
Γz

f dΓ over each transversal section. In this particular case it is
easy to see that, being Xd = X1 ×X2, we have

X1 = {θ1 ∈ H1(0, L); θ1 = θ̄A in z = 0},
X2 = {θ2 ∈ H1(Ω2); θ2 = θ̄B on ΓB},
Z1 = R,

Z2 = H−1/2(Γc).

(7)

In the following we give the main steps in proving the existence and uniqueness
of the solution. Firstly, the existence and uniqueness of the solution θ = (θ1, θ2)
is straightforwardly proved by using the theory of elliptic problems [5,12],
for which we have to work with the kernel of the operator B (associated to
the bilinear form b(·, ·) corresponding to the equation of rγ = γr1 + (1 −
γ)r2), that is a subspace of Xd. Indeed, let Wd = H1(0, L)×H1(Ω2) equipped
with the norm ‖θ‖Wd

= ‖θ1‖H1(0,L) + ‖θ2‖H1(Ω2) and consider the following
decomposition θ = µ+ ξ where ξ ∈ Wd is such that ξ1(0) = θ̄A, ξ1(L) = 0 and
ξ2|ΓB

= θ̄B, ξ2|ΓA
= 0, while µ ∈ Kγ ⊂ Ker(B) being

Kγ =

{
µ = (µ1, µ2) ∈ Wd; µ1(0) = 0, µ2|ΓB

= 0,

γ
[
µ1(L)− 1

Ac

∫

Γc

µ2 dΓ
]

= 0, (1− γ)[µ1(L)− µ2|Γc
] = 0

}
. (8)
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Consider the bilinear form a : Kγ ×Kγ → R

a(µ, η) =
∫ L

0
Ak

∂µ1

∂z

∂η1

∂z
dz +

∫

Ω2

k∇µ2 · ∇η2 dx, (9)

that is trivially symmetric, continuous and coercive in Kγ ×Kγ provided A ∈
L∞(0, L) and A ≥ Ao > 0, k ≥ ko > 0 in (0, L) (that is always satisfied).
Consider the linear functional l : Kγ → R given by

l(η) =
∫ L

0
f̄η1 dz +

∫

Ω2

fη2 dx, (10)

that is obviously continuous in Kγ provided f̄ ∈ H−1(0, L) and f ∈ H−1(Ω2).
Then, by the Lax–Milgram theorem there exists a unique solution µ ∈ Kγ ⊂
Ker(B) such that

a(µ, η) = l̃(η) ∀η ∈ Kγ, (11)

where l̃(η) = l(η) − a(ξ, η). Therefore, the existence and uniqueness of θ =
(θ1, θ2), solution of problem (19) follow. To prove the existence and uniqueness

of rγ ∈ H
−1/2
J·K (Γc), we need to resort to the theory of mixed problems [5,12].

In this case we have a classical mixed problem with a bilinear form b : Yd ×
H
−1/2
J·K (Γc) → R given by

b(µ, rγ) =
∫

Γc

rγ(µ1 − µ2) dΓ. (12)

Since the bilinear form b(·, ·) satisfies the corresponding inf–sup condition, i.e.
the existence of β0 > 0 such that

β0 ≤ inf
rγ∈H

−1/2

J·K (Γc)

rγ 6=0

sup
ψ∈Wd

JµK=ψ1(L)−ψ2|Γc

ψ1(L)6=ψ2|Γc

∫

Γc

rγJµK dΓ

‖ψ‖Wd
‖rγ‖H

−1/2

J·K (Γc)

, (13)

then there exists a unique rγ ∈ H
−1/2
J·K (Γc) solution of problem (6). It remains

to see (13). Observe that H
−1/2
J·K (Γc), endowed with the norm

‖rγ‖H
−1/2

J·K (Γc)
= sup

JµK∈H
1/2

J·K (Γc)

JµK6=0

∫

Γc

rγJµK dΓ

‖JµK‖
H

1/2

J·K (Γc)

, (14)

is the dual space of H
1/2
J·K (Γc) defined by

H
1/2
J·K (Γc) = {JµK ∈ H1/2(Γc); µ ∈ Wd; JµK = µ1(L)− µ2|Γc

}, (15)
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equipped with the norm

‖JµK‖
H

1/2

J·K (Γc)
= inf

ϕ∈Wd
JµK=ϕ1(L)−ϕ2|Γc

‖ϕ‖Wd
. (16)

Thus, for any β1 > 1 we can choose ψ such that ψ1(L)− ψ2|Γc
= JµK and

‖ψ‖Wd
≤ β1‖JµK‖H

1/2

J·K (Γc)
. (17)

From definition (14), and using (17) we have for β2 > 1 the following

1

β2

‖rγ‖H
−1/2

J·K (Γc)
< sup

JµK∈H
1/2

J·K (Γc)

JµK6=0

∫

Γc

rγJµK dΓ

‖JµK‖
H

1/2

J·K (Γc)

≤ β1 sup
ψ∈Wd

JµK=ψ1(L)−ψ2|Γc

ψ1(L)6=ψ2|Γc

∫

Γc

rγJµK dΓ

‖ψ‖Wd

,

(18)
and (13) follows with β0 = 1

β1β2
> 0.

It is worthwhile to show the consequences of considering different values of
γ for this particular case. The general situation gives, from variational for-
mulation (6), the following Euler equations and Weierstrass–Erdmann corner
conditions





−k
∂

∂z

(
A(z)

∂θ1

∂z

)
= f̄ in (0, L),

−k4θ2 = f in Ω2,

k∇θ2 · n2 = 0 on ΓL2 ,

−k
∂θ1

∂z
= γr1 + (1− γ)

1

Ac

∫

Γc

r2 dΓ in z = L,

−k∇θ2 · n1 = γr1 + (1− γ)r2 on Γc,

γ
[
θ1 − 1

Ac

∫

Γc

θ2 dΓ
]

= 0 in z = L,

(1− γ)
[
θ1 − θ2

]
= 0 on Γc.

(19)

Observe now that the value of γ is important since it determines the sense
in which equations (19) are satisfied. For example with γ = 1 we have the
following problem





−k
∂

∂z

(
A(z)

∂θ1

∂z

)
= f̄ in (0, L),

−k4θ2 = f in Ω2,

k∇θ2 · n2 = 0 on ΓL2 ,

k
∂θ1

∂z
= k∇θ2 · n1 on Γc,

θ1 =
1

Ac

∫

Γc

θ2 dΓ in z = L.

