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Quitandinha, 25651–075 Petrópolis, RJ, Brasil, e–mail: pjblanco@lncc.br,

feij@lncc.br
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Abstract

In this work an extended variational framework aimed at properly addressing the
coupling of kinematically incompatible structural models is presented. The main
goal is to variationally state the theoretical basis to deal with the coupling of struc-
tural models with different dimensionality. In this approach, the coupling conditions
are naturally derived from the governing variational principle formulated at the con-
tinuous level. In particular, the coupling of 3D solid models and 2D shell models,
under Naghdi hypothesis, is treated by introducing the corresponding kinematical
assumptions into the proposed extended variational principle. Also, the coupling
between 3D solid and 1D beam models, under Bernoulli hypothesis, is presented.
Finally, a discussion comprising the main conclusions of the work is given.

Key words: Incompatible kinematics, Variational formulation, Coupling
conditions, Structural models.

1 Introduction

In structural analysis it is common to make use of reduced models in order to
represent the main phenomena involved in the problem. Those models are built
by taking advantage of the particular form of the geometry of the structural
component and of the loading acting on it. In this way, full 3D models can
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be condensed into shells, plates or even beams. This kind of reduction in the
dimension of the problem, within the context of primal variational formula-
tions, is given by deeming suitable kinematical assumptions, that is, assuming
a particular form for the displacement vector field.

The situation we are interested in involves a structural component whose
geometry and loadings take a very general configuration on a given portion
of the domain of analysis, for which it is necessary to work with the full 3D
model, whereas they take a particular configuration over the rest of the do-
main, where it is possible to introduce some kinematical restrictions. Research
oriented to this field was formerly conducted in the 80’s in works that dealt
with the problem of junctions between plates, and between plates and 3D elas-
tic bodies [1,4,7]. Lately, the problem was also extended to junctions between
shells, while the numerical study of junctions between elastic bodies and plates
continued [2,3,9]. In the 90’s, some works covered the asymptotic analysis for
the coupling between a 3D elastic body and a dimensionally reduced struc-
ture [10,13,14]. In all the aforementioned works the problem of performing a
junction was analyzed from a very different standpoint than the one presented
in this work. Indeed, in the present work the problem of coupling structural
components is generalized. It will be seen that it is possible to handle any kind
of junction in spite of the possibility of non–linear constitutive behaviors, as
well as non–linearities arisen from large displacements. Thus, all those prob-
lems treated in the aforesaid literature can be embraced in the ideas developed
here. It is worth noting that, up to the authors’ knowledge, there is no previ-
ous works that deal into a unified continuous variational framework with the
coupling between different structural solid models. Previous ideas regarding
the coupling of models of different dimensionality from a purely kinematical
point of view were explored in [8,17], but they have recently been variationally
stated for the fluid flow problem in [5].

The concepts introduced here can also be useful in the context of domain de-
composition techniques as a clever alternative approach to formulate a problem
with non–matching meshes. Although in this situation there exists kinematical
compatibility at the continuous level, this compatibility is lost when passing
to the discrete level by introducing different approximations for the different
partitions of the domain of analysis. Thus, the theory is also applicable for
handling partitioned systems, and from this perspective it involves several
well–known methods as those proposed in [15,16].

According to what was said in a previous paragraph, we have a structural
component in which, for simplicity but without loss of generality, two pos-
sible incompatible kinematics coexist (this number can be arbitrary). Since
the involved fields may suffer jumps over the locations where the kinematics
changes, the original governing variational principle is not correctly stated.
Then, the need for an extended variational formulation can be interpreted as
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a consequence of working with non–matching underlaying kinematics defined
over complementary portions of the domain of analysis. This formulation is
mathematically founded on the Lagrange multiplier theory, and can be under-
stood from a mechanical viewpoint by means of introducing, into the original
variational principle, some terms related to the jump in the fields, allowing dis-
continuities to occur over an artificial internal boundary where the kinematics
changes. In this manner, the extended governing variational principle yields, as
the natural Euler–Lagrange equations, besides the equilibrium equations, the
coupling conditions between both models. These natural coupling conditions
depend exclusively upon the kinematics adopted for each domain. It will be
seen that, according to the way in which the jumps over the internal boundary
are introduced, different possibilities regarding the final Euler–Lagrange equa-
tions emerge. Moreover, this extended variational principle holds the property
of consistency in the following sense: when no difference between the kine-
matics is considered, the Euler–Lagrange equations ensure exactly the same
solution of the original problem without any discontinuities.

Having taken into account the possible occurrence of discontinuities we are
in position to perform any kind of kinematical restriction over just a por-
tion of the domain of analysis, reducing the full 3D model to, for example,
a beam or a shell model. It is worthwhile to mention here that when taking
such a restriction over the displacement field we are also altering the way in
which the involved duality product is defined. This aspect entails interesting
consequences for the setting of the whole problem, such as changes in the reg-
ularity conditions in the part of the domain complementary to that in which
the kinematics changed. Then, once the foundations of the coupled problem
are well established, as done in the present work, a numerical approximation
constitutes the next step for which, given the continuous formulation, any
approximation method could eventually be used.

The organization of this paper is as follows. In Section 2 the original and
extended variational principles are presented. The coupling between 3D full
models and 2D shell models, under Naghdi hypothesis [11,12], is derived in
Section 3, while in Section 4 the coupling between 3D full models and 1D beam
models, under Bernoulli hypothesis, is obtained. In all cases we formulate the
equilibrium problem for a general constitutive behavior, although a simple
example involving linear elastic materials in small displacements is presented
to prove existence and uniqueness of the solution. The theory is introduced for
any material, but the constitutive modelling problem is left aside in this work
since it can be managed according to the classical constitutive theory well
established for each model. In Section 5 final remarks and general conclusions
are given.

3



2 The variational framework

In this section the usual variational principle is recalled, then the extended
governing variational formulation is devised in order to allow a discontinuity
in the displacement field to occur at a given location of the domain of analysis.
As a consequence of that, some relation between the original problem and the
extended one has to be assured. Therefore, the added terms play the important
role of making compatible both problems in terms of the corresponding Euler–
Lagrange equations.

2.1 Original variational principle

Let Ω ⊂ R3 be the domain of analysis, with boundary decomposed as Γ =
ΓD ∪ ΓN , such that ΓD ∩ ΓN = ∅. Then, without loss of generality, let us
consider the following structural analysis problem neglecting dynamics:

Problem 1 Find u ∈ U such that
∫

Ω
σ · ∇v dx =

∫

Ω
f · v dx +

∫

ΓN

t̄ · v dΓ ∀v ∈ V , (1)

where
U = {u ∈ H1(Ω); u|ΓD

= ū}, (2)

with V the space obtained from differences between elements of U . Also, Ω is
the actual deformed configuration of the body, and therefore σ is the Cauchy
stress tensor, f is a volume force, t̄ is a traction acting over the Neumann
boundary ΓN and ū is a displacement prescribed over the Dirichlet boundary
ΓD.

Notice that the problem is actually closed once the material behavior is given
by specifying the dependence of σ on u. This problem is rather general, and
remains valid, for example, for large displacements and deformations and non-
linear constitutive behavior.

Consider now a smooth artificial internal boundary Γa that splits the domain
Ω as Ω = (Ω1 ∪ Ω2)

◦, where Γi is the boundary of Ωi, i = 1, 2, and hence
Γa = Γ1 ∩ Γ2 and Γ = (Γ1 ∪ Γ2) \ Γa, being Γ the boundary of Ω. In this
manner, it is well–known that the solution of Problem 1, considered now as
a pair u = (u1,u2) according to the partition of Ω, satisfies the following
conditions over Γa

u1 = u2 in H1/2(Γa), (3)

σ1n1 = σ2n1 in H−1/2(Γa), (4)
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where σi is the stress tensor corresponding to the partition Ωi, i = 1, 2, over Γa

whose unit outward normal, seen from Ω1, is n1. It is clear that condition (3)
follows from the kinematics of the problem as a result of the definition of set
U , while condition (4) is a natural consequence of the variational formulation
(1).

2.2 Extended variational principle

Consider now the scheme shown in Figure 1, where the decomposition of Ω
performed by the artificial internal boundary Γa is shown explicitly.

Fig. 1. Decomposition of domain Ω.

