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Abstract. In the present work a computational model of the entire closed cardiovascular system is
established. This model stands for the integration of different levels of circulation. Indeed, the arterial
tree is described by a one dimensional model in order to simulate the propagation phenomena that takes
place at the larger arterial vessels. The inflow and outflow locations of this 1D model are coupled with
proper lumped parameter descriptions (0D model) of the remainder part of the circulatory system. At
each outflow point we incorporate the peripheral circulation in arterioles and capillaries by using a 0D
three-component Windkessel models. In turn, the whole peripheral circulation converges to the venous
system through the upper and lower parts of the body, for which we set two corresponding major venous
circulation circuits (superior and inferior vena cava). Then, the right and left heart circulation, as well
as the pulmonary circulation are accounted for also by means of 0D models. Particularly for the four
cardiac valves we employ a valve model allowing for the regurgitation phenomenon during the valve
closing. Finally, the 0D model of the left ventricle is coupled with the inflow boundary in the 1D model,
closing the system. In addition, we consider the existence of 3D models accounting for the detailed
aspects of blood flow in specific vessels of interest. The resulting integrated model (3D-1D-0D coupled
model) forms a closed loop network capable of taking into account the interaction between the global
circulation (1D-0D Models) and the local hemodynamics (3D models). Several situations of interest are
presented showing the capabilities of the model.
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1 INTRODUCTION

The structural and functional behavior of the cardiovascular system can be considered as
the result of the interplay among different levels of integration. Although such integration can
sometimes be neglected, in some scenarios it allows the system to establish the way in which
local and global phenomena are inter-related.

In the context of the modeling of the cardiovascular system, particularly in the present work,
we identify some levels of integration: (i) the overall systemic behavior, (ii) the hemodynamics
of large arteries, (iii) the local circulation in specific districts, (iv) the venous circulation and (v)
the cardiac/pulmonary circulation. Such levels of integration are sometimes related to a certain
geometrical scale (blood flow in large arteries), and sometimes are related to a given vascular
entity (the heart).

Several models have been proposed in the literature in order to consider the relevant phenom-
ena taking place at each level of integration, leading to the use of heterogeneous mathematical
representations so as to account for the coupling of these levels of integration. As in the present
work, in some cases the model chosen for a given level of integration is dictated by the informa-
tion available, and in other cases this choice is made based on a trade-off between complexity
and predictive capabilities.

In the literature there has been several approaches to integrate different levels of circulation
in the sense introduced in the previous paragraphs. Mostly, models based on lumped repre-
sentations were employed to accomplish this task Spencer and Deninson (1959); Schaaf and
Abbrecht (1972); Liang and Liu (2005); Korakianitis and Shi (2006); Lanzarone et al. (2007);
Reichold et al. (2009), incorporating 0D models to simulate flow in the larger arteries, veins
and cardiac circulation. As well, distributed models for simulating the blood flow in compliant
vessels has been an exhaustive area of research through the last decades Avolio (1980); Stet-
tler et al. (1981); Kufahl and Clark (1985); Stergiopulos et al. (1992); Olufsen et al. (2000);
Wang and Parker (2004); Reymond et al. (2009). More recently, 1D models of the arterial cir-
culation have been coupled to 0D models of the venous-cardiac-pulmonary circulation Liang
and Takagi (2009) to study the influence of arterial stenoses on the wave propagation. Partic-
ularly, the 1D model employed in Liang and Takagi (2009) was taken from Stergiopulos et al.
(1992) and is comprised of 55 arterial segments and a 0D lumped representation for the pe-
ripheral/venous/pulmonary and cardiac circulations. In turn, valves are modeled using an ideal
model of a diode, not allowing for backflow to occur. This last point has been addressed in
Korakianitis and Shi (2006), in which phenomenological models of the cardiac valves are pro-
posed in order to model more accurately the openin and closing phased of the valves, being
allowed to model certain pathological conditions like valve regurgitation and stenosis.

In the field of modeling blood flow in specific vessels, several works have dealt with the
use of heterogeneous representations in order to couple local and global hemodynamics phe-
nomena. This has been mostly carried out using 3D and 1D (or 0D) models to couple blood
flow in complex arterial geometries with either full or partial models for the systemic dynam-
ics Formaggia et al. (2001); Blanco et al. (2007); Vignon-Clementel et al. (2006); Urquiza et al.
(2006); Grinberg et al. (2009); Migliavacca et al. (2006); Blanco et al. (2009); Kim et al. (2009);
Blanco et al. (2010).

In the context introduced in the previous paragraphs, this work presents a computational
model of the entire cardiovascular system borrowing the most important features of the differ-
ent models available in the literature. Thus, the model introduced here for the cardiovascular
system has more descriptive capabilities than the models currently available in the literature.