(20)
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The above set of equations can be interpreted, roughly speaking, as a problem
in which the 1D model feeds the 3D model with a constant Neumann boundary
condition (equation (20)4), while the 3D model provides the 1D model with a
Dirichlet boundary condition (equation (20)5). Notice that for this situation
we have r1 = −k ∂θ1

∂z
(L) = −k(∇θ2 · n1)|Γc

, and hence ∇θ2 · n1 is constant on
Γc.

The case γ = 0 leads to





−k
∂

∂z

(
A(z)

∂θ1

∂z

)
= f̄ in (0, L),

−k4θ2 = f in Ω2,

k∇θ2 · n2 = 0 on ΓL2 ,

k
∂θ1

∂z
=

1

Ac

∫

Γc

k∇θ2 · n1 dΓ in z = L,

θ1 = θ2 on Γc.

(21)

Contrariwise, this problem can be viewed, again roughly speaking, as a situ-
ation where the 1D model furnishes the 3D model with a constant Dirichlet
boundary condition (equation (21)5), while the 3D model feeds the 1D model
with a Neumann boundary condition (equation (21)4). In this case we have
r2 = −k(∇θ2 · n1)|Γc and −k ∂θ1

∂z
(L) = 1

Ac

∫
Γc

r2 dΓ.

Observe that there exists a reciprocity relationship between cases at both
extreme values of γ. In effect, for the case γ = 0 we obtain a situation in
which the continuity in θ is actually enforced in a point–wise sense. As a
counterpart we only recover the continuity of the mean value for the heat flow
(see equation (21)4). Conversely, with γ = 1 we have ensured the continuity
for the heat flux in a point–wise sense, while in this case we only recover
the continuity for the mean value of the temperature (see equation (20)5).
Nonetheless, in spite of the differences commented, we see that always we
attain a well–posed problem for any choice of γ. That is, we can go from a
pure Dirichlet (Neumann) problem, with γ = 0, to a pure Neumann (Dirichlet)
problem, with γ = 1, concerning the 3D domain (1D domain).

The opposite situations referred to in the above arise only in the particu-
lar case when a kinematical assumption over a portion of the domain Ω has
been considered. In the case of no kinematical constraints, as the situation
given by problem (3), we do not discern this reciprocity, and the kinemati-
cal restrictions appear only at the discrete counterpart of the problem when
the corresponding, possibly non–matching, discretizations for Ω1 and Ω2 are
given.
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3 Variational formulation for fluid flow in compliant vessels

In this section we address the problem of the flow of an incompressible fluid
within a compliant domain.

Let us consider an arbitrary compliant vessel given by the domain Ω ⊂ Rnd ,
(nd = 2, 3) as shown in Figure 3 with boundary Γ decomposed in the part
corresponding to the wall, namely Γw, and the corresponding ones to each
input–output face, namely Γi. Thus we have Γ = Γw ∪

(
∪Ns

i=1Γi

)
, where Ns is

the total number of faces for which we have interchange of mass by setting
corresponding Dirichlet conditions. Let us suppose a no–slip condition over Γw,
even so, we consider the corresponding traction over Γw that accomplishes
the equilibrium. This traction will be given consistent with the structural
model. The problem can be stated in an Eulerian framework, or in an arbitrary
Lagrangian–Eulerian framework as well [16].

Fig. 3. Arbitrary compliant vessel.

Within the context of an ALE variational approach, the flow of an incom-
pressible fluid in a compliant vessel, like the one shown in Figure 3, can be
formulated as follows: for every t ∈ (0, T ), find (u, p) ∈ U × P such that

∫

Ω
ρ
∂u

∂t

∣∣∣∣∣
Y

· v dx +
∫

Ω
ρ∇u(u−w) · v dx

−
∫

Ω
p div v dx +

∫

Ω
σD(u) · ε(v) dx−

∫

Ω
f · v dx

−
∫

Γw

tw · v dΓ = 0 ∀v ∈ V , (22a)

∫

Ω
ρ div u q dx = 0 ∀q ∈ Q, (22b)

with proper initial conditions. Here, u is the velocity field, v is an admissible
variation of the velocity field, w is the velocity of the ALE frame of reference,
σ = −pI + σD(u) is the Cauchy stress tensor where p is the pressure field
and σD(u) is its deviatoric part, q is an admissible variation of the pressure
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field, ρ is the fluid density, f is a volume force, tw is the traction vector over
the vessel wall, n is the corresponding outward unit normal vector and ε(v)

is the strain rate tensor associated to the admissible variation v. Also, ∂(·)
∂t

∣∣∣
Y

denotes the derivative when fixing ALE coordinates Y, also f and tw are such
that expression (22a) makes sense. After a little of calculus it is possible to
obtain a conservative form for the mass conservation equation as follows

d

dt

∫

Ω
ρq dx−

∫

Ω
ρ(u−w) · ∇q dx+

∫

Γ
ρ(u−w) · n q dΓ = 0 ∀q ∈ Q. (23)

In this problem we consider null mass flux across the vessel wall Γw.

The set U × P establishes regularity and essential boundary conditions such
that problem (22) is well–posed. Therefore, variational formulation (22) is well
stated only when working with fields (u, p) being regular enough in Ω, in the
sense that the pair must be in U × P . It is usual to consider for formulation
(23) that

U = {u ∈ [H1(Ω)]nd ; u|Γi
= ūi on Γi, i = 1, . . . , Ns},

P = L2(Ω),
(24)

while we demand additional regularity for field p if we work with the conser-
vative form of the mass conservation given by (23).

So far it was not specified how the vessel wall responds to fluid stresses. At
this moment it is assumed that there exists a model for the wall that takes
into account the fluid–structure interaction problem by means of a traction
vector tw such that a no–slip condition over Γw is accomplished.

4 Extended variational formulation for fluid flow in compliant ves-
sels

In order to recast the problem of coupling 3D with 1D models for modelling
the blood flow in large arteries we turn to introducing different kinematics for
each part of a given domain, that will correspond to the 3D and 1D models. In
this sense, we interpret that discontinuities may occur at the coupling interface
as a result of the dissimilarity between the kinematics of each model, in the
same way as done in the heat transfer problem. The goal of this section is
to introduce an extended governing variational principle that allows us to
establish different kinematics for different parts of a given split domain, and
thus to manage the mentioned discontinuities in the involved fields.
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4.1 Statement of the problem

For the sake of simplicity in illustrating the problem we work with the simple
domain already shown in Figure 2. Recall that Γc is an internal boundary of Ω
that splits the domain as being Ω = Ω1 ∪Ω2 ∪ Γc, with boundaries Γ1 and Γ2

respectively. Thus, we have Γc = Γ1 ∩ Γ2. The vessel wall is now decomposed
as Γw = Γw1∪Γw2, and we also refer to ΓA and ΓB as Γin and Γout respectively.
Then we have Γ1 = Γin ∪ Γw1 ∪ Γc and Γ2 = Γout ∪ Γw2 ∪ Γc. As mentioned,
we will work with different kinematics on each part of Ω, say Ω1 and Ω2,
proceeding analogously to that performed for the heat transfer problem.