Here, we are preparing the theory for introducing, as will be seen in Section
3 and Section 4, suitable kinematical restrictions in order to reduce a portion
of Ω without invalidating the governing variational formulation. Then, let us
assume that no longer is condition (3) satisfied, so it is necessary to rewrite
Problem 1 introducing terms involving the virtual power of the jumps in u and
in its variation v. Thus, the extended variational principle reads as follows:

Problem 2 For some γ ∈ [0, 1] find ((u1,u2), t1, t2) ∈ Ud × Z1 × Z2 such
that

∫

Ω1

σ1 · ∇v1 dx +
∫

Ω2

σ2 · ∇v2 dx =

γ
∫

Γa

t1 · (v1 − v2) dΓ + (1− γ)
∫

Γa

t2 · (v1 − v2) dΓ

+ γ
∫

Γa

s1 · (u1 − u2) dΓ + (1− γ)
∫

Γa

s2 · (u1 − u2) dΓ

+
∫

Ω1

f · v1 dx +
∫

Ω2

f · v2 dx +
∫

ΓN1

t̄1 · v1 dΓ +
∫

ΓN2

t̄2 · v2 dΓ

∀((v1,v2), s1, s2) ∈ Vd ×Z1 ×Z2, (5)

where t̄1 = t̄|ΓN 1
and t̄2 = t̄|ΓN 2

and also Ud = U1 × U2 with

U1 = {u1 ∈ H1(Ω1); u1|ΓD1
= ū1},

U2 = {u2 ∈ H1(Ω2); u2|ΓD2
= ū2}, (6)
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where ū1 = ū|ΓD1
and ū2 = ū|ΓD2

, Vd = V1×V2, being V1 and V2 the spaces
whose elements are differences of elements in sets U1 and U2 respectively. In
this case it results Z1 = Z2 = H−1/2(Γa), while the rest of the elements is
defined according to Problem 1.

It follows, in the distributional sense, that the Euler–Lagrange equations cor-
responding to the extended variational formulation (5) are the following





− div σ1 = f in Ω1,

− div σ2 = f in Ω2,

u1 = ū1 on ΓD1,

u2 = ū2 on ΓD2,

σ1n1 = t̄1 on ΓN 1,

σ2n2 = t̄2 on ΓN 2,

γ(u1 − u2) = 0 on Γa,

(1− γ)(u1 − u2) = 0 on Γa,

γt1 + (1− γ)t2 = σ1n1 on Γa,

γt1 + (1− γ)t2 = σ2n1 on Γa.

(7)

Writing the Euler–Lagrange equations just in terms of the displacement field
u = (u1,u2) it ensues that the solution does not actually depend on the real
parameter γ, in fact we have





− div σ1 = f in Ω1,

− div σ2 = f in Ω2,

u1 = ū1 on ΓD1,

u2 = ū2 on ΓD2,

σ1n1 = t̄1 on ΓN 1,

σ2n2 = t̄2 on ΓN 2,

u1 = u2 on Γa,

σ1n1 = σ2n1 on Γa.

(8)

We conclude then that the solution of Problem 2 satisfies the same Euler–
Lagrange equations as the solution of Problem 1. Indeed, the last two expres-
sions of (8) correspond to conditions (3)–(4).

In particular, the following result is stated in the case of small displacements
and for a linear elastic materials:

Proposition 3 The Problem 2 under small displacements assumptions and
for a linear elastic material, that is σi = Dε(ui) = D(∇ui)

s (i = 1, 2), has a
unique solution u = (u1,u2) ∈ Ud and a unique combination tγ = γt1 + (1−
γ)t2 ∈ H

−1/2
J·K (Γa).
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PROOF. The proof follows the main ideas used when dealing with mixed
formulations (see [6]). Notice that the problem can be written as follows

a(u,v)− b(v, tγ) = l(v) ∀v ∈ Vd, (9)

b(u, sγ) = 0 ∀sγ ∈ H
−1/2
J·K (Γa), (10)

with a(·, ·) : Wd ×Wd → R, b(·, ·) : Wd ×H
−1/2
J·K (Γa) → R e l(·) : Wd → R

defined as

a(u,v) =
∫

Ω1

Dε(u1) · ε(v1) dx +
∫

Ω2

Dε(u2) · ε(v2) dx,

b(u, sγ) =
∫

Γa

(γs1 + (1− γ)s2) · (u1 − u2) dΓ,

l(v) =
∫

Ω1

f · v1 dx +
∫

Ω2

f · v2 dx +
∫

ΓN1

t̄1 · v1 dΓ +
∫

ΓN2

t̄2 · v2 dΓ,

(11)

and where Wd = H1(Ω1) × H1(Ω2) is endowed with the norm ‖u‖Wd
=

‖u1‖H1(Ω1) + ‖u2‖H1(Ω2). Consider the decomposition u = w + z where z ∈
Wd is such that z1|ΓD1

= ū1, z1|Γa
= 0, z2|ΓD2

= ū2 e z2|Γa
= 0, while

w ∈ K ⊂ Ker(B) being B the operator associated to the form b(·, ·) and

K =
{
w = (w1,w2) ∈ Wd; w1|ΓD1

= 0, w2|ΓD2
= 0, w1|Γa

= w2|Γa

}
. (12)

It is quite standard to prove that the form a(·, ·) is bilinear, symmetric, contin-
uous and coercive in K×K as D is a fourth–order tensor such that DS ·S > 0,
for all symmetric second–order tensor S, and also that the form l(·) is linear
and continuous in K. It follows, by using the Lax–Milgram theorem (see [6])
that there exists a unique function w ∈ K ⊂ Ker(B) such that

a(w,v) = lz(v) ∀v ∈ K, (13)

where lz(·) = l(·) − a(z, ·). Hence, the existence and uniqueness of u =
(u1,u2) ∈ Ud follows. To prove the existence and uniqueness of the com-
bination tγ it is necessary to use the theory of mixed formulations. In this
case the form b(·, ·) must satisfy an inf–sup condition so as to prove the result.

Then, the space H
−1/2
J·K (Γa) equipped with the norm

‖tγ‖H−1/2

J·K (Γa)
= sup

JwK∈H
1/2

J·K (Γa)

JwK6=0

∫

Γa

tγ · JwK dΓ

‖JwK‖
H

1/2

J·K (Γa)

, (14)

is defined as the dual space of H
1/2
J·K (Γa) that, in turn, is defined as

H
1/2
J·K (Γa) = {JwK ∈ H1/2(Γa); w ∈ Wd, JwK = w1|Γa

−w2|Γa
}, (15)
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and equipped with the norm

‖JwK‖
H

1/2

J·K (Γa)
= inf

y∈Wd
JwK=y1|Γa

−y2|Γa

‖y‖Wd
. (16)

Thus, for any β1 > 1 it is possible to take z ∈ Wd such that z1|Γa
−z2|Γa

= JwK
and

‖z‖Wd
≤ β1‖JwK‖H1/2

J·K (Γa)
. (17)

Using definition (14) together with expression (17) it follows that, for β2 > 1,
we have

1

β2

‖tγ‖H−1/2

J·K (Γa)
< sup

JwK∈H
1/2

J·K (Γa)

JwK6=0

∫

Γa

tγ · JwK dΓ

‖JwK‖
H

1/2

J·K (Γa)

≤ β1 sup
z∈Wd

JwK=z1|Γa−z2|Γa
z1|Γa 6=z2|Γa

∫

Γa

tγ · JwK dΓ

‖z‖Wd

. (18)

Therefore, there exists β0 = 1
β1β2

> 0 such that the form b(·, ·) satisfies the
following inf–sup condition

β0 ≤ inf
tγ∈H

−1/2

J·K (Γa)

tγ 6=0

sup
z∈Wd

JwK=z1|Γa−z2|Γa
z1|Γa 6=z2|Γa

∫

Γa

tγ · JwK dΓ

‖z‖Wd
‖tγ‖H−1/2

J·K (Γa)

. (19)

The existence and uniqueness of the combination tγ ∈ H
−1/2
J·K (Γa) follows. 2

2.3 Remarks on the kinematical hypotheses

In the preceding section the general variational setting that will be employed
in the forthcoming ones was introduced. Notice that the general variational
problem 2 is comprised of two kinematics, one for each component part of Ω.
The possibility of having two non–necessarily compatible kinematics allows
us to incorporate kinematical restrictions over just a portion of the domain Ω
without violating the validity of the governing principle.

The next step is to perform, within the context of variational problem 2,
additional hypotheses in the governing kinematics over, say, Ω1. According to
the modelling requirements it would be possible to reduce the full 3D model to
a 2D, or even a 1D, model. It depends on the particular form assumed for the
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displacement vector field u1, that obviously affects the kinematical description
of the admissible variations v1.