Indeed, it allows to accounts for specific vessels, systemic arteries, systemic veins, pulmonary
and heart circulation and complex valve functioning. Rather than multiscale modeling of the
cardiovascular system in this case we refer to integrative modeling of the cardiovascular system.
In the present approach, the arterial tree is described by a one dimensional model with 128 ar-
terial segments, following Avolio (1980), in order to simulate the propagation phenomena that
takes place at the larger arterial vessels. The inflow and outflow locations of this 1D model are
coupled with proper lumped parameter descriptions (0D model) of the remainder part of the
circulatory system. At each outflow point we incorporate the peripheral circulation in arterioles
and capillaries by using 0D three-component Windkessel models, following Stergiopulos et al.
(1992). In turn, the whole peripheral circulation converges to the venous system through the
upper and lower parts of the body (following Liang and Takagi (2009)). These two main com-
partments are represented using lumped models for the venules, veins and cavas (inferior and
superior). The right and left heart circulation, as well as the pulmonary circulation are also mod-
eled by means of 0D models. Particularly we point out the modeling of the four heart valves,
which is carried out by using a non-linear model which allows for the regurgitation phase dur-
ing the valve closing following Korakianitis and Shi (2006). Finall, the 0D model of the left
ventricle is coupled with the inflow boundary in the 1D model, closing the cardiovascular loop.
The entire 0D model which performs the coupling between the outflow and inflow points in
the arterial tree consists of 14 compartments. Following Blanco et al. (2007, 2009, 2010), we
can consider the existence of 3D models accounting for all the complexity of three-dimensional
blood flow in specific vessels of interest. The resultant integrated model (0D-1D-3D coupled
model) forms a closed loop network capable of taking into account the interaction between the
global circulation (0D-1D models) and the local hemodynamics (3D models). In order to sum
up, this is carried out by putting together the following mathematical representations

(a) 1D Models for the larger systemic arteries;

(b) 0D Models (R/C windkessel models) for the arterioles and capillaries;

(c) 0D Models (R/L/C models) for venules and veins to model the upper and lower body
parts;

(d) 0D Models (R/L/C models) for inferior and superior vena cava, pulmonary veins and
pulmonary arteries;

(e) 0D models (elastance models) for each of the four heart chambers;

(f) 0D Models (non-linear non-ideal diode models) to approximate the behavior of the tricus-
pid, pulmonary, mitral (bicuspid) and aortic valves;

(g) 3D Models for the specific vessels of interest.

With the model for the cardiovascular system presented here there is open field to incorporate
homeostatic mechanisms so as to allow the system to perform self-regulation, with which its
predictability is considerably augmented.

This work is organized as follows. Section 2 presents all the mathematical representations
used in this work for the different levels of circulation. In Section 3 all the representations
are written within the context of the integrative model of the cardiovascular system. Section 4
provides the data upon which our model is based. In Section 5 the model is employed to
simulate different cardiovascular scenarios involving such heterogeneous models. The final
remarks are given in Section 6.



2 MATHEMATICAL MODELS FOR THE VASCULAR ENTITIES

2.1 1D model for the systemic arteries

The arterial blood flow (item (a) in the list of Section 1) is modeled as the flow of a fluid
in 1D compliant vessels to be able to capture the wave propagation phenomena and its non-
linear features. Therefore, the governing equations for the 1D portion of the arterial system (all
the arterial segments) are derived from the Navier-Stokes equations by introducing suitable as-
sumptions. This procedure yields the following set of partial differential equations (see Hughes
(1974) for its derivation)
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where A is the cross sectional area of the artery (D its diameter), ũ the mean value of the
axial velocity, x the axial coordinate, P the mean pressure, ρ the blood density, τo the viscous
shear stress acting on the arterial wall, fr a Darcy friction factor (in this work a fully developed
parabolic velocity profile is considered) and β is the momentum correction factor (β = 1 is
considered here).

The system is closed by introducing a constitutive law which establishes a relation between
the pressure and the cross sectional area. Here the following visco-elastic model Kivity and
Collins (1974b,a) is used
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, (4)

being R the radius of the artery, E an effective Young modulus, K is the viscosity of the wall,
h the thickness of the arterial wall and the subscript ‘o’ denotes quantities evaluated at the
reference pressure Po. More complex arterial wall models can to be considered, like models
accounting for collagen fibers. This is not treated in the present work.

In this model we may identify two weak points which give us room for improvement:

• the friction term is derived from the assumption of a fully developed parabolic velocity
profile;

• the momentum correction factor is derived from the assumption of a fully developed flat
velocity profile.

Regarding these two points the interested reader is referred to Kufahl and Clark (1985); Rey-
mond et al. (2009) for two different approaches to improve the capabilities of the model.

2.2 0D model for the arterioles and capillaries

The peripheral circulation (item (b) in the list of Section 1) is represented through Windkessel
models Stergiopulos et al. (1992); Schaaf and Abbrecht (1972). The Windkessel behaviour
is determined by a resistance Rc to represent the capillaries, in series with the parallel of a



resistance Ra and a capacitor Ca to model the arterioles, as can be seen in Figure 1, where Pi
and Po are the pressures at the input and output of the compartment, respectively, Qi and Qo are
the blood inflow and outflow, respectively.

Figure 1: The 0D Windkessel model for the peripheral circulation.

The balance equations for this model are the following

dQi

dt
=

1

RcRaCa

[
RaCa

d

dt
(Pi − Po) + (Pi − Po)− (Rc +Ra)Qi

]
, (5)

Qi = Qo. (6)

The Windkessel element is an interface arterial-venous model. Thus the Pi is the pressure from
the arterial side (at the input of the compartment) while Po is the pressure from the venous side
(at the output of the compartment), more precisely at the venules.