We shall also suppose, without loss of generality, that the problem is such that
has proper Dirichlet boundary conditions at both extremes of domain Ω, that
is at Γin and Γout. In this way, the analysis will be focused where discontinuities
occur, that is on Γc.

Let us consider over Ωi function set Ui × Pi, i = 1, 2, that will characterize
the corresponding model. No assumptions are made concerning conditions at
interface Γc. Let us take the velocity w of the ALE frame of reference such
that w · n = 0 on Γin, Γout and Γc. With regards to traction tw, it will be
given such that u = w on Γw = Γw1 ∪ Γw2. Although we have presented the
general problem with a Neumann boundary condition over Γw, observe that
it would be equivalent if we consider a no–slip condition over such a portion
of the boundary.

Let us write u = (u1,u2), with u1 ∈ U1 and u2 ∈ U2. In the same way it
is p = (p1, p2) with p1 ∈ P1 and p2 ∈ P2. Then we have Ud = U1 × U2 and
Pd = P1 × P2. We will focus our attention upon the momentum equation.
Thus, the resulting extended variational principle for the momentum balance,
written in a total Eulerian form in domain Ω1, is the following

∫

Ω1

ρ
∂u1

∂t
· v1 dx +

∫

Ω1

ρ(∇u1)u1 · v1 dx

−
∫

Ω1

p1 div v1 dx +
∫

Ω1

σD(u1) · ε(v1) dx−
∫

Ω1

f · v1 dx−
∫

Γw1

tw · v1 dΓ

+
∫

Ω2

ρ
∂u2

∂t

∣∣∣∣∣
Y

· v2 dx +
∫

Ω2

ρ∇u2(u2 −w) · v2 dx

−
∫

Ω2

p2 div v2 dx +
∫

Ω2

σD(u2) · ε(v2) dx−
∫

Ω2

f · v2 dx−
∫

Γw2

tw · v2 dΓ

+
∫

Γc

[γr1 + (1− γ)r2] · (v2−v1) dΓ +
∫

Γc

[γs1 + (1− γ)s2] · (u2−u1) dΓ = 0

∀(v, s1, s2) ∈ Vd ×Z1 ×Z2, (25)

where r1 ∈ Z1 and r2 ∈ Z2 are the counterpart variables of r1 and r2 present
in the heat transfer problem, with variations s1 and s2 respectively. Also we
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have v = (v1,v2) ∈ Vd = V1 × V2.

Notice that formulation (25) could have also been generalized for the situation
with several faces Γci, i = 1, . . . , Nc where discontinuities can occur. This
generalization is straightforward and was omitted here for the sake of brevity.

Now let us suppose that fields u1, p1 and r1 over Ω1 and Γc respectively are
given by the following particular forms

u1 = ū(z, t)ez,

p1 = p̄(z, t),

r1 = r̄1(t)ez,

(26)

where ez is the unit axial vector in the direction of the normal to a generic
transversal plane defined by coordinates x, y (see Figure 2).

Therefore, introducing assumptions (26) into expression (25), integrating over
the transversal area Γz, namely A(z, t), considering the corresponding form
of the admissible variations and assuming that there is no elongation of the
domain in the ez direction we obtain, after a little of work, the following
expression

∫ L

0
ρA

∂ū

∂t
v̄ dz +

∫ L

0
ρAū

∂ū

∂z
v̄ dz−

∫ L

0
Ap̄

∂v̄

∂z
dz +

∫ L

0
σ̄(ū) · (ez ⊗ ez)

∂v̄

∂z
dz

−
∫ L

0

∮

Cz

tzwv̄ dl dz −
∫ L

0
f zv̄ dz

+
∫

Ω2

ρ
∂u2

∂t

∣∣∣∣∣
Y

· v2 dx +
∫

Ω2

ρ∇u2(u2 −w) · v2 dx

−
∫

Ω2

p2 div v2 dx +
∫

Ω2

σD(u2) · ε(v2) dx−
∫

Ω2

f · v2 dx−
∫

Γw2

tw · v2 dΓ

+
∫

Γc

[γr̄1(v2 · n1 − v̄) + (1− γ)r2 · (v2 − v̄n1)] dΓ

+
∫

Γc

[γs̄1(u2 · n1 − ū) + (1− γ)s2 · (u2 − ūn1)] dΓ = 0

∀(v, s1, s2) ∈ Vd ×Z1 ×Z2, (27)

where f z =
∫
Γz

f · ez dΓ, σ̄D(ū) =
∫
Γz

σD(ū) dΓ, Cz is the boundary curve of
the generic transversal section A(z, t) and tzw is the component of tw in the ez

direction. Also notice that over Γc we have ez = n1 = −n2. It is not difficult
to see that

∮

Cz

tzw dl = p̄
∂A

∂z
−

∮

Cz

σD(ū) · (ez ⊗ nw) dl, (28)

where nw is the outward unit normal vector of the boundary corresponding
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to the wall Γw1. Introducing this expression in equation (27) follows that

∫ L

0
ρA

∂ū

∂t
v̄ dz +

∫ L

0
ρAū

∂ū

∂z
v̄ dz−

∫ L

0
Ap̄

∂v̄

∂z
dz +

∫ L

0
σ̄(ū) · (ez ⊗ ez)

∂v̄

∂z
dz

−
∫ L

0
p̄
∂A

∂z
v̄ dz +

∫ L

0

∮

Cz

σD(ū) · (ez ⊗ nw)v̄ dl dz −
∫ L

0
f zv̄ dz

+
∫

Ω2

ρ
∂u2

∂t

∣∣∣∣∣
Y

· v2 dx +
∫

Ω2

ρ∇u2(u2 −w) · v2 dx

−
∫

Ω2

p2 div v2 dx +
∫

Ω2

σD(u2) · ε(v2) dx−
∫

Ω2

f · v2 dx−
∫

Γw2

tw · v2 dΓ

+
∫

Γc

[γr̄1(v2 · n1 − v̄) + (1− γ)r2 · (v2 − v̄n1)] dΓ

+
∫

Γc

[γs̄1(u2 · n1 − ū) + (1− γ)s2 · (u2 − ūn1)] dΓ = 0

∀(v, s1, s2) ∈ Vd ×Z1 ×Z2. (29)