An important remark must be made at this point concerning the character-
ization of the admissible loadings. We will focus our attention on the terms
defined over Γa. For instance, over that boundary, it was explicitly shown that
the power exerted by the tractions s1 and s2 with the jump u1−u2 was given
by

〈s1,u1 − u2〉H−1/2(Γa)×H1/2(Γa) =
∫

Γa

s1 · (u1 − u2) dΓ,

〈s2,u1 − u2〉H−1/2(Γa)×H1/2(Γa) =
∫

Γa

s2 · (u1 − u2) dΓ,
(20)

but, actually, these expressions are the formal ones corresponding to the du-
ality products of H−1/2(Γa) × H1/2(Γa) as a result of being working with
U i ⊂ H1(Ωi), i = 1, 2. Now let us introduce the functional space composed
by all the traces over Γa of functions in V i, and let us denote it by TΓa(V i),
i = 1, 2. For Problem 2 according to this notation we have

TΓa(V i) = TΓa(H
1(Ωi)) = H1/2(Γa) i = 1, 2. (21)

Hence, the general expressions for the duality products (20) are

〈s1,u1 − u2〉TΓa (V1)∗×TΓa (V1), (22a)

〈s2,u1 − u2〉TΓa (V2)∗×TΓa (V2), (22b)

where TΓa(V i)
∗ is the dual space of TΓa(V i), i = 1, 2. Both expressions pre-

sented above in (22) cannot be explicitly given until the sets U1 and U2 are
specified.

When performing hypotheses, for example by giving a particular form to u1,
we automatically have, by duality arguments, that the admissible loadings
(the dual elements, in this case s1), have a particular form according to such
kinematical assumptions. This is due to the definition of set U1, which goes
along with the definition of space V1 and hence of TΓa(V1). Thus, as remarked
in the previous paragraph, form (22a) has a different expression than the first
one of (20). That is, the power exerted by s1 takes another form that is
consistent with the kinematical assumptions made on u1. Whereas there are
no problems in expressing the product 〈s1,u1〉TΓa (V1)∗×TΓa (V1), as a result of the
natural duality between the elements, the question that arises now is how to
consider the product 〈s1,u2〉TΓa (V1)∗×TΓa (V1) as the elements do not comprise a
dual pair (note that u2 ∈ U2 and u2|Γa

∈ TΓa(V2)). To answer this question we
have to recall that s1 is the traction vector such that together with a function
of the form of u1 exerts a quantity of power. Therefore, any function with no
components of the form of u1 must be orthogonal to s1 in the sense given by the
projection defined by the duality product. That means that, being u2 a general
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function, it has to be projected in the sense of the duality product defined in
TΓa(V1)

∗ × TΓa(V1) with the aim of recasting the corresponding component
that resembles the form of u1. In order to achieve this, it is necessary to
set TΓa(V2) such that it embraces the regularity conditions that characterize
TΓa(V1). Therefore, in general we write

TΓa(V2) = TΓa(V1)⊕W , (23)

where W is a general space such that in the previous decomposition of TΓa(V2)
it is orthogonal to TΓa(V1)

∗ in the sense given by the duality product. Thus,
it is

u2|Γa
= u21 + u2r, (24)

with u21 ∈ T Γa(V1) and u2r ∈ W . Since u2r ∈ W = Ker(S1) (the kernel of
the linear functional S1 associated to the element s1) it is possible to assert,
for a general function u2 ∈ V2, that

〈s1,u2〉TΓa (V1)∗×TΓa (V1) = 〈s1,u21〉TΓa (V1)∗×TΓa (V1). (25)

From the mechanical point of view, decomposition (23) is such that functions
of the form of u2r do not exert power in duality with the elements of TΓa(V1)

∗.
As a consequence of this, u2r will be regarded hereafter as a fluctuation com-
ponent that is invisible for the duality purposes according to the stated in
the above. In fact, it will be seen in each example that functions in W have
particular properties that are strongly related to the characteristics of the
kinematical assumptions considered over V1.

Remark 4 In the general problem 2 the equivalence of the solution with re-
spect to the real parameter γ was firmly stated in terms of the Euler–Lagrange
equations. Nevertheless, it will be seen that this property is lost when making
additional hypotheses over one of the kinematics. This is a direct consequence
of how the duality products are affected over Γa when γ, what is manifested
in the Euler–Lagrange equations, in particular in the coupling conditions. In
other words, notice that the convex combination sγ = γs1 + (1 − γ)s2 is such
that sγ=1 ∈ TΓa(V1)

∗ and sγ 6=1 ∈ TΓa(V2)
∗, that is, the space of sγ alters its

characteristics according to the value of γ.

In the next sections two examples are addressed in order to expose how prac-
tical situations are handled using the ideas presented in the above.

3 Coupling 3D solid and 2D shell models

The coupling between a full 3D solid and a structural component with the
characteristics of a shell is of utmost interest for diverse applications. Consider
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a structural component that can be considered in part as a shell. However, as
a result of a rather intricate geometry or general loadings acting on the other
part it has to be partially represented as a full 3D solid model. In such cases
the use of coupled 3D models with 2D shell models appears as an interesting
solution in order to avoid high computational cost when thinking of finding
approximate solutions in a whole 3D domain.

Consider the scheme shown in Figure 2, where a general structural component
can be split up into sub–domains Ω1 and Ω2 by the artificial internal boundary
Γa.

Fig. 2. Coupling 3D solid–2D shell models.

On one hand, it can be seen that the sub–domain Ω2 has an arbitrary form,
and we can hardly make assumptions over the corresponding displacement
field. In this part of the domain Ω we consider the full kinematics of the 3D
solid model. On the other hand, the sub–domain Ω1 has a particular form
that permits us to consider the analysis of this part of the component as it
was a shell. In this manner a discontinuity in the displacement field arises
as a consequence of the incompatible kinematics chosen for describing both
portions of the component defined completely in Ω.
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Over the part Ω1 we carry out the decomposition of fields in terms of the tan-
gential and normal components in order to correctly introduce the kinematical
hypotheses. A fast revision about this decomposition is given in what follows.

3.1 Preliminaries

A convenient manner to characterize the domain Ω1 is the following

Ω1 = {x ∈ R3; x = xo + ξn, xo ∈ Σo, ξ ∈ H}, (26)

where Σo is the middle surface on which the normal vector n = n(xo) is
defined, together with the thickness of the shell h = h(xo) given by the interval

H = (−h(xo)
2

, h(xo)
2

). The relation x ↔ (xo, ξ) is uniquely determined provided
the thickness of the shell is less than twice the largest radius of curvature.
Domain Ω1 is limited from top and bottom by surfaces Σ+ and Σ− respectively,
and is laterally limited by surface ΓL. In particular we identify the lateral
coupling surface Γa. With this description in mind, we also assume that the
shell is smooth, so we have a unique normal and tangent plane over each point
xo ∈ Σo.

To conveniently express the virtual power principle in the case of a shell, a
decomposition of tensors σ1 and ∇v1 in terms of the tangential and normal
components should be given. Firstly, by making use of the projection operator
over the tangent plane, denoted by Πt(xo) = I − n(xo) ⊗ n(xo), it is easy to
see that, for a symmetric tensor S we have the following decomposition

S = St + Ss ⊗ n + n⊗ Ss + Sn(n⊗ n), (27)

where St = ΠtSΠt (tensor), Ss = ΠtSn (vector) and Sn = (Sn) · n (scalar).
Recall that this is an orthogonal decomposition. Now, consider the vector field
v written in tangential and normal components, that is v = vt + vnn. In this
way, by simply differentiating yields the following

∇v = (∇v)t + (∇v)s ⊗ n + n⊗ (∇v)∗s + (∇v)n(n⊗ n), (28)

where

(∇v)t = Πt(∇xovt)Λ
−1Πt + vn(∇xon)Λ−1Πt,

(∇v)s =
∂vt

∂ξ
,

(∇v)∗s = ΠtΛ
−1∇xovn −ΠtΛ

−1(∇xon)vt,

(∇v)n =
∂vn

∂ξ
,

(29)
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with the invertible operator Λ defined as Λ = I+ξ∇xon, where ∇xo(·) denotes
the gradient in the variable xo defined over Σo and∇xon is the curvature tensor
over the surface Σo.