2.3 0D model of the venous and pulmonary circulation

The models to simulate the blood flow through the venules, veins, superior and inferior
vena cava and also the pulmonary arteries and pulmonary veins (items (c)-(d) in Section 1)
are mathematically formulated in terms of an electric analog model in which inertial effects
are considered. A single compartment is represented in Figure 2 in which R and L denote the
resistance and inertance of the circuit, respectively; C the compliance of the compartment, Pi
and Po are the pressures at the input and output of the compartment, respectively, Pex is the
external pressure which also could be a function of time and, finally, Qi and Qo are the blood
inflow and outflow, respectively, into the compartment.

Figure 2: Single-compartment circuit representation.

The governing equations associated to this generic single compartment are given by

L
dQo

dt
+RQo =Pi − Po, (7)

C
d

dt
(Pi − Pex) =Qi −Qo, (8)

for the case when C is constant. We specified the external pressure Pex as, for example, the
intrathoracic pressure that during normal respiration varies between approximately −4 and



−6mmHg. A simple sinusoidal variation between these two values may be assumed at a respi-
ratory frequency of 12 breaths/min.

2.4 0D model for the heart and valves

The whole cardiac circulation is divided into two halves. Each half consists of two chambers
and two valves. We divide the presentation here in order to separate the balance equations at the
cardiac chambers and at the heart valves. The part of the model presented here is also written
using 0D lumped models (items (e)-(f) in Section 1). The electric analog model for the valves
presented here corresponds to a non-ideal diode (see Figure 3).

Figure 3: Generic chamber-valve element with a non-ideal diode.

The model shown in Figure 3 is composed by a inertance, resistance and flow separation
terms, but the model also incorporates the partial states of the diode through another state vari-
able called Ξ. This additional variable takes into account non-binary states of the valve.

2.4.1 Elastance model for the cardiac chambers

Elastance-based modeling of the heart has been adopted in this study to describe each of the
four cardiac chambers. Based on the elastance model, blood pressure in each cardiac chamber,
denoted by Pi, is given by

Pi − Pex = Ech(t)(Vch − V0,ch) + Sch
dVch
dt

, (9)

where Vch is the cardiac volume of the chamber and V0,ch refers to the dead volume of such
chamber, Sch is the viscoelasticity coefficient for the cardiac wall chamber, which is related
linearly to the cardiac pressure through the expression (see Liang and Takagi (2009))

Sch = αch|Pi|. (10)

In turn, Ech is given by
Ech(t) = EAe(t) + EB, (11)

where EA is the amplitude of elastance, EB is the baseline value of elastance, and e(t) is a
normalized time-varying function of the elastance, which for ventricles is

ev(t) =
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and for atria is
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Here, the subscript v denotes the ventricles, and a the atria, T is the duration of a cardiac cycle,
Tvc, Tac, Tvr and Tar refer to the durations of ventricular/atrial contraction/relaxation, and tac, tar
the times when the atria begin to contract and relax, respectively.

Finally, the volume is related to the inflow and outflow as usual

dVch
dt

= Qi −Qo. (14)

2.4.2 Non-ideal diode model for the heart valves

The momentum balance in each heart valve is such that we take into account the non-linear
behavior by which the flow can be inverted when the valve closes. The model employed also
accounts for intertial and resistive components and it has been inpired in the valve model pre-
sented in Korakianitis and Shi (2006). With such model it is possible to simulate different
scenarios including normal and abnormal regurgitation, as well as valve stenosis. Hence, the
governing equation is the following

L
dQo

dt
+RQo +B|Qo|Qo = Ξ(Pi − Po), (15)

where L is the inertance of the fluid, R is the viscous resistance, B accounts for the flow sepa-
ration phenomenon and Pi and Po are the input and output pressure values in the compartment.
The non-binary state of the valve is considered through the coefficient Ξ. This coefficient simu-
lates the behavior of the orifice of the valve, and is a function of the opening angle of the valve,
denoted by θ, as follows

Ξ =
(1− cos θ)4

(1− cos θmax)4
. (16)

where θmax is the maximum angle the valve is able to open. Therefore, an equation for θ must be
provided, and this is done by using an angular momentum balance for the valve. This equation
balances the angular acceleration of the valve with several angular momenta, namely: due to
the gradient pressure gradient MP , due to friction MF , due to blood velocity MQ and due to
downstream vortex formationMV . Hence, such equation reads (see Korakianitis and Shi (2006)
for more details) as follows

I
d2θ

dt2
= MP +MF +MQ +MV , (17)



where I is the momentum of inertia of the valve, and all the momenta are given as

MP = kP (Pi − Po) cos θ, (18)

MF = −kF
dθ

dt
, (19)

MQ = kQQo cos θ, (20)

MV =

{
kVQo sin (2θ) if Pi ≥ Po,

0 if Pi < Po.
(21)

The solution of this balance equation must consider the maximum and minimum angles the
valve is able to reach. That is, equation (17) is complemented with the following restrictions

θ =

{
θmin if θ < θmin,

θmax if θ > θmax.
(22)

In this way, a valve can undergo malfunctioning in either of two distinct ways (or combination
of them). These are stenosis if the valve is narrowed, and incompetence or insufficiency when
the valve is leaky and fails to prevent prominent backward flow. In particular, both situations
are easily modeled using the previous equation. A stenosed valve is modeled restricting the
maximum opening angle θmax, whereas an incompetent valve is modeled by setting a larger
value for θmin.

