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ABSTRACT
In this work we calculate the topological derivative for

a quite general heat transfer problem when perturbing the
reactive coefficient and the source term as well. This is ob-
tained for two cost functionals, one depending upon a given
function on a portion of the boundary and the other based
on a Kohn–Vogelius criterion. Then, we use this expression
as an indicator function in order to devise an iterative algo-
rithm to apply it in the context of an optimization problem
and of an inverse problem.

INTRODUCTION
As it is well known, the topological derivative provides

the sensitivity of a given cost functional with respect to an
infinitesimal domain perturbation, for instance, an inser-
tion of a hole, an inclusion or a coefficient discontinuous
variation at a given point x̂. In case of stationary prob-
lems several approaches have been considered for dealing
with the calculation of the topological derivative [Céa et al.,
2000; Novotny et al., 2003; Sokolowski and Żochowski,
1999]. Nevertheless, there exists very little literature con-
cerning this topic involving transient problems [Amstutz
et al., 2006].

On one hand, the topological derivative has been
widely used as an descent direction indicator within the con-
text of optimization problems in order to find an optimal
solution (in some sense given by a cost functional), by in-
serting holes or even changing material properties. On the
other hand, the use of the topological derivative has been ex-
tended to the context of inverse problems by using it as an
indicator of which regions should have the topology (or the
material property) altered so as to minimize a conveniently
stated cost functional. In this way, it would be possible to
identify regions whose topology (or material properties) is

perturbed by measuring the solution on the boundary. In
this way we may mention at least two approaches in order
to build a cost functional from measured data: (i) the clas-
sical one consists in building a cost functional depending
directly upon the information on the boundary and of the
direct problem, and (ii) the second one based on a Kohn–
Vogelius criterion, that is using the information available on
the boundary to set up an auxiliary problem which is used to
build a cost functional depending upon the solution of this
auxiliary problem and of the direct problem. All this have
been done for stationary problems.

In [Amstutz et al., 2006], a rather general class of prob-
lems of transient nature as the heat transfer problem and
the wave propagation problem are tackled, calculating the
topological derivative when all terms in the equation are
perturbed. However, in this work it is not considered the
existence of convective terms in obtaining the topological
derivative, nor numerical examples are presented. In the
present work we consider the heat transfer problem incor-
porating the convective term, and we obtain the topological
derivative when perturbing the reactive coefficient as well
as the source term. In this way it allows us to quantify the
sensitivity of a given cost functional to the infinitesimal al-
teration of those parameters in a discontinuous manner at a
given location x̂.

Concerning applications, we apply the topological
derivative as an indicator function to devise iterative algo-
rithms for two situations: (i) an optimization problem for
which we want to find the optimal location of sources such
that a given target function is achieved; and (ii) an inverse
problem where we look, from measured data, for regions
whose source term was perturbed.
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THE HEAT TRANSFER PROBLEM
In this section we state the problem under study and

also the two cost functionals for which we will calculate the
topological derivative. The section ends with the statement
of the corresponding adjoint problems defined by the direct
problems and the cost functionals.

Statement of the problem
As aforementioned, in this work we consider the heat

transfer problem involving convection-diffusion-reaction
phenomena in (0,T )×Ω, Ω ∈Rn (n = 2,3), with boundary
Γ. We also consider Dirichlet, Neumann and Robin bound-
ary conditions, over ΓD, ΓN and ΓR respectively. Thus, the
variational problem consists in finding for each t ∈ (0,T )
u ∈U such that

Z

Ω

[
∂u
∂t

v+(v ·∇u)v+α∇u ·∇v+βuv
]

dx

+
Z

ΓR

hcuvd∂Γ =
Z

Ω
f vdx+

Z

ΓR

hcu∞vdΓ

−
Z

ΓN

q̄vdΓ ∀v ∈ V , (1)

with u(x,0) = 0 in Ω and where, for each t ∈ (0,T ), it is
f ∈ H−1(Ω), q̄ ∈ H−1/2(ΓN), α,β ∈ L∞(Ω), hc ∈ L∞(ΓR),
u∞ ∈ H1/2(ΓR) and v ∈ [L∞(Ω)]d is a vector field such that
divv = 0, and also

U = {v ∈ H1(Ω); v|ΓD(·, t) = ū(·, t)},
V = {v ∈ H1(Ω); v|ΓD(·, t) = 0}.