Observe that the following equivalent ways of writing the integrals will be
useful to state the problem over Ω1

∫

Ω1

(·) dx =
∫

Σo

∫

H
(·) detΛ dξ dΣo,

∫

Σ+
(·) dΓ =

∫

Σo

(·) detΛ+ dΣo,
∫

Σ−
(·) dΓ =

∫

Σo

(·) detΛ− dΣo,
∫

ΓLN

(·) dΓ =
∫

∂ΣoN

∫

H
(·)[Λ2m1o ·m1o]

1/2 dξd∂Σo,
∫

Γa

(·) dΓ =
∫

∂Σoa

∫

H
(·)[Λ2m1o ·m1o]

1/2 dξd∂Σo,

(30)

with m1o = n × n1o the unit tangent vector to Σo over ∂Σo, being n1o the
unit outward normal to the lateral boundary ΓL.

3.2 Kinematical assumptions

The shell model in this section is established assuming that the displacement
over Ω1 has the following particular form

u1(x) = u1t(xo, ξ) + u1n(xo),

u1t(xo, ξ) = u1
o
t (xo) + ξω1t(xo),

u1n(xo) = u1n(xo)n(xo),

(31)

where u1t is a vector that lies on the tangent plane to the middle surface
and u1n is the component along the normal direction. For this model the
normal fibers remain normal after the deformation process, and also they
remain equally sized. This model is known as the Naghdi model [11,12]. It
is worthwhile to mention that other models as the Reissner–Mindlin or the
Kirchhoff–Love models may be equally handled, as they constitute particular
cases of the situation analyzed in this section. On the other hand, over Ω2 the
complete kinematics is regarded.

Once the kinematics over Ω1 was defined we are in position to characterize
the form of the duality product. Firstly, notice that according to the definition
(31), u1 is characterized by the triple (u1

o
t ,ω1t, u1n) ∈ V1 where

V1 = H1(Σo)×H1(Σo)×H1(Σo). (32)
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Then, using duality arguments we have that any admissible traction s1 com-
patible with the kinematical assumptions (31) is such that the power that it
exerts over Γa is expressed as

〈s1,u1〉TΓa (V1)∗×TΓa (V1) = 〈(s1
o
t ,ν1t, s1n), (u1

o
t , ω1t, u1n)〉TΓa (V1)∗×TΓa (V1) =∫

∂Σoa

[
s1

o
t · u1

o
t + ν1t · ω1t + s1nu1n

]
d∂Σo, (33)

where ∂Σoa is the corresponding part of Γa over the middle surface of the shell.
We easily identify that the traction compatible with the kinematics has the
form of a triple s1 = (s1

o
t ,ν1t, s1n), being s1

o
t , ν1t and s1n the dual elements of

u1
o
t , ω1t and u1n respectively, and that also they depend only on xo. Here it

is easy to recognize that these generalized loadings correspond to membrane,
flexion and normal effects, respectively. For this case we have that TΓa(V1)
and TΓa(V1)

∗ are given by

TΓa(V1) = H1/2(∂Σoa)×H1/2(∂Σoa)×H1/2(∂Σoa),

TΓa(V1)
∗ = H−1/2(∂Σoa)×H−1/2(∂Σoa)×H−1/2(∂Σoa).

(34)

Concerning what was commented in Section 2.3, the question is how to handle
a product of the form 〈s1,u2〉TΓa (V1)∗×TΓa (V1). According to the ideas developed
in that section observe that the space TΓa(V2) has to be such that it can
be written as in expression (23) with TΓa(V1) given by (34). The need for
performing the projection of u2 in the sense given by the duality product (33)
obliges U2 to be such that the decomposition of an arbitrary u2|Γa

as done in
(24) holds, for which u21 is such that

u21(xo, ξ) = u2
o
t (xo) + ξω2

o
t (xo) + u2

o
n(xo)n(xo) ∀(xo, ξ) ∈ Γa, (35)

where the decomposition into tangent and normal components was employed.
Consequently, we have now that the projection of u2 ∈ U2 in the sense of the
operation 〈·, ·〉TΓa (V1)∗×TΓa (V1) is given by

〈s1,u2〉TΓa (V1)∗×TΓa (V1) = 〈s1,u21〉TΓa (V1)∗×TΓa (V1) =

〈(s1
o
t ,ν1t, s1n), (u2

o
t ,ω2

o
t , u2

o
n)〉TΓa (V1)∗×TΓa (V1) =∫

∂Σoa

[
s1

o
t · u2

o
t + ν1t · ω2

o
t + s1nu2

o
n

]
d∂Σo, (36)

as the fluctuation component u2r is such that

〈s1,u2r〉TΓa(V1)∗×TΓa (V1) = 0 ∀s1 ∈ TΓa(V1)
∗. (37)

Remark 5 A consequence of having introduced hypothesis (31) is that the
regularity of set U2 is no longer given by space H1(Ω2), since additional reg-
ularity is needed in order to be able to perform the projection of u2 given by
the duality product.
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From (37) it is not difficult to see that the fluctuations u2r have the following
additional properties

Πt

∫

H
u2r[Λ

2m1o ·m1o]
1/2 dξ = 0,

Πt

∫

H

∂u2r

∂ξ
[Λ2m1o ·m1o]

1/2 dξ = 0,
∫

H
u2r · n[Λ2m1o ·m1o]

1/2 dξ = 0,

(38)

contrariwise no longer is expression (37) valid neither does the orthogonal
decomposition (23) hold for this case. Consequently, from properties (38) we
obtain that

Hξ0u2
o
t + Hξ1ω2

o
t = Πt

∫

H
u2[Λ

2m1o ·m1o]
1/2 dξ,

Hξ0ω2
o
t = Πt

∫

H

∂u2

∂ξ
[Λ2m1o ·m1o]

1/2 dξ,

Hξ0u2
o
n =

∫

H
u2 · n[Λ2m1o ·m1o]

1/2 dξ,

(39)

where Hξi =
∫
H ξi[Λ2m1o ·m1o] dξ. Then, decomposition (24) is completely

defined with u2r satisfying (37), while u21 is given by (35). Furthermore, from
(39) u21 can be characterized as follows

u2
o
t =

1

Hξ0

Πt

∫

H

(
u2 − Hξ1

Hξ0

∂u2

∂ξ

)
[Λ2m1o ·m1o]

1/2 dξ,

ω2
o
t =

1

Hξ0

Πt

∫

H

∂u2

∂ξ
[Λ2m1o ·m1o]

1/2 dξ,

u2
o
n =

1

Hξ0

∫

H
u2 · n[Λ2m1o ·m1o]

1/2 dξ.

(40)

Now, we are in position to establish the regularity requirements of functions
in Ω2

V2 = {v2 ∈ H1(Ω2); v2|Γa
= v2

o
t + ξϕ2

o
t + v2

o
nn + v2r;

(v2
o
t ,ϕ2

o
t , v2

o
n) ∈ TΓa(V1); v2r satisfies (38)}. (41)

The counterpart expression for the duality product between the admissible
tractions s2 and either the displacement field u2 or u1 is handled as usual,
and given by

〈s2,u2〉TΓa (V2)∗×TΓa (V2) =
∫

Γa

s2 · u2 dΓ. (42)
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3.3 Variational principle

In what follows the decomposition of the fields defined over Ω1 in terms of the
tangent and normal components with respect to the middle surface of the shell
is employed. The next step consists in introducing the kinematical hypothesis
(31) alongside with the duality product defined by (33), its consequence (36),
and (42). Therefore, putting all this together into the variational formulation
(5) leads, after a little basic work, to the following

∫

Σo

∫

H

[
σ1t · (Πt∇xov1

o
t + ξΠt∇xoϕ1t + v1n∇xon)Λ−1

+ σ1s ·Λ−1(ϕ1t − (∇xon)v1
o
t +∇xov1n)

]
detΛ dξdΣo +

∫

Ω2

σ2 · ∇v2 dx =

γ
∫

∂Σoa

[
t1

o
t · (v1

o
t − v2

o
t ) + µ1t · (ϕ1t −ϕ2

o
t ) + t1n(v1n − v2

o
n)

]
d∂Σo

+ (1− γ)
∫

Γa

t2 · ((v1
o
t + ξϕ1t + v1nn)− (v2

o
t + ξϕ2

o
t + v2

o
nn + v2r)) dΓ

+ γ
∫

∂Σoa

s1
o
t · (u1

o
t − u2

o
t ) d∂Σoa + γ

∫

∂Σoa

ν1t · (ω1t − ω2
o
t ) d∂Σoa

+ γ
∫

∂Σoa

s1n(u1n−u2
o
n) d∂Σoa +(1− γ)