Concerning the mass conservation, from equation (23) we have

d

dt

∫

Ω1

ρq1 dx−
∫

Ω1

ρ(u1 −w) · ∇q1 dx +
∫

Γ1

ρ(u1 −w) · n1 q1 dΓ+

d

dt

∫

Ω2

ρq2 dx−
∫

Ω2

ρ(u2 −w) · ∇q2 dx +
∫

Γ2

ρ(u2 −w) · n2 q2 dΓ

= 0 ∀q ∈ Qd, (30)

where q = (q1, q2) ∈ Qd = Q1 × Q2. From this expression it can be easily
verified, by introducing assumptions (26), that

∫ L

0
ρ
∂A

∂t
q̄ dz +

∫ L

0
ρ
∂(Aū)

∂z
q̄ dz +

∫

Ω2

ρ div u2q2 dx = 0 ∀q ∈ Qd. (31)

4.2 Euler equations

Let us obtain the Euler equations related to variational expression (29) and
(31). Recall that over Γin and Γout we impose a Dirichlet boundary condition.
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Thus, in the sense of distributions it is possible to write from (29) the following

∫ L

0

[
ρA

∂ū

∂t
+ ρAū

∂ū

∂z
+

∂(Ap̄)

∂z
− ∂

∂z

(
σ̄D(ū) · (ez ⊗ ez)

)
− p̄

∂A

∂z

+
∮

Cz

σD(ū) · (ez ⊗ nw) dl − f z

]
v̄ dz

+
∫

Ω2

[
ρ
∂u2

∂t

∣∣∣∣∣
Y

+ ρ∇u2(u2 −w) +∇p2 − div σD(u2)− f

]
· v2 dx

[
−Acp̄ + Acσ̄D(ū) · (ez ⊗ ez)−

(
γAcr̄1 + (1− γ)

∫

Γc

r2 · n1 dΓ
)]

v̄

∣∣∣∣∣
z=L

+
∫

Γc

[
(−p2I + σD(u2))n2 + γr̄1n1 + (1− γ)r2

]
· v2 dΓ

+
∫

Γw2

[
(−p2I + σD(u2))n2 − tw

]
· v2 dΓ

+ γs̄1

[
−Acū +

∫

Γc

u2 · n1 dΓ
]

+ (1− γ)
[∫

Γc

(u2 − ūn1) · s2 dΓ
]

= 0

∀(v, s1, s2) ∈ Vd ×Z1 ×Z2, (32)

where Ac is the value of the area at Γc. Also, from (31) we have

∫ L

0
ρ

[
∂A

∂t
+

∂(Aū)

∂z

]
q̄ dz +

∫

Ω2

ρ div u2q2 dx = 0 ∀q ∈ Qd. (33)

Hence we recast the following nonlinear system of Euler equations and Weierstrass–
Erdmann corner conditions

ρA
∂ū

∂t
+ ρAū

∂ū

∂z
= −A

∂p̄

∂z
+

∂

∂z

(
σ̄D(ū) · (ez ⊗ ez)

)

−
∮

Cz

σD(ū) · (ez ⊗ nw) dl + f z in (0, L)× (0, T ), (34a)

ρ
∂u2

∂t

∣∣∣∣∣
Y

+ ρ∇u2(u2 −w) = −∇p2

+ div σD(u2) + f in Ω2 × (0, T ), (34b)

∂A

∂t
+

∂(Aū)

∂z
= 0 in (0, L)× (0, T ), (34c)

div u2 = 0 in Ω2 × (0, T ), (34d)

tw = [−p2I + σD(u2)]n2 on Γw2 × (0, T ), (34e)

γr̄1 + (1− γ)
1

Ac

∫

Γc

r2 · n1 dΓ =

− p̄ + σ̄D(ū) · (n1 ⊗ n1) in {z = L} × (0, T ), (34f)
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γr̄1n1 + (1− γ)r2 = [−p2I + σD(u2)]n1 on Γc × (0, T ), (34g)

γ
[
Acū−

∫

Γc

u2 · n1 dΓ
]

= 0 in {z = L} × (0, T ), (34h)

(1− γ)
[
u2 − ūn1

]
= 0 on Γc × (0, T ), (34i)

where point z = L corresponds to face Γc (see Figure 2).

As in the heat transfer problem, when γ = 1 we obtain, from equations (34f)–
(34g), the following

r̄1 = −p̄ + σ̄D(ū) · (n1 ⊗ n1) in {z = L} × (0, T ),

r̄1n1 = [−p2I + σD(u2)]n1 on Γc × (0, T ).
(35)

Therefore, combining these expressions and from equation (34h) we finally
arrive to

[−p2I + σD(u2)]n1 = [−p̄ + σ̄D(ū) · (n1 ⊗ n1)]n1 on Γc × (0, T ), (36a)

Acū =
∫

Γc

u2 · n1 dΓ in {z = L} × (0, T ), (36b)

that may be read, again roughly speaking, as a case where the 1D model feeds
the 3D model with a constant Neumann boundary condition, whilst the 3D
model supplies the 1D model with a Dirichlet boundary condition. Observe
that the variational formulation naturally gives the continuity in the quantities
of interest, namely flow rate and normal traction.

On the other hand, if γ = 0 we arrive, in a similar manner, to the following
expressions

1

Ac

∫

Γc

[−p2 + σD(u2) · (n1 ⊗ n1)] dΓ =

− p̄ + σ̄D(ū) · (n1 ⊗ n1) in {z = L} × (0, T ), (37a)

u2 = ūn1 on Γc × (0, T ), (37b)

where, contrarily to the previous case, the 1D model provides the 3D model
with a constant Dirichlet boundary condition, while the 3D model feeds the 1D
model with a Neumann boundary condition. Then, in this case, the variational
principle gives the continuity in the velocity field and in the mean normal
traction.

Also, it is worth noticing that the governing variational principle stated in
this work leads to those formulations mentioned in [10,34], that are aimed
at handling problems with defective boundary conditions. Note that in this
case we have extended the formulation for a larger class of problems. Indeed,
consider γ = 1. On one hand we can assume that Qc is known (we are in
this case not interested in what happens in domain Ω1) and then we have
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the prescribed flow rate problem treated in references [10,34]. In this case r̄1

represents the associated Lagrange multiplier that enforces the given flow rate.
On the other hand, if what we know is r̄1 = −p̄ (again we are forgetting what
occurs in Ω1) then we recover the so called mean pressure problem, and the
flow rate Qc is a mere consequence.