(2)

Cost functionals
In this section we present the cost functionals used in

computations. Those functionals depend on a given func-
tion over a mensurable portion of the boundary, say Γ∗.
Such a known function will constitute, depending upon the
case, the target function in the optimization problem or the
measurement over the boundary in the inverse problem.

Firstly, let us consider a given function ud over a por-
tion of the boundary Γ∗ = Γm such that Γm∩ΓD = /0. Then
we set the following cost functional

JΩ1(u) =
1
2

Z T

0

Z

Γm

(u−ud)2 dΓdt, (3)

where u is the solution of the variational problem (1). Ob-
serve that ud may be, in the general case, time dependent.

Secondly, suppose that ud and qd are given functions
corresponding to temperature and heat flux, and both spec-
ified over portions of the boundary Γu and Γq respectively,
such that Γu∪Γq = Γ and Γu∩Γq = /0. Then, let us consider
the following cost functional based on the idea of a Kohn–
Vogelius criterion depending upon the information available

over the boundary

JΩ2(u,uA) =
1
2

Z T

0

Z

Ω
(u−uA)2 dxdt, (4)

where u is the solution of the variational problem (1),
whereas uA is the solution of the following auxiliary vari-
ational problem that consists in finding for each t ∈ (0,T )
uA ∈W such that

Z

Ω

[
∂uA

∂t
v+(v ·∇uA)v+α∇uA ·∇v+βuAv

]
dx

=
Z

Ω
f vdx−

Z

Γq

qdvdΓ ∀v ∈ X , (5)

with uA(x,0) = 0 in Ω and where, for each t ∈ (0,T ),
f ,α,β,v are as in problem (1), also it is

W = {v ∈ H1(Ω); v|Γu(·, t) = ud(·, t)}, (6)

X = {v ∈ H1(Ω); v|Γu(·, t) = 0}. (7)

In this manner we build information on the whole do-
main Ω from the information available on the boundary.
Then, we measure the gap between the solution of problem
(1) and the information over the boundary in the indirect
sense given by cost functional (4). It is worth noting that,
with this approach, we avoid asking for more regularity for
the solution in case of building a cost functional involving
an integral term of the type

R T
0
R

Γq
(−α∇u ·qd)2 dΓdt for in-

corporating information concerning the heat flux over the
boundary. Nonetheless, the disadvantage here is that the
computational cost has been clearly increased.

Adjoint problems
Once we have introduced the involved problems to-

gether with the cost functionals we are in position to set
up the corresponding adjoint problems. These problems are
presented here for sake of brevity and in view of what will
be introduced in the next section.

It is well–known that, for transient problems, the corre-
sponding adjoint problem is a time–reversal problem, that
is, a final–boundary value problem. For the heat trans-
fer problem with convection–diffusion–reaction phenomena
the adjoint problem corresponding to cost functional (3)
consists in finding for each t ∈ (0,T ) λ1 ∈ Y such that

Z

Ω

[
∂λ1

∂t
η+(v ·∇λ1)η−α∇λ1 ·∇η−βλ1η

]
dx

−
Z

ΓR

hcλ1ηdΓ−
Z

ΓN∪ΓR

(v ·n)λ1ηdΓ =
Z

Γm

(ud −u)ηdΓ ∀η ∈ Y , (8)
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with λ1(x,T ) = 0 in Ω for convenience, and all the other
parameters as defined in the above, also it is

Y = {η ∈ H1(Ω); η|ΓD(·, t) = 0}. (9)

Here, λ1 is the adjoint state of function u.
On the other hand, since cost functional (4) depends

upon two functions, u and uA, that must satisfy, in turn, vari-
ational problems (1) and (5), we have two adjoint problems
as follows: (i) for each t ∈ (0,T ) find λ2 ∈ Y such that

Z

Ω

[
∂λ2

∂t
η+(v ·∇λ2)η−α∇λ2 ·∇η−βλ2η

]
dx

−
Z

ΓR

hcλ2ηdΓ−
Z

ΓN∪ΓR

(v ·n)λ2ηdΓ =
Z

Ω
(u−uA)ηdΓ ∀η ∈ Y , (10)

with Y defined in (9), and (ii) for each t ∈ (0,T ) find λA ∈X
such that

Z

Ω

[
∂λA

∂t
η+(v ·∇λA)η−α∇λA ·∇η

−βλAη
]

dx−
Z

Γq

(v ·n)λAηdΓ =
Z

Ω
(uA−u)ηdΓ ∀η ∈ X , (11)

with X defined in (7). Here, λ2 and λA are the adjoint states
of functions u and uA respectively.