∫

Γa

s2 · ((u1
o
t + ξω1t + u1nn)− u2) dΓ

+
∫

Σo

∫

H
[ft · v1

o
t + ft · ξϕ1t + fnv1n] detΛ dξ dΣo +

∫

Ω2

f · v2 dx

+
∫

Σo

[
t̄1

+
t · v1

o
t + t̄1

+
t ·

h

2
ϕ1t + t̄1

+
n v1n

]
detΛ+ dΣo

+
∫

Σo

[
t̄1
−
t · v1

o
t − t̄1

−
t ·

h

2
ϕ1t + t̄1

−
n v1n

]
detΛ− dΣo

+
∫

∂ΣoN

∫

H

[
t̄1t · v1

o
t + t̄1t · ξϕ1t + t̄1nv1n

]
[Λ2m1o ·m1o]

1/2 dξd∂Σo

+
∫

ΓN2

t̄2 · v2 dΓ

∀((v1
o
t .ϕ1t, v1n,v2), (s1

o
t , ν1t, s1n), s2) ∈ Vd ×Z1 ×Z2, (43)

where the spaces Vd, Z1 e Z2 are specified below. Also, the following ad-
ditional decompositions and notations were considered f = ft + fnn in Ω1,
t̄1 = t̄1

+
t + t̄1

+
n n on Σ+, t̄1 = t̄1

−
t + t̄1

−
n n on Σ− and t̄1 = t̄1t + t̄1nn on ΓLN .

Here, index ± indicates that the quantity is evaluated at ξ = ±h
2
. Besides,

boundaries Σ+ and Σ− are Neumann boundaries as well as ΓLN , such that we
get ΓN 1 = Σ+ ∪ Σ− ∪ ΓLN . Recall that σ1t is a tensor and σ1s is a vector.

As usual in shell theory, from the above expression the following generalized
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stresses and loadings are defined

N1
H
t =

∫

H
σ1tΛ

−1 detΛ dξ,

M1
H
t =

∫

H
σ1tΛ

−1ξ detΛ dξ,

Q1
H
t =

∫

H
Λ−1σ1s detΛ dξ,

fH
t =

∫

H
ft detΛ dξ + t̄1

+
t detΛ+ + t̄1

−
t detΛ−,

fH
n =

∫

H
fn detΛ dξ + t̄1

+
n detΛ+ + t̄1

−
n detΛ−,

mH
t =

∫

H
ftξ detΛ dξ +

h

2

(
t̄1

+
t detΛ+ − t̄1

−
t detΛ−)

,

t̄1
H
t =

∫

H
t̄1t[Λ

2m1o ·m1o]
1/2 dξ,

t̄1
H
n =

∫

H
t̄1n[Λ2m1o ·m1o]

1/2 dξ,

m̄1
H
t =

∫

H
t̄1tξ[Λ

2m1o ·m1o]
1/2 dξ,

(44)

where, summarizing, N1
H
t is the membrane stress tensor, M1

H
t is the flexion

stress tensor and Q1
H
t is the shear stress vector. Introducing now these de-

finitions into expression (43) we arrive at the formulation that handles the
coupling of a full 3D solid model with a 2D shell model. For the sake of com-
pleteness the problem is enunciated here with all the elements involved:

Problem 6 For some γ ∈ [0, 1] find ((u1
o
t .ω1t, u1n,u2), (t1

o
t ,µ1t, t1n), t2) ∈
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Ud ×Z1 ×Z2 such that

∫

Σo

[
N1

H
t · (Πt∇xov1

o
t + v1n∇xon) + M1

H
t ·Πt∇xoϕ1t

+ Q1
H
t · (ϕ1t − (∇xon)v1

o
t +∇xov1n)

]
dΣo +

∫

Ω2

σ2 · ∇v2 dx =
∫

∂Σoa

(
γt1

o
t + (1− γ)Πt

∫

H
t2[Λ

2m1o ·m1o]
1/2 dξ

)
· (v1

o
t − v2

o
t ) d∂Σo

+
∫

∂Σoa

(
γµ1t + (1− γ)Πt

∫

H
t2ξ[Λ

2m1o ·m1o]
1/2 dξ

)
· (ϕ1t −ϕ2

o
t ) d∂Σo

+
∫

∂Σoa

(
γt1n + (1− γ)

∫

H
t2 · n[Λ2m1o ·m1o]

1/2 dξ
)

(v1n − v2
o
n) d∂Σo

− (1− γ)
∫

Γa

t2 · v2r dΓ

+ γ
∫

∂Σoa

s1
o
t · (u1

o
t − u2

o
t ) d∂Σo + γ

∫

∂Σoa

ν1t · (ω1t − ω2
o
t ) d∂Σo

+ γ
∫

∂Σoa

s1n(u1n − u2
o
n) d∂Σo + (1− γ)

∫

Γa

s2 · ((u1
o
t + ξω1t + u1nn)− u2) dΓ

+
∫

Σo

[
fH
t · v1

o
t + mH

t ·ϕ1t + fH
n v1n

]
dΣo +

∫

Ω2

f · v2 dx

+
∫

∂ΣoN

[
t̄1

H
t · v1

o
t + m̄1

H
t ·ϕ1t + t̄1

H
n v1n

]
d∂Σo +

∫

ΓN2

t̄2 · v2 dΓ

∀((v1
o
t .ϕ1t, v1n,v2), (s1

o
t , ν1t, s1n), s2) ∈ Vd ×Z1 ×Z2, (45)

where Ud = U1 × U2 with

U1 = {(u1
o
t , ω1t, u1n) ∈ V1; (u1

o
t , ω1t, u1n)|ΓD1

= (ū1
o
t , ω̄1t, ū1n)},

U2 = {v2 ∈ V2; v2|ΓD2
= v̄2}, (46)

being V1 and V2 defined as in (32) and (41) respectively. Also, Vd is the
associated linear space obtained from difference of elements of Ud. Likewise,
we have that Z1 = TΓa(V1)

∗ as stated in (34), whereas Z2 = H−1/2(Γa). All
the other elements are defined as in Problem 2.

Recall that the problem is correctly posed once the constitutive behaviors for
the generalized stresses N1

H
t , M1

H
t and Q1

H
t are given as functions of fields

u1
o
t , ω1t and u1n, whilst the stress tensor σ2 have to be given in terms of u2.

Remark 7 Giving continuation to that mentioned in remark 5, Problem 6
demands more regularity for functions in Ω2 in order to have the expression
Πt

∫
H

∂u2

∂ξ
[Λ2m1o ·m1o]

1/2 dξ ∈ H1/2(∂Σoa) well defined. This outcome is a
direct consequence of the kinematics chosen over Ω1, where this regularity
requirement is intrinsically presumed through stating expression (31). This
reflects that the assumptions taken over a portion of Ω effectively affect the
problem over the complementary portion of the domain. This is a cost that
must be necessarily paid in order to have well posed the corresponding duality
products.
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Remark 8 It is worth noticing that the parameter γ determines the sense in
which the dual products are regarded in Problem 6. Certainly, revisiting expres-
sion (45) allows us to see that when choosing γ = 1 we are imposing that the
jumps are regarded solely by the sense of the dual product 〈·, ·〉TΓa (V1)∗×TΓa (V1).
Conversely, when γ = 0 we are including just the term 〈·, ·〉TΓa (V2)∗×TΓa (V2).
This aspect of the formulation will establish important features of the corre-
sponding Euler–Lagrange equations, impacting on the sense in which the conti-
nuity of the quantities is achieved, as will be seen in what follows. Actually, the
difference between both senses is given by the space W of decomposition (23),
and by the functions, regarded as fluctuations, that pertain to that component
of TΓa(V2).

3.4 Euler–Lagrange equations

Before proceeding to obtain the Euler–Lagrange equations, the tensor σ2 over
Γa is written, without loss of generality, in a convenient manner as follows

σ2|Γa
= σ̄2 + σ̃2, (47)

where σ̄2 and σ̃2 are such that

Πt

∫

H
σ2n1o[Λ

2m1o ·m1o]
1/2 dξ = Hξ0Πtσ̄2n1o,

∫

H
σ2n1o · n[Λ2m1o ·m1o]

1/2 dξ = Hξ0σ̄2n1o · n,

Πt

∫

H
σ̃2n1o[Λ

2m1o ·m1o]
1/2 dξ = 0,

∫

H
σ̃2n1o · n[Λ2m1o ·m1o]

1/2 dξ = 0.