2.5 3D model for specific vessels

The Navier-Stokes equations in moving domains (ALE formulation) are employed for de-
scribing the blood flow in specific arterial vessels (item (g) in Section 1). Then, the equations
are

ρ
∂u

∂t
+ ρ (u− v)∇u− µ4u +∇P = f , (23)

div u = 0, (24)
+ proper coupling conditions (see Section 3) at Γi i = 1, . . . , Ncf , (25)

where u is the fluid viscosity, v is the velocity of the frame of reference consistent with the
ALE formulation, P is the pressure field, f is the volume body force, ρ and µ are density and
viscosity, respectively, and Γi, i = 1, . . . , Ncf , are the interfaces in the 3D model which are
to be coupled with the 1D model of the arterial tree. This set of equations must be provided
with proper boundary conditions and a proper constitutive relation relating the displacement
of the arterial wall with the pressure (structural model). As in our previous works, we choose
an independent rings wall model consistent to that used for the 1D model. In this manner, the
following equations are used for the surface points in ∂Ωw -the surface representing the arterial
wall-

P − Po =
Eho

R2
o

δ +
kho

R2
o

dδ

dt
(26)

w = δ n (27)

v =
∂w

∂t
(28)



where δ is the displacement of the nodes placed on the arterial wall normal to the surface (n is
the normal vector to the surface), w is the displacements vector for the deformable domain with
respect to its reference configuration, which is extended to the interior of the domain by solving
the problem 4w = 0. It is evident the analogy between the equation (26) to that given in (4)
for the 1D model.

Other constitutive behaviors for the blood can be incorporated in the model, giving rise to an
equation similar to (23) but now valid for non-Newtonian fluids, like the one obtained when the
regularized Casson model is used.

3 ENTIRE COUPLED MODEL

The entire model can now be described step-by-step. It is schematically shown in Figure 4.
The glossary of the terms used in Figure 4 is given in Table 1. In this table Nsa denotes the total
number of systemic arteries employed andNwlb andNwub are the number of Windkessel models
pertaining to the lower and upper parts of the body, respectively, with Nw = Nwlb + Nwub the
total number of Windkessel elements in the arterial side.

Figure 4: Entire closed loop model of the cardiovascular system.

We start at the aortic root until reaching it again closing the loop:

Larger Arteries. From the aortic root to the smaller arteries the 1D model described by equa-
tions (1), (2) and (4), that is, for each one of the Nsa arteries present in the model we



sa,m: systemic arteries, m = 1, . . . , Nsa

w,k: Windkessel models, m = 1, . . . , Nw

wlb,k: lower body Windkessel models, k = 1, . . . , Nwlb

wub,k: upper body Windkessel models, k = 1, . . . , Nwub

lbc: lower body capillaries
lbve: lower body venule
lbv: lower body veins
ubc: upper body capillaries
ubve: upper body venule
ubv: upper body veins
ivc: inferior vena cava
svc: superior vena cava
pa: pulmonary artery
pv: pulmonary vein
ra: right atria
rv: right ventricle
la: left atria
lv: left ventricle
Trv: tricuspid valve
Puv: pulmonary valve
Miv: mitral valve
Aov: aortic valve
ao: aorta artery
3D: three-dimensional model

Table 1: Glossary of the terms used in Figure 4.
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In addition, continuity of mass and continuity of pressure are employed to couple the
different arterial segments at junctions. Being Njn the total number of juctions with Ncg,j

arterial segments converging to junction j we have

Ncg,j∑
n=1

Qsa|j,n = 0 j = 1, . . . , Njn, (32)

Psa|j,n = Psa|j,1 n = 2, . . . , Ncg,j j = 1, . . . , Njn, (33)

where the pair (Qsa|j, Psa|j) indicates the restriction of the flow rate and pressure at the
junction j.

Arterioles and Capillaries. After the 1D model the arterial segments are coupled to the 0D
Windkessel models whose balance equations are given by (5) and (6). This set of arteriole-
capillary models contains Nw elements. Then the set of equations for the lower body



Windkessel elements is

dQw,k

dt
=

1

Rc,kRa,kCa,k

[
Ra,kCa,k

d

dt
(Pw,k − Pwlb,k) + (Pw,k − Pwlb,k)− (Rc,k +Ra,k)Qw,k

]
k = 1, . . . Nwlb, (34)

Qw,k = Qwlb,k k = 1, . . . Nwlb, (35)

while for the upper body Windkessel elements it is

dQw,k

dt
=

1

Rc,kRa,kCa,k

[
Ra,kCa,k

d

dt
(Pw,k − Pwub,k) + (Pw,k − Pwub,k)− (Rc,k +Ra,k)Qw,k

]
k = 1, . . . Nwub, (36)

Qw,k = Qwub,k k = 1, . . . Nwub. (37)

In the two equations above Pwlb,k, k = 1, . . . , Nwlb, and Pwub,k, k = 1, . . . , Nwub, are
the pressure values at the venous side, at the level of the venules. In addition, the pairs
(Qw,k, Pw,k), k = 1, . . . , Nw, are such that

Qw,k = Qsa|w,k k = 1, . . . , Nw, (38)
Pw,k = Psa|w,k k = 1, . . . , Nw, (39)

where the pairs (Qsa|w,k, Psa|w,k), k = 1, . . . , Nw are the restrictions of the flow and pres-
sure values coming from the 1D arterial segments which converge at the corresponding
Windkessel element k.