Fluid over domain Ω2 is hereafter considered as Newtonian, that is

σD(u2) = 2µε(u2), (38)

while for domain Ω1 the following constitutive law is considered, given for
simplicity in cylindrical coordinates (r, θ, z)

σD(ū) =




0 0 Cūr

0 0 0

Cūr 0 0




, (39)

with C = −4πµ
A

.

Remark 3 As far as constitutive laws are concerned note that it is possible to
establish different constitutive behaviors for both domains Ω1 and Ω2, since ex-
pressions σD(ū) and σD(u2) need not be in compliance with any compatibility
condition between them.

Therefore, assuming an axisymmetric pipe, the momentum equation (34a)
results

ρA
∂ū

∂t
+ ρAū

∂ū

∂z
= −A

∂p̄

∂z
− 8πµū + f z in (0, L)× (0, T ), (40)

thus incorporating those classical frictional terms seen in the literature for the
1D model [1,15,24], whilst equation (34f) now is

γr̄1 + (1− γ)
1

Ac

∫

Γc

r2 · n1 dΓ = −p̄ in {z = L} × (0, T ). (41)

For implementation purposes we continue with γ = 1 since for this choice we
recover the exact solution of a total developed velocity profile in the stationary
case.
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Certainly, the problem in terms of the Euler equations is the following

ρA
∂ū

∂t
+ ρAū

∂ū

∂z
= −A

∂p̄

∂z
− 8πµū + f z in (0, L)× (0, T ), (42a)

ρ
∂u2

∂t

∣∣∣∣∣
Y

+ ρ∇u2(u2 −w) = −∇p2 + µ4u2 + f in Ω2 × (0, T ), (42b)

∂A

∂t
+

∂(Aū)

∂z
= 0 in (0, L)× (0, T ), (42c)

div u2 = 0 in Ω2 × (0, T ), (42d)

(−p2I + 2µε(u2))n1 = −p̄n1 on Γc × (0, T ), (42e)

Acū =
∫

Γc

u2 · n1 dΓ on Γc × (0, T ). (42f)

Equation (42e) stands for the continuity of the traction vector at Γc, while
expression (42f) is the counterpart of the mass conservation at Γc.

Consequently, the general setting proposed here allowed us to obtain not only
the equilibrium equations for both models, but also the corresponding cou-
pling terms that are now naturally derived since they are implied within the
governing variational principle.

Notice that when the set of equations (42), or equivalently (29)–(31), is in-
tended to model the fully coupled fluid–structure interaction problem that
arises in the context of hemodynamics, it must be complemented with appro-
priate relations characterizing the structural behavior of the vessel wall, as
will be done in Section 5.

5 Approximate solutions

This section is devoted to present the approximation techniques in order to
find approximate solutions for the problem treated in the previous section. Be-
fore introducing such a numerical scheme, it is necessary to specify the arterial
wall behavior in order to characterize the derived fluid–structure interaction
model. Accordingly, we choose a simple model such that corresponding coun-
terpart expressions at both parts of the domain (3D and 1D parts) can be
given in order to recover an analogous behavior at both sides of the coupling
interfaces. Hence we will use the independent ring model [14,19,20] because of
its simplicity and also it leads to realistic results. The corresponding equations
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for both 1D and 3D domains are the following

p̄ = p̄0 +
EπR0h0

A

(√
A

A0

− 1

)

+
kπR0h0

A

1

2
√

A0A

∂A

∂t
in (0, L)× (0, T ), (43a)

p2 = p20 +
Eh

R2
0

ζ +
kh

R2
0

∂ζ

∂t
on Γw2 × (0, T ), (43b)

where index 0 denotes reference values, ζ is an scalar representing the wall
displacement in the direction of the outward unit normal vector, E is the
effective Young modulus, k is the fluidity of the wall and R and h are the wall
radius (in the transversal direction) and wall thickness respectively.

As a consequence of the previous choice, the resultant 1D model becomes
predominantly hyperbolic in response. Thus, the canonical form of equations
(42a)–(42c) along the characteristics lines is more appropriate for deriving
numerical schemes [7,28]. Therefore, it will be used as the starting point in
order to obtain an approximate solution in terms of the flow rate Q = Aū,
the cross sectional area A and the pressure p̄. Notice that this transformation
only affects terms defined on the interior of the one dimensional domain, and
no modifications on the boundary terms are introduced.

Correspondingly, from equation (43b) we compute the displacement ζ, from
which we obtain the displacement γY of the ALE frame of reference by solving
some well posed problem. In this work a Laplace equation is employed in order
to extend the wall displacements to the interior of Ω2. Finally, the velocity w
of the ALE formulation is directly computed taking the time derivatives of
the field γY. Therefore, since we know over Γw2 the velocity field w this is
the moment in which we could impose easily the no–slip Dirichlet boundary
condition by making u2|Γw2

= w on Γw2 instead of considering the equivalent
Neumann boundary condition avoiding the evaluation of the corresponding
traction tw.

With these considerations, rewriting problem given by equations (29) and (31)
eliminating the additional unknown r̄1 since it is known from equation (41),
also considering constitutive relations (38) and (39), and in view of equations
(43) we obtain the complete formulation written in terms of the actual un-
knowns for this problem: for every t ∈ (0, T ), find (Q,A, p̄,u2, p2, γY) ∈ W
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such that

∫ L

0
ρ


DQ

Dt

∣∣∣∣∣
(−)

− f+DA

Dt

∣∣∣∣∣
(−)

− ḡ


 Q̄

λ1

dz

+
∫ L

0
ρ


DQ

Dt

∣∣∣∣∣
(+)

− f−
DA

Dt

∣∣∣∣∣
(+)

− ḡ


 Q̄

λ1

dz

+
∫

Ω2

ρ
∂u2

∂t

∣∣∣∣∣
Y

· v2 dx +
∫

Ω2

ρ∇u2(u2 −w) · v2 dx

−
∫

Ω2

p2 div v2 dx+2
∫

Ω2

µε(u2) · ε(v2) dx−
∫

Ω2

f · v2 dx−
∫

Γc

p̄n1 · v2 dΓ

+
∫

Γc

ρ(u2 · n1 − ū)
Q̄

λ3

dΓ = 0 ∀(Q̄,v2) ∈ WδQ ×Wδu2 , (44a)

∫ L

0
ρf+


DQ

Dt

∣∣∣∣∣
(−)

− f+DA

Dt

∣∣∣∣∣
(−)

− ḡ


 Ā

λ2

dz

+
∫ L

0
ρf−


DQ

Dt

∣∣∣∣∣
(+)

− f−
DA

Dt

∣∣∣∣∣
(+)

− ḡ


 Ā

λ2

dz +
∫

Ω2

ρ div u2q2 dx

= 0 ∀(Ā, q) ∈ WδA ×Wδp2 , (44b)