(48)

In order to attain the Euler–Lagrange equations associated to Problem 6 the
Green formula is recurrently employed. In this manner, in the distributional
sense, it is straightforward to see that the Euler–Lagrange equations corre-
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sponding to the variational formulation (45) are the following





− divxo N1
H
t − (∇xon)Q1

H
t = fH

t in Σo,

− divxo M1
H
t + Q1

H
t = mH

t in Σo,

− divxo Q1
H
t + N1

H
t · ∇xon = fH

n in Σo,

− div σ2 = f in Ω2,

u1
o
t = ū1

o
t on ∂ΣoD,

ω1t = ω̄1t on ∂ΣoD,

u1n = ū1n on ∂ΣoD,

u2 = ū2 on ΓD2,

N1
H
t n1o = t̄1

H
t on ∂ΣoN ,

M1
H
t n1o = m̄1

H
t on ∂ΣoN ,

Q1
H
t · n1o = t̄1

H
n on ∂ΣoN ,

σ2n2 = t̄2 on ΓN 2,

γ(u1
o
t − u2

o
t ) = 0 on ∂Σoa,

γ(ω1t − ω2
o
t ) = 0 on ∂Σoa,

γ(u1n − u2
o
n) = 0 on ∂Σoa,

(1− γ)(u1
o
t + ξω1t + u1nn− u2) = 0 on Γa,

γt1
o
t + (1− γ)Πt

∫

H
t2[Λ

2m1o ·m1o]
1/2 dξ = N1

H
t n1o on ∂Σoa,

γµ1t + (1− γ)Πt

∫

H
t2ξ[Λ

2m1o ·m1o]
1/2 dξ = M1

H
t n1o on ∂Σoa,

γt1n + (1− γ)
∫

H
t2 · n[Λ2m1o ·m1o]

1/2 dξ = Q1
H
t · n1o on ∂Σoa,

γt1
o
t + (1− γ)Πt

∫

H
t2[Λ

2m1o ·m1o]
1/2 dξ = Hξ0Πtσ̄2n1o on ∂Σoa,

γµ1t + (1− γ)Πt

∫

H
t2ξ[Λ

2m1o ·m1o]
1/2 dξ = Hξ1Πtσ̄2n1o

+Πt

∫

H
σ̃2n1oξ[Λ

2m1o ·m1o]
1/2 dξ on ∂Σoa,

γt1n + (1− γ)
∫

H
t2 · n[Λ2m1o ·m1o]

1/2 dξ = Hξ0σ̄2n1o · n on ∂Σoa,[
(1− γ)t2 − σ̃2n1o

]
⊥ v2r ∀v2r satisfying (38) on Γa,

(49)
where it has been assumed, without loss of generality, that over ∂ΣoD we have
imposed Dirichlet conditions for the three fields involved in the shell model.

Here, the last eleven expressions above comprise the natural coupling condi-
tions given by the variational formulation (45). The Euler–Lagrange equations
put in evidence that the equivalence with respect to the real parameter γ is
actually lost, which is strongly related to that commented in remark 8. Hence,
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choosing γ = 1 yields to the following coupling conditions

u1
o
t =

1

Hξ0

Πt

∫

H

(
u2 − Hξ1

Hξ0

∂u2

∂ξ

)
[Λ2m1o ·m1o]

1/2 dξ on ∂Σoa, (50)

ω1t =
1

Hξ0

Πt

∫

H

∂u2

∂ξ
[Λ2m1o ·m1o]

1/2 dξ on ∂Σoa, (51)

u1n =
1

Hξ0

∫

H
u2 · n[Λ2m1o ·m1o]

1/2 dξ on ∂Σoa, (52)

N1
H
t n1o = Hξ0Πtσ2n1o on Γa, (53)

M1
H
t n1o = Hξ1Πtσ2n1o on Γa, (54)

Q1
H
t · n1o = Hξ0σ2n1o · n on Γa, (55)

t1
o
t = N1

H
t n1o on ∂Σoa, (56)

µ1t = M1
H
t n1o on ∂Σoa, (57)

t1n = Q1
H
t · n1o on ∂Σoa, (58)

where, the fact that

σ̃2n1o ⊥ v2r ∀v2r satisfying (38) on Γa, (59)

implies that σ̃2n1o must be the null element, and therefore σ2n1o = σ̄2n1o.
This means that, on Γa, σ2n1o is characterized just in terms of the generalized
quantities N1

o
tn1o, M1

o
tn1o and Q1

H
t · n1o.

Reciprocally, taking γ 6= 1 leads to the following coupling conditions

(u1
o
t + ξω1t + u1nn) = u2 on Γa, (60)

N1
H
t n1o = Πt

∫

H
σ2n1o[Λ

2m1o ·m1o]
1/2 dξ on ∂Σoa, (61)

M1
H
t n1o = Πt

∫

H
σ2n1oξ[Λ

2m1o ·m1o]
1/2 dξ on ∂Σoa, (62)

Q1
H
t · n1o =

∫

H
σ2n1o · n[Λ2m1o ·m1o]

1/2 dξ on ∂Σoa, (63)

t2 = σ2n1o on Γa. (64)

Observe that expression (64) is obtained by combining the last four Euler–
Lagrange equations seen in (49) and the decomposition given in (47).

From equations (50), (51) and (60) it becomes evident the need for the addi-
tional regularity for field u2 regardless of the value of γ. In particular, expres-
sions (50), (51) and (52) state that

u2
o
t = u1

o
t , on ∂Σoa, (65)

ω2
o
t = ω1t on ∂Σoa, (66)

u2
o
n = u1n on ∂Σoa, (67)

u2r is arbitrary, but satisfying (38) on Γa, (68)
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while expression (60) implies that

u2
o
t = u1

o
t , on ∂Σoa, (69)

ω2
o
t = ω1t on ∂Σoa, (70)

u2
o
n = u1n on ∂Σoa, (71)

u2r = 0 on Γa. (72)

Remark 9 Although the coupling conditions appear to be very similar, they
have a deeper and valuable meaning. In fact, the combination of (50), (51) and
(52) (situation γ = 1) establishes that the displacement field is discontinuous,
since no conditions are imposed over the fluctuation u2r, and nothing impedes
it from assuming an arbitrary value always satisfying (38) as indicated by
(68). On the contrary, expression (60) (situation γ 6= 1) determines that the
displacement field is actually continuous since it is strictly imposed that u2r =
0 according to (72). Reasoning in the same way, but focusing the attention
in the dual variables it can be seen that, for γ = 1, the set of expressions
(53), (54) and (55) entails the continuity of the traction, while the traction is
discontinuous for γ 6= 1 as pointed out by (61), (62) and (63). This is because
of the existence of a component of the traction, that is σ̃2n1o, orthogonal to
fluctuations v2r in the sense of the dual product. Hence, nothing impedes this
component of the stress from taking an arbitrary value that makes the traction
be discontinuous.

The problem stated by formulation (45) is in fact a coupled problem, where
coupling conditions are naturally derived from the formulation. In order to
gain insight in the resulting formulations, when choosing different values of γ
we may think of splitting the coupled problem into two sub–problems. This
interpretation can be regarded in the context of an iterative scheme where the
solution of the coupled problem is obtained by performing iterations between
both sub–problems. For instance, the first problem could involve the 3D prob-
lem, while the second one would correspond to the 2D shell problem. Let us
see that both are properly fed with conditions over the coupling boundary
Γa provided by the other problem. Indeed, it can be easily noticed that there
exist opposite situations for different values of γ. Let us focus the analysis
on the sub–problem over Ω1. Hence, for γ = 1 the shell is provided with a
Dirichlet boundary condition over the coupling interface Γa depending upon
quantities defined over the 3D solid domain (see (50)–(51)–(52)), whereas it
feeds back the 3D solid domain with a Neumann boundary condition over Γa

(see (53)–(54)–(55)). Contrarily, for γ 6= 1 the shell is supplied with a Neu-
mann boundary condition over Γa coming from the stress state of the 3D solid
domain (see (61)–(62)–(63)), whilst it feeds back the 3D solid domain with
a Dirichlet boundary condition over the same boundary (see (60)). Table 1
below summaries the state of the quantities in the problem that result contin-
uous and/or discontinuous across the coupling interface Γa according to the
value of γ.
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Value Segregated Segregated Continuous Discontinuous

of γ problem problem quantity quantity

in Ω1 in Ω2

{1} Dirichlet Neumann Traction Displacement

(see (53)–(54)–(55)) (see (50)–(51)–(52))

[0,1) Neumann Dirichlet Displacement Traction

(see (60)) (see (61)–(62)–(63))
Table 1
State of the quantities in the 3D–2D coupled problem for different values of γ.