Notice that in the case of functional (3) we obtain as a
part of the adjoint problem a Neumann boundary condition
from the error on Γm (see expression (8)), while in the case
of functional (4) we generate a volume source from the error
in Ω (see expressions (10)-(11)).

As final remarks it is worth mentioning that the final
boundary condition was taken as the zero function in order
to simplify the approach. Nonetheless, nothing impedes to
consider an arbitrary function. Also, observe that the con-
vective term introduces a Robin boundary condition in the
adjoint problem.

TOPOLOGICAL–SHAPE SENSITIVITY ANALYSIS
In this section we present the calculation of the topolog-

ical derivative for the problem of our concern. This is car-
ried out by means of the theory of shape–sensitivity analy-
sis. We also present what would be called the extension to
transient problems of the generalized Eshelby energy mo-
mentum tensor.

Preliminaries
Firstly, we need to recall some classical results from

continuum mechanics concerning the material derivative of

certain quantities. One of the forms of the Reynolds trans-
port theorem expresses that the material derivative of the
volume integral of an arbitrary field χ, when there exists a
given velocity of change of the boundary we, can be written
as follows

d
dτ

Z

Ωτ
χτ dxτ =

Z

Ωτ
[χ̇τ +χτ divτ we] dxτ. (12)

where τ∈R+ is the control parameter that governs the mag-
nitude of the velocity of change. Also we need the expres-
sions of the material derivatives of the gradient of a scalar
field ϕ and a vector field u as follows

˙(∇τϕ) = ∇τϕ̇−LT
τ ∇τϕ, (13)

˙(∇τu) = ∇τu̇− (∇τu)Lτ, (14)

where Lτ = ∇τwe. Also it will be consider the following
identity I ·Lτ = I ·∇τwe = divτ we.

Sensitivity analysis and the generalized Eshelby
energy momentum tensor

We aim at calculating the sensitivity of some cost func-
tional when an infinitesimal perturbation in some parame-
ters is introduced. This can be done in several ways. The
approach considered in this work, as mentioned, is based
on the theory of shape–sensitivity analysis. We will present
the guidelines in obtaining the topological derivative for the
case of cost functional (3). For functional (4) the result fol-
lows in a completely analogous manner. Let us consider
first an existent portion of the domain, say ωε ⊂ Ωε, with
Ωε denoting the domain with the region ωε = x̂+ εω being
ω fixed and containing the origin. This particular region will
be characterized by the abrupt change of the source term f
and the reaction coefficient β. Thus, we have that these pa-
rameters have the following form

f (x) =

{
f0 in Ωε \ωε

f1 in ωε
, (15)

β(x) =

{
β0 in Ωε \ωε

β1 in ωε
, (16)

where f0, f1, β0 and β1 are arbitrary functions whose values
differ on the boundary ∂ωε. In this work we consider only
constant functions for the sake of brevity. Therefore, we
have a jump in these quantities on such a boundary ∂ωε.

Hence, we divide the domain Ωε according to the por-
tion ωε, and calculate the sensitivity of the cost functional
when perturbing the shape of each portion of the domain as
shown in figure 1.
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Figure 1. Perturbation of domain Ωε.

In order to obtain the sensitivity of cost functional JΩε 1
we build the corresponding Lagrangian functional

LΩε 1(û, λ̂1) = JΩε 1(û)+
Z T

0
RΩε(û, λ̂1)dt, (17)

where RΩε denotes the variational problem (1) when exist-
ing region ωε. When û = uε is in fact the solution of such
a variational problem, with f and β defined as in (15) and
(16) respectively, we have

RΩε(uε,v) = 0 ∀v ∈ V . (18)

With these considerations we are able to perform a perturba-
tion of the domain and to calculate the sensitivity of the La-
grangian functional. In this manner we circumvent the fact
that the involved functions are restricted to satisfy the cor-
responding variational problems. Indeed, it is well–known
that

˙LΩε 1(û, λ̂1)
∣∣∣∣ û=uε
λ̂1=λε1

= ˙JΩε 1(uε). (19)

where (̇) denotes the sensitivity, and λε1 is the solution to
the adjoint problem (8) when the parameters f and β are
defined as in (15)–(16).