Also, Qwlb,k, k = 1, . . . Nwlb, and Qwub,k, k = 1, . . . Nwub are the blood outflows through
the Windkessel elements in the lower and upper parts of the body, which coincide with
the inflows to those Windkessel elements (see equation (6)), denoted by Qw,k, k =
1, . . . , Nwlb +Nwub.

Lower and Upper Body Venules. The arterioles and capillaries converge to two large sub-
systems that represent the venous circulation, the lower and the upper parts of the body.
Hence, the arteriole-capillary Windkessel models are divided into two subsets, the lower
and upper body sets, with Nwlb and Nwub Windkessel models each, respectively, such
that Nw = Nwlb + Nwub. Being (Qwlb,k, Pwlb,k), k = 1, . . . , Nlb and (Qwub,k, Pwub,k),
k = 1, . . . , Nub, the flow-pressure pair for each Windkessel model, we have that

Nwlb∑
k=1

Qwlb,k = Qlbc Pwlb,k = Plbc k = 1, . . . , Nwlb, (40)

Nwub∑
k=1

Qwub,k = Qubc Pwub,k = Pubc k = 1, . . . , Nwub. (41)



Then, the venules in the lower and upper parts are modeled using equations (7) and (8),
that is

Llbve
dQlbve

dt
+RlbveQlbve =Plbve − Plbv, (42)

Clbve
d

dt
(Plbve − Pex) =Qlbc −Qlbve, (43)

Lubve
dQubve

dt
+RubveQubve =Pubve − Pubv, (44)

Cubve
d

dt
(Pubve − Pex) =Qubc −Qubve. (45)

According to the scheme displayed in Figure 4, two more equations are needed to perform
the connection between the systemic arteries and the venules, these are

Plbc = Plbve, (46)
Pubc = Pubve. (47)

Lower and Upper Body Veins. The veins are, like the venules, modeled using a 0D model
described by equations (7) and (8). So, in this case we have

Llbv
dQlbv

dt
+RlbvQlbv =Plbv − Pivc, (48)

Clbv
d

dt
(Plbv − Pex) =Qlbve −Qlbv, (49)

Lubv
dQubv

dt
+RubvQubv =Pubv − Psvc, (50)

Cubv
d

dt
(Pubv − Pex) =Qubve −Qubv. (51)

Inferior and Superior Vena Cava. The two most important pipes in the venous system are
modeled by using the corresponding 0D models as described by equations (7) and (8).
Therefore, it is

Livc
dQivc

dt
+RivcQivc =Pivc − Pra, (52)

Civc
d

dt
(Pivc − Pex) =Qlbv −Qivc, (53)

Lsvc
dQsvc

dt
+RsvcQsvc =Psvc − Pra, (54)

Csvc
d

dt
(Psvc − Pex) =Qubv −Qsvc. (55)

where Pra is the pressure in the right atrium.

Right Atrium and Tricuspid Valve. The first half of the right heart is modeled using the chamber-



valve model presented in equations (9), (14) and (15). Thus, we have

Pra − Pex = Era(t)(Vra − V0,ra) + Sra
dVra
dt

, (56)

dVra
dt

= Qivc +Qsvc −QTrv, (57)

LTrv
dQTrv

dt
+RTrvQTrv +BTrv|QTrv|QTrv = ΞTrv(Pra − Prv), (58)

ΞTrv =
(1− cos θTrv)

4

(1− cos θmax,Trv)4
. (59)

where Prv is the pressure in the right ventricle and θTrv is governed by a set of equations
(17).

Right Ventricle and Pulmonary Valve. In the same manner, the second half of the right heart
is modeled using equations (9), (14) and (15), such that

Prv − Pex = Erv(t)(Vrv − V0,rv) + Srv
dVrv
dt

, (60)

dVrv
dt

= QTrv −QPuv, (61)

LPuv
dQPuv

dt
+RPuvQPuv +BPuv|QPuv|QPuv = ΞPuv(Prv − Ppa), (62)

ΞPuv =
(1− cos θPuv)

4

(1− cos θmax,Puv)4
. (63)

where Ppa is the pressure in the pulmonary arteries and θPuv is governed by a set of
equations (17).

Pulmonary Arteries and Pulmonary Veins. After the right heart we have the pulmonary cir-
culation, from which the pulmonary arteries and the pulmonary veins are modeled by
means of equations (7) and (8), leading to

Lpa
dQpa

dt
+RpaQpa =Ppa − Ppv, (64)

Cpa
d

dt
(Ppa − Pex) =QPuv −Qpa, (65)

Lpv
dQpv

dt
+RpvQpv =Ppv − Pla, (66)

Cpv
d

dt
(Ppv − Pex) =Qpa −Qpv, (67)

where Pla is the pressure in the left atrium.

Left Atrium and Mitral Valve. After the pulmonary circulation we find the first half of the



left heart, whose model is the chamber-valve model already presented, that is

Pla − Pex = Ela(t)(Vla − V0,la) + Sla
dVla
dt

, (68)

dVla
dt

= Qpv −QMiv, (69)

LMiv
dQMiv

dt
+RMivQMiv +BMiv|QMiv|QMiv = ΞMiv(Pla − Plv), (70)

ΞMiv =
(1− cos θMiv)

4

(1− cos θmax,Miv)4
. (71)

where Plv is the pressure in the left ventricle and θMiv is governed by a set of equations
(17).