∫

Ω2

κ∇γY · ∇vY dx = 0 ∀vY ∈ WδγY
, (44c)

p̄ = p̄0 +
EπR0h0

A

(√
A

A0

− 1

)
+

kπR0h0

A

1

2
√

A0A

∂A

∂t
in (0, L), (44d)

p2 = p20 +
ER

R2
0

ζ +
kR

R2
0

∂ζ

∂t
on Γw2, (44e)

w =
∂γY

∂t
in Ω2. (44f)

In expressions (44a) and (44b) quantities D(·)
Dt
|(±) denote total time derivatives

with respect to the characteristics lines corresponding to celerities f± = Q
A
±c,

being c =
√

A
ρ

∂p̄
∂A

the speed of sound into the vessel, and function ḡ is given by

ḡ = f z− 8πµ
A

Q. Also λi, i = 1, 2, 3, are constants such that these equations are
dimensionally consistent. In equation (44c), κ is a kind of diffusivity tensor
that may be set conveniently. In this work the simplest case is used, being κ
the identity tensor. Finally, essential boundary conditions are given in function
set W .
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5.1 Time discretization and finite element approximation

In this section we describe the numerical techniques used in approximating
formulation (44). Since these techniques are well known, we limit ourselves
to mentioning, when necessary, the corresponding references and no further
details are given. Thus we can summarize the approximation process as follows:

• The variational formulation is discretized first in time by means of a single
step finite difference method corresponding to a classical θ–scheme for both
1D and 3D parts.

• For variables Q, A, p̄ of the 1D model P1 finite elements are used, while for
variables u2, p2 of the 3D model PB

1 −P1 finite elements are considered, where
supra index B indicates the use of bubble functions for the velocity field
[2]. Degrees of freedom γY are also approximated with P1 finite elements,
and finally the velocity of the frame of reference w is computed from the
displacements γY by a backward Euler difference.

• For both 1D and 3D parts, stabilization terms must be included with the
aim of avoiding the well known non–physical oscillating solutions present
when using a Galerkin approximation. For the 1D model these terms are
incorporated along the characteristics lines and correspond to a Galerkin
Least Squares formulation [18,33]. For the 3D model the stabilization terms
correspond to the Streamline Upwind Petrov Galerkin technique with a
suitable stabilization parameter [17].

• Finally, the nonlinearities of the problem are treated in all cases with Picard
iterations.

5.2 The monolithic scheme

The complete set of discrete equations is then obtained following the guide-
lines exposed in the previous section. Here we present the resulting linearized
algebraic form with the aim of highlighting how coupling terms appear within
the monolithic scheme. Thus the discretized problem reads as follows: for each
time step tn+1, n = 0, 1, 2, . . . , N , until a convergence criterion is achieved per-
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form iterations k = 1, 2, . . ., solving the following system of linear equations




Ak
QQ 0 Ak

Qp̄ Ak
Qu2

0 0

0 Ak
AA Ak

Ap̄ 0 0 0

Ak
p̄Q 0 Ak

p̄p̄ 0 0 0

0 0 Ak
u2p̄ Ak

u2u2
Ak

u2p2
Ak

u2γY

0 0 0 Ak
p2u2

0 0

0 0 0 0 Ak
γYp2

Ak
γYγY







Uk+1
Q |n+1

Uk+1
A |n+1

Uk+1
p̄ |n+1

Uk+1
u2
|n+1

Uk+1
p2
|n+1

Uk+1
γY
|n+1




=




fk
Q

fk
A

fk
p̄

fk
u2

fk
p2

fk
γY




. (45)

Here, at time tn+1 and for unknowns X, Y , Ak
XY denote the corresponding

block computed in the iteration k, Uk+1
X |n+1 the nodal degrees of freedom in

the iteration k + 1 and fk
X the forcing terms in the iteration k.

In the system of linear equations (45) blocks Ak
Qu2

and Ak
u2p̄ represent the

algebraic counterpart of the coupling terms between both 1D and 3D models
boxed in expressions (44). In particular, these matrixes comprise the coupling
relation between the degrees of freedom of the 1D node located at z = L and
the 3D nodes that lie on boundary Γc.

The algebraic form (45) was used for computations in all the examples pre-
sented in this work, and was solved using a Preconditioned Conjugated Gradi-
ent Square method [29]. The result is a robust numerical scheme that efficiently
manages the coupling of multidimensional models.

Alternatively, a decoupled numerical scheme may be devised in case of working
with validated stand–alone 1D and 3D FEM codes. In this case we can split
the computations by performing iterations between the 1D and 3D subprob-
lems. In this situation the staggered counterpart of system (45) would read as
follows: for each time step tn+1, n = 0, 1, . . . , N , until a convergence criterion
is achieved perform iterations k = 0, 1, . . ., solving

i. Ak
1DUk+1

1D |n+1 = fk,ω
1D 1D problem,

ii. Ak
3DUk+1

3D |n+1 = fk,ω
3D 3D problem,

where indexes 1D and 3D correspond to the subblocks of the 1D and 3D
problem respectively, in particular we have

fk,ω
1D =




f̃k,ω
Q

fk
A

fk
p̄




fk,ω
3D =




f̃k,ω
u2

fk
p2

fk
γY




, (46)
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and where

f̃k,ω
Q = fk

Q −
[
ωAk

Qu2
Uk

u2
|n+1 + (1− ω)Ak

Qu2
Uk−1

u2
|n+1

]
,

f̃k,ω
u2

= fk
u2
−

[
ωAk

u2p̄U
k+1
p̄ |n+1 + (1− ω)Ak

u2p̄U
k
p̄|n+1

]
,

(47)

being 0 < ω ≤ 1 a subrelaxation parameter that acts between subdomain
iterations. The decoupling scheme presented here corresponds to a Gauss-
Seidel decomposition, and the well–posedness of both problems is accounted
for by contributions in forcing terms f̃k,ω

Q and f̃k,ω
u2

.

6 Numerical assessments

In this section several situations are considered. The first example illustrates
the case for which we have a fairly short–wavelength wave propagating along a
pipe simulated by using 3D and 1D models. Here we encounter a non–physical
response of the model due to the appearance of spurious reflections. The next
three examples are related to the direct application of the formulation devel-
oped to the cardiovascular modelling. In particular, the third one exemplifies
all the potentialities of using this kind of model, being a clear situation for
which other ways of imposing boundary conditions are rather cumbersome to
implement. Other examples in this direction can be found in [4,22].