With these expressions and the relations given by the
continuum mechanics already presented we can write the
sensitivity of the cost functional as follows

˙JΩε 1(uε) =
Z T

0

Z

Ωε
Σε1 ·∇wm dxdt

+
Z T

0

Z

Ωε
bε1 ·wm dxdt, (20)

where wm is the material representation of the shape change
velocity we. Also, it appears the tensor Σε1 that is iden-
tified as the generalized Eshelby energy momentum tensor
[Gurtin, 2000]. The form of this tensor in this case is the
following

Σε1 = θε1I+Kε1, (21)

with I the identity tensor and

θε1 =
∂uε

∂t
λε1 +(v ·∇uε)λε1

+α∇uε ·∇λε1 +βuελε1− f λ1, (22)

Kε1 =−α
(
∇uε⊗∇λε1 +∇λε1⊗∇uε)

− (λε1∇uε)⊗v, (23)

while vector bε1 is given by

bε1 = (∇v)T ∇uελε1, (24)

since in our case we have considered an arbitrary velocity
v. In case of constant velocity v or even in absence of con-
vective effects we have bε1 = 0.

It is interesting to explore some properties of the tensor
Σε1. In fact, this tensor plays an important role within what
is known as the balance of configurational forces when a
perturbation of the kind performed here is introduced. Un-
der suitable regularity assumptions and using basic tensorial
identities it is quite straightforward to prove that in this case
of a transient problem the balance of configurational forces
is given by the following equation

Z T

0
divΣε1 dt =

Z T

0
bε1 dt in Ωε. (25)

With this property at hand and considering that

wm =

{
0 on Γ,

n on ∂ωε,
(26)

where n is the unit outward normal to ωε, we can rewrite
the sensitivity (20) by simply using the Green formula as
follows

˙JΩε 1(uε) =
Z T

0

Z

∂ωε
JΣε1Kn ·ndΓdt, (27)

where J·K denotes the jump of the Σε1 tensor as a result of
the jumps introduced in f and β. It follows that the sensitiv-
ity of the cost functional can be written as a function of the
flux of the jump of the Eshelby tensor across the boundary
which is being perturbed. With the expression of Σε1 it is
easy to show that

JΣε1Kn ·n = (β1−β0)uελε1− ( f1− f0)λε1, (28)
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where it has been considered that α and also that the flux
−α ∂uε

∂n are continuous on ∂ωε. Substituting this expression
into (27) we arrive at the following

˙JΩε 1(uε) =
Z T

0

Z

∂ωε

[
(β1−β0)uελε1

− ( f1− f0)λε1
]

dΓdt, (29)

that constitutes the expression for the sensitivity of the cost
functional (3) when a jump over ∂ωε occurs in parameters
f and β.

In a completely analogous way we found for the cost
functional JΩε 2 that the Eshelby tensor has the same form
as in (21) with

θε2 = (uε−uA
ε )2 +

∂uε

∂t
λε2 +(v ·∇uε)λε2

+α∇uε ·∇λε2 +βuελε2− f λε2

+
∂uA

ε
∂t

λA
ε +(v ·∇uA

ε )λA
ε

+α∇uA
ε ·∇λA

ε +βuA
ε λA

ε − f λA
ε , (30)

Kε2 =−α
(
∇uε⊗∇λε2 +∇λε2⊗∇uε)

−α(∇uA
ε ⊗∇λA

ε +∇λA
ε ⊗∇uA

ε
)

− (λε2∇uε +λA
ε ∇uA

ε )⊗v, (31)

while vector bε2 is

bε2 = (∇v)T [∇uελε2 +∇uA
ε λA

ε ]. (32)

The sensitivity in this case takes the following form

˙JΩε 2(uε,uA
ε ) =

Z T

0

Z

∂ωε

[
(β1−β0)(uελε2 +uA

ε λA
ε )

− ( f1− f0)(λε2 +λA
ε )

]
dΓdt. (33)

Here λε2 and λA
ε are the solutions to the adjoint problems

(10)-(11) when the parameters f and β are defined as in
(15)-(16).

The topological derivative
The next and final step in order to obtain the expression

of the topological derivative is to calculate the limit when
ε → 0. Indeed, the topological derivative, in this problem,
gives the sensitivity of the cost functionals when parameters
within an infinitesimal region acquire a value that differs
from the rest of the domain in a discontinuous fashion, or, in
other words, when the region ωε with its own characteristics
is actually created.