Left Ventricle and Aortic Valve. Analogously, the remainder part of the left heart is modeled
using the same set of equations as before, yielding

Plv − Pex = Elv(t)(Vlv − V0,lv) + Slv
dVlv
dt

, (72)

dVlv
dt

= QMiv −QAov, (73)

LAov
dQAov

dt
+RMivQMiv +BAov|QAov|QAov = ΞAov(Plv − Pao), (74)

ΞAov =
(1− cos θAov)

4

(1− cos θmax,Aov)4
. (75)

where Pao is the pressure in the aortic root and θAov is governed by a set of equations (17).
Finally, the system is closed by setting

QAov = Qsa,1, (76)
Pao = Psa,1, (77)

where (Qsa,1, Psa,1) is the flow-pressure pair corresponding to the first segment of the set
of systemic arteries which stands for the aortic root and ascending aorta.

Specific arterial vessels. For a given 3D model the governing equations are (23)–(28), with the
addition of the coupling equations among this 3D model and the 1D model of the arterial
tree. These equations are given by

Qsa|3D,i =

∫
Γi

u3D · n dΓi i = 1, . . . , Ncf , (78)

Psa|3D,i = ((P3DI− µ∇u3D)n)|Γi
i = 1, . . . , Ncf , (79)

where the pairs (Qsa|3D,i, Psa|3D,i), i = 1, . . . , Ncf , denote the restriction of the flow rate
and pressure in the systemic arteries which converge to the Ncf coupling interfaces of the
3D model.



4 PHYSIOLOGICAL DATA

In this section we collect all the data used in setting the 1D-0D closed-loop model of the
cardiovascular system. Also, the sources from which most of the data were taken are given.

The parameters used in the 1D-0D model have been assigned or estimated based on the data
reported in Avolio (1980); Liang and Takagi (2009); Heldt et al. (2002); van Heusden et al.
(2006); Liang and Liu (2005, 2006); Olufsen et al. (2005); Hoppensteadt and Peskin (2002);
Pontrelli (2004). The values of the parameters used in model for the peripheral circulation, the
heart model and model of the cardiac valves are given in the tables presented in the forthcoming
sections. These values are based on the data reported in Liang and Takagi (2009); Heldt et al.
(2002); Hoppensteadt and Peskin (2002).

4.1 Larger arteries

The values for the density and the viscosity of the blood are ρ = 1.04 g/cm3 and µ =
0.04 dyn s/cm2, respectively. The parameters used in the 1D model of the arterial tree are
according to the model proposed in Avolio (1980), and are repeated here for the sake of com-
pleteness in Table 2.

Segment Description L [cm] Ro [cm] ho [cm] E
h

dyn
cm2

i
k

h
dyn s
cm2

i
1 Ascending aorta 4.0 1.45 0.163 4000000 44000
2 Aortic arch 2.0 1.12 0.132 4000000 44000
5 Aortic arch 3.9 1.07 0.127 4000000 44000

11 Thoracic aorta 5.2 1.00 0.120 4000000 44000
21 Thoracic aorta 5.2 0.95 0.116 4000000 44000
34 Thoracic aorta 5.2 0.95 0.116 4000000 44000
50 Abdominal aorta 5.3 0.87 0.108 4000000 44000
65 Abdominal aorta 5.3 0.57 0.080 4000000 44000
75 Abdominal aorta 5.3 0.57 0.080 4000000 44000
49 Coeliac artery 1.0 0.39 0.064 4000000 44000
61 Gastric artery 7.1 0.18 0.045 4000000 44000
62 Splenic artery 6.3 0.28 0.054 4000000 44000
63 Hepatic artery 6.6 0.22 0.049 4000000 44000
64 Renal artery 3.2 0.26 0.053 4000000 44000
66 Superior mesenteric 5.9 0.43 0.069 4000000 44000
67 Gastric artery 3.2 0.26 0.053 4000000 44000
83 Inferior mesenteric 5.0 0.16 0.043 4000000 44000
4 L. common carotid 8.9 0.37 0.063 4000000 44000

10 L. common carotid 8.9 0.37 0.063 4000000 44000
20 L. common carotid 3.1 0.37 0.063 4000000 44000
12 R. common carotid 8.9 0.37 0.063 4000000 44000
22 R. common carotid 8.9 0.37 0.063 4000000 44000
3 L. subclavian artery 3.4 0.42 0.067 4000000 44000
6 Brachiocephalic artery 3.4 0.62 0.086 4000000 44000

82,84 Common iliac 5.8 0.52 0.076 4000000 44000
89,92 External iliac 8.3 0.29 0.055 4000000 44000
90,91 Internal iliac 5.0 0.20 0.040 16000000 178000
98,99 External iliac 6.1 0.27 0.053 4000000 44000

104,107 Femoral artery 12.7 0.24 0.050 8000000 89000
105,106 Profundis artery 12.6 0.23 0.049 16000000 178000
109,110 Femoral artery 12.7 0.24 0.050 8000000 89000
111,112 Popliteal artery 9.4 0.20 0.047 8000000 89000
113,114 Popliteal artery 9.4 0.20 0.050 4000000 44000
115,118 Anterior tibial artery 2.5 0.13 0.039 16000000 178000
119,124 Anterior tibial artery 15.0 0.10 0.020 16000000 178000
125,128 Anterior tibial artery 15.0 0.10 0.020 16000000 178000
116,117 Posterior tibial artery 16.1 0.18 0.045 16000000 178000
121,122 Posterior tibial artery 16.1 0.18 0.045 16000000 178000
120,123 Peroneal artery 15.9 0.13 0.039 16000000 178000
126,127 Peroneal artery 15.9 0.13 0.019 16000000 178000

Table 2: Geometric and mechanical parameters of the arterial segments.