In all these examples we use 3D geometries embedded in a 1D model for
which we have two or even three coupling interfaces. Consequently, we perform
comparisons at nodes placed at coupling interfaces for two situations: when
solving with just the pure 1D model and when using the 3D–1D formulation
proposed in this work.

The nomenclature used in describing the 3D geometry and properties in the
examples is the following

L : length of the vessel, R : radius of the vessel,

h : thickness of the arterial wall, E : Young modulus of the arterial wall,

k : fluidity of the arterial wall, C : speed of sound into the vessel,

p0 : reference pressure.

6.1 Case 1: Wave travelling along a dimensionally heterogeneous domain

This first example has the purpose of presenting a simple situation for which
we put in evidence the effective coupling between models of different dimen-
sionality. We use the configuration shown in Figure 4, where we have an en-
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trance represented by a pipe considered as a 1D model and an exit modelled
in the same way, whereas a 3D model is used connecting those regions. We
set a pressure boundary condition at the entrance by a curve of the form
p(t) = pmax sin2 ( πt

tF
), with pmax = 10000 dyn/cm2 and tF = 0.005 sec for

0 ≤ t ≤ tF , and p(t) = 0 for t > tF . This curve is also shown in Figure 4. All
the geometrical and mechanical properties are equal for both models so as to
keep the consistency of the whole model. Being LT the total length and L3D

just the corresponding one to the 3D model, it is LT = 25 cm, L3D = 5 cm,
R = 0.5 cm, h = 0.05 cm, E = 20.0 ·106 dyn/cm2, k is null, C = 1000 cm/sec,
p0 is null, ρ = 1.0 g/cm3 and µ = 0.4 poise. The Reynolds number reaches val-
ues around Re = 12 in the peak of the wave. The number of nodes and degrees
of freedom for this case is about 41100 and 283400 respectively, while the time
step used is about ∆t = 2.5·10−5 sec within a total run time T = 2.5·10−2 sec.

Fig. 4. Cylindrical geometry for case 1 formed by 3D and 1D parts.

In this case we also consider a special situation that emulates the absence
of viscosity. For the 1D model this can be done without any problem, while
for the 3D model we assume a total slip condition in the axial direction over
boundary Γw2.

The sequence of Figures 5 shows the pressure wave (its mean value inside
the 3D region) computed with formulation (44) travelling along the 1D–3D–
1D domain. The appearance of spurious reflections travelling in the opposite
direction when the wave is passing through both coupling interfaces can be
clearly appreciated (see Figures 5(b)–5(d)). The amplitude of the reflected
wave is about 2.1% of the amplitude of the inflowing wave. This phenomenon
can also be noticed in the examples presented in [9,10] with a reflected wave
amplitude of approximately 8%. When using the total slip condition over the
wall in the 3D domain we observe, according to Figures 6, almost no spurious
reflections, that is, the coupling interface is transparent regarding the waves
travelling along the mixed domain. The analysis of the results obtained with
these examples indicates that the following dimensionless number 1

Re
D
λ

where
Re is the Reynolds number, D is the diameter of the pipe and λ the wavelength,
may be considered as an indicator of the presence of spurious reflections. This
issue will be further discussed in Section 6.3. For the examples presented in
the following the value of this index ensures the almost absence of spurious
reflections.
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Fig. 5. Results for computations with the derived formulation.
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Fig. 6. Results for computations in the simulated absence of viscosity.

6.2 Case 2: Applications in cardiovascular modelling

In the applications to hemodynamics the model representing the whole cardio-
vascular system, with all geometrical and mechanical parameters, was taken
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from [3] and is shown in Figure 7(a). The 3D geometries were geometrically
and mechanically adapted to the values of the corresponding segments re-
placed in the 1D arterial tree. The system is fed with two flow rate curves at
the aortic root taken from [30,31] and shown in Figure 7(b). Peripheral beds
are modelled by Windkessel lumped models.

(a) 1D arterial tree. (b) Flow rate curves at the aortic root.

Fig. 7. Arterial tree and the corresponding boundary condition at the aortic root.

It was taken density ρ = 1.04 g/cm3 and viscosity µ = 0.04 poise, while in all
cases the time step used is about ∆t = 1.25 · 10−3 sec within a total run time
T = 0.8 sec.

6.2.1 Example 1: Blood flow in the abdominal aorta artery

For this example the situation is shown in Figure 8 and the heart ejection curve
used is shown in Figure 7(b). We have replaced a segment of the abdominal
aorta artery of the 1D arterial tree with a 3D cylindrical geometry. In this ex-
ample we have L = 5.7 cm, R = 0.57 cm, h = 0.08 cm, E = 4.0 ·106 dyn/cm2,
k = 4.44 ·104 dyn sec/cm2, C = 519.5 cm/sec and p0 = 1.0 ·105 dyn/cm2. The
Reynolds number reaches values around Re = 1700 in the peak of the systole.
The number of nodes and degrees of freedom for this case is about 41300 and
285200 respectively.

Fig. 8. 3D segment of the abdominal aorta artery embedded in a 1D arterial tree.

Figures 9 show the flow rate Q and the pressure p̄ at both coupling interfaces
named Γp and Γd indicating proximal and distal locations respectively. In these
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figures the results given by formulation (44) together with the pure 1D model
are presented. It is observed a good agreement with the results of the pure
1D model, evidencing the suitability of the formulation devised in the present
work.

(a) Curves at Γp. (b) Curves at Γd.

Fig. 9. Flow rate and pressure curves at coupling interfaces Γp and Γd.

6.2.2 Example 2: Blood flow in the external iliac artery

In this situation we have the configuration shown in Figure 10 and the heart
ejection curve used is shown in Figure 7(b). We have replaced a segment of
the external iliac artery of the 1D arterial tree with a 3D cylindrical geometry.
In this example we have L = 1.74 cm, R = 0.29 cm, h = 0.055 cm, E =
4.0 · 106 dyn/cm2, k = 4.44 · 104 dyn sec/cm2, C = 603.9 cm/sec and p0 =
1.0 · 105 dyn/cm2. The Reynolds number reaches values around Re = 885 in
the peak of the systole. The number of nodes and degrees of freedom for this
case is about 27800 and 190800 respectively.

Fig. 10. 3D segment of the external iliac artery embedded in a 1D arterial tree.

Figures 11 show the flow rate Q and the pressure p̄ at both coupling interfaces
Γp and Γd. Again, in these figures results given by formulation (44) and by
the pure 1D model are presented. Once more, there exists a good agreement
between the results in terms of the mean quantities.
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(a) Curves at Γp. (b) Curves at Γd.

Fig. 11. Flow rate and pressure curves at coupling interfaces Γp and Γd.