4 Coupling 3D solid and 1D beam models

The problem of coupling a full 3D solid model and a 1D beam model does not
comprise any further complications than those viewed in the previous section.
Here the analysis is limited to the simple case of a straight beam that deflects
on the y–z plane as shown in Figure 3. More complex cases such as curved
beams in the space can be treated using the same ideas. Once again, there
exists an artificial internal boundary Γa that splits the domain Ω into sub–
domains Ω1 and Ω2. The particular form of the component and of the loadings
acting on it allows us to reduce the 3D solid model over Ω1 to a 1D beam model,
while over Ω2 the full kinematics is maintained. Hence, a discontinuity in the
fields is introduced in the problem as a result of the incompatibility between
the kinematics involved in the description of the whole component. In what
follows we accelerate the presentation since this case follows from applying
exactly the same ideas than those employed in the preceding section.

4.1 Kinematical assumptions

The model considered here for the domain Ω1 is the Bernoulli beam, whose
kinematics is expressed as

u1(x) = u1y(z)ey − y
∂u1y

∂z
(z)ez, (73)

implying that transversal sections remain orthogonal after the deformation,
and that normal fibers (in the ey direction) do not change their size. Over Ω2

the full kinematical description is still considered . Without loss of generality
the boundary at {za} is regarded as a Dirichlet boundary, while the lateral
boundary of Ω1 is a Neumann boundary so as to reduce the model. For sim-
plicity in illustrating the ideas, the internal boundary Γa is normal to the axis
of the beam such that n1 ≡ ez.
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Fig. 3. Coupling 3D solid–1D beam models.

Going ahead as in the preceding section, once the kinematics over Ω1 is defined
it is possible to give the explicit form of the duality product involved in the
extended governing variational principle. Here, in accordance with expression
(73) the displacement field is given by the scalar field u1y ∈ V1 where

V1 = H2((za, zb)). (74)

Once again, using duality arguments it is possible to give the explicit form of
the duality product between admissible tractions s1 and displacement fields
of the form of (73) as follows

〈s1,u1〉TΓa (V1)∗×TΓa (V1) =

〈
(s1y, ν1x),

(
u1y,

∂u1y

∂z

)〉

TΓa (V1)∗×TΓa (V1)

=

(s1yu1y)
∣∣∣
zb

+

(
ν1x

∂u1y

∂z

) ∣∣∣∣∣
zb

, (75)

where zb denotes the position of the boundary Γa. Here, the element s1 =
(s1y, ν1x) is the admissible traction in compliance with expression (73), being

s1y and ν1x the dual elements of u1y and
∂u1y

∂z
respectively, recalling that they

are constants on zb. Thus, we have

TΓa(V1) = R× R,

TΓa(V1)
∗ = R× R.

(76)

Again we face the problem of evaluating a term of the form 〈s1,u2〉TΓa (V1)∗×TΓa (V1),
where u2 is an arbitrary function. Then, we need U2 to be such that a decom-
position of u2 according to expression (24) can be performed, and in such a
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case we have that u21 is

u21(x) = u2
o
yey − y

∂u2
o
y

∂z
ez ∀x ∈ Γa, (77)

being u2
o
y and

∂u2
o
y

∂z
constants. Accordingly, we have that

〈s1,u2〉TΓa (V1)∗×TΓa (V1) =

〈
(s1y, ν1x),

(
u2

o
y,

∂u2
o
y

∂z

)〉

TΓa (V1)∗×TΓa (V1)

=

(s1yu2
o
y)

∣∣∣
zb

+

(
ν1x

∂u2
o
y

∂z

) ∣∣∣∣∣
zb

, (78)

since the fluctuation component u2r is such that

〈s1,u2r〉TΓa(V1)∗×TΓa (V1) = 0 ∀s1 ∈ TΓa(V1)
∗, (79)

in the same way as occurred in expression (37). Also, it is possible to point out
the additional regularity here claimed for set U2 as the counterpart statement
to that made in remark 5. Thus, from (79) it is easy to see that the fluctuation
in this case satisfies

∫

Γa

u2r · ey dΓ = 0,
∫

Γa

u2r · ez dΓ = 0.
(80)

With this properties at hand we can characterize u2y and
∂u2

o
y

∂z
as shown below

u2
o
y =

1

Aa

∫

Γa

u2 · ey dΓ,

∂u2
o
y

∂z
=

1

I−y

∫

Γa

u2 · ez dΓ,
(81)

where I−y =
∫
Γa

(−y) dΓ and Aa = |Γa|. After introducing all these elements
we are able to define the regularity requirements of functions in Ω2

V2 =

{
v2 ∈ H1(Ω2); v2|Γa

= v2
o
yey − y

∂v2
o
y

∂z
ez + v2r;

(
v2

o
y,

∂v2
o
y

∂z

)
∈ TΓa(V1); v2r satisfies (80)

}
. (82)

Analogously, it is

〈s2,u2〉TΓa (V2)∗×TΓa (V2) =
∫

Γa

s2 · u2 dΓ. (83)
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4.2 Variational principle

With the purpose of reducing the full model, the integrals in Ω1 and ΓN 1 are
written as follows

∫

Ω1

(·) dx =
∫ zb

za

∫

Γ
(·) dΓ dz,

∫

ΓN1

(·) dΓ =
∫ zb

za

∫

∂Γ
(·) d∂Γ dz.

(84)

In this way, introducing the hypothesis (73) together with (75), (78) and (83)
into the variational formulation (5), and considering the following generalized
stress and loadings

MΓ
1 =

∫

Γ
[σ1 · (ez ⊗ ez)](−y) dΓ,

fΓ
y =

∫

Γ
f · ey dΓ,

t̄1
∂Γ
y =

∫

∂Γ
t̄1 · ey d∂Γ,

(85)

it yields to the following problem that handles the coupling of a full 3D solid
model and a 1D beam model that deflects in the y–z plane:

Problem 10 For some γ ∈ [0, 1] find ((u1y,u2), (t1y, µ1x), t2) ∈ Ud×Z1×Z2

such that

∫ zb

za

MΓ
1

∂2v1y

∂z2
dz +

∫

Ω2

σ2 · ∇v2 dx =
(
γt1y + (1− γ)

∫

Γa

t2 · ey dΓ
)

(v1y − v2
o
y)

∣∣∣
Γa

+
(
γµ1x + (1− γ)

∫

Γa

[t2 · ez](−y) dΓ
) (

∂v1y

∂z
− ∂v2

o
y

∂z

) ∣∣∣∣∣
Γa

− (1− γ)
∫

Γa

t2 · v2r dΓ + γs1y(u1y − u2
o
y)

∣∣∣
Γa

+ γν1x

(
∂u1y

∂z
− ∂u2

o
y

∂z

) ∣∣∣∣∣
Γa

+ (1− γ)
∫

Γa

s2 ·
(
u1yey − y

∂u1y

∂z
ez − u2

)
dΓ

+
∫ zb

za

fΓ
y v1y dz +

∫

Ω2

f · v2 dx +
∫ zb

za

t̄1
∂Γ
y v1y dz +

∫

ΓN2

t̄2 · v2 dΓ

∀((v1y,v2), (s1y, ν1x), s2) ∈ Vd ×Z1 ×Z2, (86)

where Ud = U1 × U2 with

U1 =

{
u1y ∈ V1; u1y |za

= ū1y;
∂u1y

∂z

∣∣∣
za

= ᾱ1y

}
,

U2 = {v2 ∈ V2; v2|ΓD2
= v̄2},

(87)

26



being V1 and V2 given as in (74) and (82) respectively. Here, Vd is the as-
sociated linear space obtained from difference of elements of Ud. Also, Z1 =
TΓa(V1)

∗ as claimed in (76), while Z2 = H−1/2(Γa). All the other elements
are defined as in Problem 2.

In order to close the problem proper constitutive laws relating, on one hand,
the generalized stress MΓ

1 with u1y and, on the other hand, the stress σ2 with
u2 must be given.

Remark 11 Analogously to the statement of remark 7, Problem 10 demands
more regularity for functions in Ω2. Again, this is a consequence of the kine-
matics chosen over Ω1, given by expression (73). In view of that we notice,
once again, that the assumptions taken over a portion of Ω affect the problem
over the complementary portion of the domain.