Segment Description L [cm] Ro [cm] ho [cm] E
h

dyn
cm2

i
k

h
dyn s
cm2

i
31,37 Carotid (internal) 5.9 0.18 0.045 8000000 89000
32,36 External carotid 11.8 0.15 0.042 8000000 89000
33,35 Superior thyroid artery 4.0 0.07 0.020 8000000 89000
43,56 Lingual artery 3.0 0.10 0.030 8000000 89000
44,55 Internal carotid 5.9 0.13 0.039 8000000 89000
45,54 Facial artery 4.0 0.10 0.030 16000000 178000
46,53 Middle cerebral 3.0 0.06 0.020 16000000 178000
47,52 Cerebral artery 5.9 0.08 0.026 16000000 178000
48,51 Opthalmic artery 3.0 0.07 0.020 16000000 178000
60,68 Internal carotid 5.9 0.08 0.026 16000000 178000
73,77 Superficial temporal 4.0 0.06 0.020 16000000 178000
74,76 Maxilliary artery 5.0 0.07 0.020 16000000 178000
7,15 Internal mammary 15.0 0.10 0.030 8000000 89000
8,14 Subclavian artery 6.8 0.40 0.066 4000000 44000
9,13 Vertebral artery 14.8 0.19 0.045 8000000 89000

16,26 Costo-cervical artery 5.0 0.10 0.030 8000000 89000
17,25 Axilliary artery 6.1 0.36 0.062 4000000 44000
18,24 Suprascapular 10.0 0.20 0.052 8000000 89000
19,23 Thyrocervical 5.0 0.10 0.030 8000000 89000
27,41 Thoraco-acromial 3.0 0.15 0.035 16000000 178000
28,40 Axilliary artery 5.6 0.31 0.057 4000000 44000
29,39 Circumflex scapular 5.0 0.10 0.030 16000000 178000
30,38 Subscapular 8.0 0.15 0.035 16000000 178000
42,57 Brachial artery 6.3 0.28 0.055 4000000 44000
58,70 Profunda brachi 15.0 0.15 0.035 8000000 89000
59,69 Brachial artery 6.3 0.26 0.053 4000000 44000
71,79 Brachial artery 6.3 0.25 0.052 4000000 44000
72,78 Superior ulnar collateral 5.0 0.07 0.020 16000000 178000
80,86 Inferior ulnar collateral 5.0 0.06 0.020 16000000 178000
81,85 Brachial artery 4.6 0.24 0.050 4000000 44000
87,94 Ulnar artery 6.7 0.21 0.049 8000000 89000
88,93 Radial artery 11.7 0.16 0.043 8000000 89000
95,102 Ulnar artery 8.5 0.19 0.046 8000000 89000
96,101 Interossea artery 7.9 0.09 0.028 16000000 178000
97,100 Radial artery 11.7 0.16 0.043 8000000 89000

103,108 Ulnar artery 8.5 0.19 0.046 8000000 89000

Table 2: Geometric and mechanical parameters of the arterial segments.



4.2 Arterioles and Capillaries

The parameters that characterize the behavior of the arterioles and capillaries through the
Windkessel element have been computed according to the guidelines provided in Stergiopulos
et al. (1992), and are given in Table 3.

Terminal Rc Ra Cah
dyn s

cm2 ml

i h
ml cm2

dyn

i
125,128 62781.6 251356 1.00E-006
126,127 31792.6 127400 1.00E-006
121,122 21693 86769.2 2.00E-006
105,106 12280.8 49008.4 4.00E-006

90,91 15724.8 62781.6 3.00E-006
83 31103.8 125104 2.00E-006
64 3971.8 15839.6 1.20E-005
66 3329.2 13314 1.40E-005
67 3971.8 15839.6 1.20E-005
61 23758 94918.6 2.00E-006
62 8608.6 34433 5.00E-006
63 6851.6 27431.6 7.00E-006

9,13 22037.4 88032 2.00E-006
7,15 89409.6 358092 1.00E-006

19,23 89409.6 358092 1.00E-006
18,24 20774.6 83326.6 2.00E-006
16,26 89409.6 358092 1.00E-006

Terminal Rc Ra Cah
dyn s

cm2 ml

i h
ml cm2

dyn

i
30,38 84015.4 198562 1.00E-006
29,39 126252 506156 0.00E+000
27,41 84015.4 198562 1.00E-006
58,70 35120.4 140280 1.00E-006
72,78 252504 1007720 0.00E+000
80,86 370720 1480640 0.00E+000

97,100 33055.4 131990.6 1.00E-006
96,101 159530 635852 0.00E+000
103,108 22265.6 89065.2 2.00E-006
33,35 44303 176750 1.00E-006
48,51 62666.8 250208 1.00E-006
47,52 51189.6 204302 1.00E-006
46,53 92163.4 368424 1.00E-006
43,56 22265.6 88950.4 2.00E-006
45,54 31448.2 126252 1.00E-006
74,76 62666.8 250208 1.00E-006
73,77 92163.4 368424 1.00E-006

Table 3: Windkessel terminals corresponding to each arterial segment (for numbers see Table 2).