6.2.3 Example 3: Blood flow in a stenosed carotid artery bifurcation

In this situation we have the configuration shown in Figure 12 and the heart
ejection curve used is also shown in Figure 7(b). We have replaced the district
corresponding to the carotid bifurcation of the 1D arterial tree with a 3D
standard carotid bifurcation geometry. The goal of this example is to analyze
how are perturbed mean quantities (flow rate and pressure) at the coupling
interfaces, or even at any location of the 1D model of the arterial tree, when an
obstacle such as a simulated stenosis is introduced by strangling the carotid
sinus in the 3D district. This kind of analysis can not be performed unless
we use this kind of formulations since only here the systemic response of the
complete model is properly accounted for. We denote N the normal situation,
S80 a situation with a stenosis of 80% and S95 a situation with a stenosis of
95%. These percentages represent the reduction of the area at the SS3 section
(see Figure 13).

Fig. 12. 3D carotid artery bifurcation embedded in a 1D arterial tree.

Indexes c, e and i refer to common, external and internal segments. In this ex-
ample we have h = 0.1R, Ec = 4.0 ·106 dyn/cm2, Ee = Ei = 8.0·106 dyn/cm2,
kc = 4.44 · 104 dyn sec/cm2, ke = ki = 8.88 · 104 dyn sec/cm2 and p0 =
8.0 ·104 dyn/cm2. A detailed description of the geometry is given in Figure 13
and in Table 1.

The Reynolds number reaches values around Re = 544 for the N case, Re =
501 for the S80 case and Re = 447 for the S95 case, always in the peak of the
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Section Diameter [cm]

CC1 0.74

CC2 0.74

SS1 0.77182

SS2 0.8214

SS3 0.8214

SS4 0.76368

SS5 0.6364

SS6 0.5254

SS7 0.5254

EC1 0.51356

EC2 0.42032

EC3 0.42032

EC4 0.42032

(stenosis) 80% 95%

S1 2 1.5

S2 2.20535 1.835

Fig. 13. Geometry and stenosis morphology. Table 1. Geometric parameters.

systole and at the entrance of the common carotid. The number of nodes and
degrees of freedom for this case is about 69200 and 480500 for the case S95,
40400 and 279000 for the case S80 and 55800 and 386900 for the case N .

Figures 14(a), 14(b) and 14(c) show how the mean quantities at coupling in-
terfaces are affected due to the presence of the stenosis. The results correspond
to the coupled model. It can be observed that the arterial pulse does not suffer
significant perturbations in the case S80. Only in the extreme case S95 appre-
ciable variations of the pressure and flow rate curves are noticeable, especially
at the exit of the internal carotid artery. The mean flow supplied through the
internal carotid suffers a reduction of 9% with respect to the normal condition.
No vasodilation was considered here, although nothing impedes to incorporate
this phenomenon in order to improve the simulation.

(a) Common carotid. (b) Internal carotid. (c) External carotid.

Fig. 14. Comparison of the results for the levels of stenosis considered.
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6.3 Final remarks

This section is devoted to the discussion of the condition (42e). Certainly,
along the derivation of the 1D model some terms associated to viscous effects
were neglected. As a result, we obtained the Euler equation at Γc given by
(42e). Therefore, it is observed that the continuity of pressure is given for
two situations: (i) non–viscous flows and (ii) long wavelengths and/or large
Reynolds numbers. The second situation was exemplified in Subsection 6.2,
whereas the first case was considered in the results shown in the sequence of
Figures 6 of the case presented in Subsection 6.1. Here, the absence of viscosity
entails the significant reduction of spurious reflections.

As pointed out previously, it is important to characterize when spurious reflec-
tions are likely to appear. In this way we perform a dimensionless analysis of
the coupling condition related to the normal traction continuity. If we measure
the pressure in terms of twice the kinetic energy, ρU2, being U a representa-
tive velocity, and if we take the wavelength λ as a representative length, the
dimensionless counterpart of equation (42e) reads as follows

−p∗n1 = −p∗2n1 +
1

Re

D

λ
ε∗(u∗2)n1, (48)

where D is the diameter of the vessel, Re = ρUD
µ

is the Reynolds number

and (·)∗ denotes a non–dimensional quantity. Hence, the dimensionless num-
ber 1

Re
D
λ

may be associated to the presence or not of spurious reflections. In
examples 1–3, with application in the simulation of the cardiovascular system
(see Subsection 6.2), we observe that the smallness of this number allows us to
say that we have almost no spurious reflections. This can be seen in the range
of values shown in Table 2. In building this table we have used λ = 5 cm for
the situation of Subsection 6.1 and λ = 500 cm for the situation of Subsection
6.2. Consequently, the smallness of the dimensionless number 1

Re
D
λ

may be
used in order to indicate when the model can be considered accurate in the
sense of the spurious reflections generated by the coupling interfaces.

Case 1 Case 2 Case 2 Case 2

Example 1 Example 2 Example 3
1

Re
D
λ 4.17 · 10−2 1.34 · 10−6 1.31 · 10−6 2.96 · 10−6

Table 2
Values of 1

Re
D
λ for examples presented in Subsections 6.1 and 6.2.

However, since there exists several other aspects that must be integrated in
the analysis of this problem, the previous explanation must be considered as
the starting point for further investigation on this matter.
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7 Conclusions

In this work we have proposed a variational principle that manages possible
discontinuities that arise when different underlying kinematics are considered
on some partition of a given domain. Consequently, this framework resulted
in a suitable and unified strategy that efficiently tackles this kind of problem.
For usual situations encountered in cardiovascular modelling we have obtained
good results for the simultaneous use of 3D and 1D models, showing the capa-
bilities of the formulation to handle the coupling conditions in a natural way.
Moreover, in situations for which classical techniques of imposing boundary
conditions could not be applied the model studied here resulted in a versatile
tool performing promisingly. From the numerical examples it is possible to
see that the spurious reflections are significantly reduced for the non–viscous
case. From this we conclude that the role of the viscous shear stress must be
a subject of further investigation.
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flow patterns to the constitutive law of the fluid, in: Proc. ECCM2006 -
III European Conference on Computational Mechanics Solids, Structures and
Coupled Problems in Engineering, C.A. Mota Soares et al. (Eds.), Lisbon,
Portugal, June 2006.

[5] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, (Springer–
Verlag, New York, 1991).

32



[6] C.G. Caro, J.M. Fitz–Gerald, R.C. Schroter, Atheroma and arterial wall shear
dependent mass transfer mechanism for atherogenesis, Proc. Royal Society of
London, Biology B177 (1971) 109–159.

[7] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. II, (Interscience
Publishers, New York, 1962).
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