4.3 Euler–Lagrange equations

Before looking for the Euler–Lagrange equations it is convenient to use a
decomposition of the stress tensor similar to that shown in (47). In this case
such a decomposition takes the following form

σ2|Γa
= σ̄2yz(ey ⊗ ez + ez ⊗ ey) + σ̄2zz(ez ⊗ ez) + σ̃2, (88)

where, in this case σ̄2yz, σ̄2zz and σ̃2 are such that

∫

Γa

σ2ez · ey dΓ = Aaσ̄2yz,
∫

Γa

σ2ez · ez dΓ = Aaσ̄2zz,
∫

Γa

σ̃2ez · ey dΓ = 0,
∫

Γa

σ̃2ez · ez dΓ = 0.

(89)

Hence, by using the Green formula we have, in the distributional sense, the fol-
lowing Euler–Lagrange equations corresponding to the variational formulation
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(86)





∂2MΓ
1

∂z2
= fΓ

y + t̄1
∂Γ
y in (za, zb),

− div σ2 = f in Ω2,

u1y = ū1y in {za},
∂u1y

∂z
= ᾱ1y in {za},

u2 = ū2 on ΓD2,

σ2n2 = t̄2 on ΓN 2,

γ(u1y − u2
o
y) = 0 in {zb},

γ

(
∂u1y

∂z
− ∂u2

o
y

∂z

)
= 0 in {zb},

(1− γ)

(
u1yey − y

∂u1y

∂z
ez − u2

)
= 0 on Γa,

γt1y + (1− γ)
∫

Γa

t2 · ey dΓ = −∂MΓ
1

∂z
in {zb},

γµ1x + (1− γ)
∫

Γa

[t2 · ez](−y) dΓ = MΓ
1 in {zb},

γt1y + (1− γ)
∫

Γa

t2 · ey dΓ = Aaσ̄2yz in {zb},
γµ1x + (1− γ)

∫

Γa

[t2 · ez](−y) dΓ = I−y σ̄2zz

+
∫

Γa

σ̃2ez · ez(−y) dΓ in {zb},[
(1− γ)t2 − σ̃2ez

]
⊥ v2r ∀v2r satisfying (80) on Γa.

(90)

In this case the last eight expressions embody the coupling conditions obtained
from the variational formulation (86). Once more, the equivalence concerning
the real parameter γ is lost as a result of the kinematical restrictions imposed.
Indeed, choosing γ = 1 yields to the following set of coupling conditions

u1y =
1

Aa

∫

Γa

u2 · ey dΓ in {zb}, (91)

∂u1y

∂z
=

1

I−y

∫

Γa

u2 · ez dΓ in {zb}, (92)

−∂MΓ
1

∂z
= Aaσ2ez · ey on Γa, (93)

MΓ
1 = I−y σ2ez · ez on Γa, (94)

t1y = −∂MΓ
1

∂z
in {zb}, (95)

µ1x = MΓ
1 in {zb}. (96)

In reaching this result it has been used the fact that

σ̃2ez ⊥ v2r ∀v2r satisfying (80) on Γa, (97)
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which, in turn, implies that σ̃2ez is the null element, and thus σ2ez = σ̄2yzey +
σ̄2zzez.

On the contrary, taking γ 6= 1 the resultant coupling conditions are

u1yey − y
∂u1y

∂z
ez = u2 on Γa, (98)

−∂MΓ
1

∂z
=

∫

Γa

σ2ez · ey dΓ in {zb}, (99)

MΓ
1 =

∫

Γa

σ2ez · ez(−y) dΓ in {zb}, (100)

t2 = σ2ez on Γa. (101)

In this case, expression (101) is obtained by combining the last three expres-
sions of (90) jointly with the decomposition (88).

Remark 12 For this problem, the choice γ = 1 establishes, through expres-
sions (91) and (92), that the displacement field is discontinuous, as u2r is
not restricted, excepting satisfying (80). In the opposite situation for γ 6= 1,
expression (98) stands for the continuity of the displacement field since it is
u2r = 0. Analogously, it can be observed that, for γ = 1, expressions (93) and
(94) imply the continuity of the traction, while for γ 6= 1 the traction is dis-
continuous as indicated by (99) and (100). As aforesaid in the case of coupling
3D solid–2D shell models, this is because σ̃2ez is orthogonal to functions of
the form of v2r in the sense of the dual product, and therefore this component
of the traction may take an arbitrary value.

In the same manner as done in the previous section, table 2 summarizes the
two possible interpretations for different values of γ under the idea of the
segregation of the coupled problem into two sub–problems, presenting in each
case the state of the quantities.

Value Segregated Segregated Continuous Discontinuous

of γ problem problem quantity quantity

in Ω1 in Ω2

{1} Dirichlet Neumann Traction Displacement

(see (93)–(94)) (see (91)–(92))

[0,1) Neumann Dirichlet Displacement Traction

(see (98)) (see (99)–(100))
Table 2
State of the quantities in the 3D–1D coupled problem for different values of γ.
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5 Conclusions

In this work a variational framework for coupling models with incompatible
underlying kinematics was developed. It was then applied to practical situ-
ations embodying the coupling of a 3D solid model with reduced structural
models. In this manner, it was possible to give proper variational principles for
consistently stating the coupling of full 3D solid models with either 2D Naghdi
shell models and 1D Bernoulli beam models. Essentially, the theory was based
upon the sense in which the resulting duality products, after introducing the
kinematical assumptions, are redefined in the governing formulation. In this
regard, the manipulation of these terms by means of a real parameter allowed
us to modify the way in which the continuity of the quantities was deemed
within the variational principle. The framework exhibited in this paper is to-
tally general and permits to work with any kinematical model and any kind of
material. It is also worth emphasizing, according to what was avowed in this
work, that any kinematical restriction over one portion of the domain directly
affects the regularity requirements over the complementary domain, with all
the implications that this matter entails.

We strongly believe that the way in which the problem was understood through-
out this article is of fundamental significance in the context of theoretical
mechanics, since it permits the clear understanding of the theory behind the
coupling of models exhibiting different kinematics and, in particular, with dif-
ferent dimensionality. Also, we believe that this approach is very worthwhile
with the aim of developing numerical coupling schemes for dealing with the
numerical approximation of such general kinematically incompatible models.
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[5] P.J. Blanco, R.A. Feijóo, and S.A. Urquiza. A unified variational approach for
coupling 3D–1D models and its blood flow applications. Comp. Meth. Appl.
Mech. Engrg., 196:4391–4410, 2007.

[6] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. Springer–
Verlag, New York, 1991.

[7] P.G. Ciarlet, H. Le Dret, and R. Nzengwa. Junctions between three–dimensional
and two–dimensional linearly elastic structures. J. Math. pures et appl., 68:261–
295, 1989.

[8] L. Formaggia, J.F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling
of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels.
Comp. Meth. Appl. Mech. Engrg., 191:561–582, 2001.

[9] J. Huang. Numerical solution of the elastic body–plate problem by
nonoverlapping domain decomposition type techniques. Math. Comp., 73:19–34,
2004.

[10] V.A. Kozlov and V.G. Maz’ya. Fields in non–degenerate 1D–3D elastic multi–
structures. Quart. J. Mech. Appl. Math., 54:177–212, 2001.

[11] P.M. Naghdi. On the theory of thin elastic shells. Quart. Appl. Math., 14:369–
380, 1957.

[12] P.M. Naghdi. Foundations of elastic shell theory. Prog. Solid Mech., 4:1–90,
1963.

[13] S.A. Nazarov. Junctions of singularly degenerating domains with different limit
dimensions I. J. Math. Sci., 80:1989–2034, 1996.

[14] S.A. Nazarov. Junctions of singularly degenerating domains with different limit
dimensions II. J. Math. Sci., 97:4085–4108, 1999.

[15] K.C. Park and C.A. Felippa. A variational principle for the formulation of
partitioned structural systems. Int. J. Num. Meth. Engng., 47:395–418, 2000.

[16] K.C. Park, C.A. Felippa, and R. Ohayon. Partitioned formulation of internal
fluid-structure interaction problems by localized Lagrange multipliers. Comp.
Meth. Appl. Mech. Engrg., 190:2989–3007, 2001.

[17] S.A. Urquiza, P.J. Blanco, M.J. Vénere, and R.A. Feijóo. Multidimensional
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