In [Novotny et al., 2003] it is proven that the topologi-
cal derivative at point x̂, denoted by DT JΩ1(x̂) for the cost
functional (3), can be obtained by calculating the following
limit

DT JΩ1(x̂) = lim
ε→0

˙JΩε 1(uε)
h ′(ε)

, (34)

where h is a monotonically descent function that approaches
from zero when ε→ 0.

It is not difficult to achieve expansions of the form

uε = u+Ou(εn/2),

λε1 = λ1 +Oλ(εn/2),
(35)

where u and λ1 are the solutions to problems (1)-(8) when
no perturbation is introduced in parameters f and β and
n is the spatial dimension. In fact, these expansions can
be given in the sense of some norm of a suitable Sobolev
space, then, using compactness arguments under some reg-
ularity assumptions we reach the desired result. Introducing
these expansions into expression (29) and into (34), using
the localization’s theorem and considering h′(ε) = |∂ωε| the
measure of the boundary of ωε, we obtain

DT JΩ1(x̂) =
Z T

0

[
(β1−β0)u(x̂, t)λ1(x̂, t)

− ( f1− f0)λ1(x̂, t)
]

dt, (36)

that is the expression of the topological derivative for cost
functional (3).

Analogously, we obtain for the cost functional (4) the
following expression for the topological derivative

DT JΩ2(x̂) =
Z T

0

[
(β1−β0)u(x̂, t)λ2(x̂, t)

+(β1−β0)uA(x̂, t)λA(x̂, t)

− ( f1− f0)(λ2(x̂, t)+λA(x̂, t))
]

dt, (37)

where u, uA, λ2 and λA are the solutions of variational prob-
lems (1), (5), (10) and (11) respectively, when f = f0 and
β = β0 in Ω.

NUMERICAL ASSESSMENTS
In this section we present two examples for which we

apply the concept of the topological derivative. In our ex-
amples we limit ourselves to perturbing the source term f .
So, in expressions (36)–(37) we have β1 = β0.

Example 1:
Consider the situation shown in figure 2. We have a

given portion of the boundary Γ∗ = ΓR for which we have
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a given time dependant function ud . The meaning of this
function depends on whether it is an optimization or an in-
verse problem. Such a function is shown in figure 3. Also
it is f = 1, α = 1, β = 0, v = 0, hc = 1, u∞ = 0.1, T = 0.1
and ū = 0 on ΓD. So it is ΓN = /0. Three constraints are
considered for this problem:

-The perturbations of the source term must be placed
on the dotted line (section A–A).

-The perturbations are carried out with a factor of 20.
That is, starting with f = 1 we may pass to f = 0.05 or to
f = 20, being those the only possibilities considered.

-The size of the perturbation is at least 0.02.

Figure 2. Setting of example 1.

Figure 3. Curve on Γ∗.

Then, using the topological derivative as an indicator
function we may devise the following iterative process (here
presented for cost functional J1):

(a) Solve variational problems (1)–(8) computing u and λ1.
(b) Compute the topological derivative with expression

(36), but without considering the factor f1− f0.
(c) Look for those locations, on section A–A, where

DT JΩ1(x̂) takes its minimum and maximum values.
(d) Set f1 = 20 f0 ( f1 = 0.05 f0) in the location of minimum

(maximum) value of DT JΩ1(x̂).
(e) Consider now the altered function f of step (d) into vari-

ational problems (1)–(8) and go back to step (a).

For cost functional J2 the iterative process is com-
pletely similar, but using variational problems (1)–(5) and
(10)–(11) in step (a), and the expression (37) in step (c).

Both cases, the use of the topological derivative in an
optimization and in an inverse problems, are depicted in the
following.

i. Optimization problem:
In this case function ud is a given target function we
want to achieve. Then, we want to found a configu-
ration of sources such that cost functional (3) (or (4))
is minimized. In this case the set of constraints intro-
duced in the above corresponds to design criteria. The
minimization process leads, after 22 iterations, to the
result shown in figure 4. There we compare the target
function ud (continuous line) with the achieved result u
(dashed line) for several time instants.

Figure 4. Comparison between the achieved solution (dashed line)
and the target function (continuous line) for cost functional JΩ1.

In the same way, when considering the cost functional
(4) we reach, after 22 iterations, the results shown in
figure 5.

Figure 5. Comparison between the achieved solution (dashed line)
and the target function (continuous line) for cost functional JΩ2.

ii. Inverse problem
In this case function ud is a measurement acquired from
the real problem including the actual source configu-
ration. The objective here is to try to find the source
configuration that gives such a measurement on that
portion of the boundary. That is, we want to found a
configuration of sources such that cost functional (3)
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(or (4)) is minimized. In this case the set of constraints
introduced in the above corresponds to additional infor-
mation we know about the inverse problem. The mini-
mization process leads, after 22 iterations, to the results
shown in figure 6. There we show the progress of the
source configuration.

Figure 6. From top to bottom, source configuration in iterations 10,
15 and 22 for cost functional JΩ1.

Analogously, with cost functional (4) we reach, after
22 iterations, the results shown in figure 5.

Figure 7. From top to bottom, source configuration in iterations 10,
15 and 22 for cost functional JΩ2.

It is interesting to note that in both cases, optimiza-
tion and inverse problems, the problem we are solving is
exactly the same. The difference is on the meaning of the
constraints and on the interpretation of the results. Indeed,
while for the optimization problem we are interested in the
function we achieve on the boundary Γm, in the inverse

problem we are interested in the final source configuration
in order to compare it with the target that is given in figure
8.

Figure 8. Target source configuration.

In figures 9 and 10 we present the values of the cost
functionals for each case. Also, the comparison of the value
of cost functional JΩ1 between the solution obtained with
the proper cost functional, that is u1, and that obtained with
cost functional JΩ2, that is u2 is included in figure 9.

0,0E+00

1,0E-03

2,0E-03

3,0E-03

4,0E-03

5,0E-03

6,0E-03

7,0E-03

8,0E-03

9,0E-03

1,0E-02

0 5 10 15 20 25

Iterations

J
1

J_1(u_1)

J_1(u_2)

Figure 9. Minimization process through the value of cost functional
JΩ1.
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1,5E-04

2,0E-04

2,5E-04

3,0E-04

3,5E-04

4,0E-04

4,5E-04

5,0E-04
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Iterations

J
2

Figure 10. Minimization process through the value of cost func-
tional JΩ2.

Example 2:
This example corresponds to the use of the topological

derivative in an inverse problem. The goal is to find the lo-
cation of a region where the source has been altered. In this
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case we have no restrictions concerning with the location
of the source perturbation. We limit ourselves to show the
topological derivative computed at the first iteration.

For this example we work with the cost functional (4),
and the parameters that define the problem are α = 1, β = 1,
f = 1, v =

√
2

2 ex +
√

2
2 ey, T = 1, q̄ = 0 on ΓN , ū = 1 on ΓD1

and ū = 0 on ΓD2. So, it is ΓR = /0. Figure 11 shows the set-
ting of the problem, being L = 1. For the auxiliary problem
we have that ud is the measurement of the temperature on
the portion of the boundary ΓN and qd is the measurement
of the heat flux on ΓD, both measurements taken from the
real problem including the region with a perturbed value of
f , that is a disc of radius L

10 centered at point (L
4 , L

2 ). In this
manner it is Γq = ΓD and Γu = ΓN .

Figure 11. Setting of example 2.

For this example we present in figure 12 the result just
for the first iteration of what would be the iterative process
presented in the above.

Figure 12. Topological derivative.

In this case, as expected, the minimum value of the
topological derivative is achieved on the boundary. In the
previous example this drawback, inherent to the problem,
was circumvented by considering the value of the topologi-
cal derivative over section A–A.

It is important to observe that the topological derivative
is actually the sum of the solutions of both adjoint prob-
lems. Therefore, the result is a balance between the adjoint
states. It is not difficult to achieve in practice a situation for
which one of the adjoint states dominates the value of the
topological derivative, as a result of out–of–scale problems.
This scaling trouble can be avoided by introducing a suit-
able real parameter multiplying the term associated with the
restriction RΩ in expression (17). This subject is still be-
ing studied, and would help in handling problems like the
presented in this last example.

CONCLUSIONS
In this work the topological derivative for source and

reactive coefficient perturbation was calculated for a further
general version of the time–dependent heat transfer prob-
lem. Besides, a configurational force balance was obtained
for the sensitivity analysis problem and also the generalized
Eshelby tensor was identified.

In applications, when using the topological derivative
as an indicator function, it showed promising results prov-
ing to be a powerful tool in optimization problems. On the
other hand, its use as an approach to inverse problems is still
a matter of further study.
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