4.3 Venules, veins and inferior and superior vena cava

The elements of the 0D model for the venous system are callibrated using the data provided
in Table 4.

Lower body Upper body
Venules Veins Inferior cava Venules Veins Superior cava

R [dyn cm−2 s ml−1] 53.32 11.997 0.6665 186.62 39.99 0.6665
L [dyn cm−2 s2 ml−1] 1.333 0.6665 0.6665 1.333 0.6665 0.6665
C [ml dyn−1 cm2] 0.00112528 0.05626407 0.01125281 0.00037509 0.01125281 0.00375094

Table 4: Data used in the 0D model of the venous circulation system.

4.4 Right and left hearts

The data for the elastance model of the right and left hearts as well as the data needed by the
model for the valves are provided in Table 5 and Table 6. The cardiac cycle is defined with a
period T = 1 s.

Chambers Right atrium Right ventricle Left atrium Left ventricle
EA [dyn cm−2 ml−1] 79.98 733.15 93.31 3665.75
EB [dyn cm−2 ml−1] 93.31 66.65 119.97 106.64
Tc [s] 0.17 0.34 0.17 0.34
Tr [s] 0.17 0.15 0.17 0.15
tc [s] 0.80 – 0.80 –
tr [s] 0.97 – 0.97 –
V0 [ml] 4.0 10.0 4.0 5.0
α 0.0005 0.0005 0.0005 0.0005

Table 5: Data used in the elastance model of the right and left halves of the heart.



Valves Tricuspid Pulmonar Mitral Aortic
R [dyn cm−2 s ml−1] 0.006 0.006 0.006 0.006
L [dyn cm−2 s2 ml−1] 0.005 0.005 0.005 0.005
B [dyn cm−2 s2 ml−2] 0.0064 0.00756 0.0064 0.00756
θmax [◦] 75.0 75.0 75.0 75.0
θmin [◦] 5.0 5.0 5.0 5.0
kP /I [rad s−2 dyn−1 cm2] 4.126032 4.126032 4.126032 4.126032
kF /I [s−1] 50.0 50.0 50.0 50.0
kQ/I [rad s−1 ml−1] 2.0 2.0 2.0 2.0
kV /I [rad s−1 ml−1] 3.5 3.5 3.5 7.0

Table 6: Data used in the non-ideal diode models of the cardiac valves.

4.5 Pulmonary arteries and veins

The data for the 0D models that represent the both the pulmonary arteries and veins are given
in Table 7.

Pulmonary arteries Pulmonary veins
R [dyn cm−2 s ml−1] 106.64 13.33
L [dyn cm−2 s2 ml−1] 0.0 0.0
C [ml dyn−1 cm2] 0.00309077 0.060015

Table 7: Data used in the 0D models for the compartments in the pulmonary circulation.

4.6 Specific vessels

The geometrical data corresponding to set up three-dimensional models of arterial vessels is
obtained either by resorting to a standard geometry or to medical images. This will be clear in
each specific example. In the case of patient-specific vessels, the extraction of the anatomical
structures is done following standard steps for the segmentation of the medical images.

Regarding mechanical parameters (E and k in equation (26)) the arterial wall parameters in
the 3D model match those pertaining to the 1D model in which the specific vessel is embedded.
As for the values for the density and the viscosity of the blood, as with the 1D model, we take
ρ = 1.04 g/cm3 and µ = 0.04 dyn s/cm2, respectively.

5 CARDIOVASCULAR SIMULATIONS

5.1 Numerical approximation

The numerical approximation of the model for the arterial tree network, eventually with
an embedded 3D model, is carried out as in Urquiza et al. (2006); Blanco et al. (2007). The
discretization of the 0D models is done following a second order Crank-Nicolson method com-
bined with fixed point iterations for dealing with the non-differentiable non-linearity of the
valve models.

5.2 Case 1: 1D-0D closed-loop model

In this first case we employ the 1D-0D closed-loop model (no 3D model is considered here).
All the parameters for the standard case are those given in Section 4. Whenever a parameter is
changed it is specified.

Figure 5 summarizes the results in several points throughout the cardiovascular system.
These results are in accordance with patient-specific records published in the literature.

Figure 6 shows the flow rate and the opening angle in each one of the four cardiac valves.
Observe that the dynamics is not described by a mere binary state. As well, as discussed in



Figure 5: Results throughout the entire 1D-0D cardiovascular model.

Korakianitis and Shi (2006), the results given by this model with respect to the opening angle
are in agreement with data reported in the literature concerning valve dynamics.

Figure 6: Opening angle and flow rate in the four cardiac valves.

In turn, Figure 7 displays the volume and the pressure in each cardiac chamber. It is worth
saying that the present model is still under calibration using either data reported in the litera-
ture as well as patient-specific measurements in order to improve the results obtained from the
simulations.

Now we simulate the case in which we have a regurgitant aortic valve with different disease
severities. The interested reader is referred to Korakianitis and Shi (2006) for an exhaustive
discussion on this topic, recalling that there the authors make use of a lumped model for the



Figure 7: Volume and pressure in the four cardiac chambers.

systemic arteries. We concentrate here on studying the sensitivity of the results when changing
the severity of the disease. The regurgitant aortic valve is modelled by increasing the minimum
angle the valve is able to reach. The range tested here is θmin,Aov ∈ {15◦, 20◦, 25◦, 30◦} (see
Table 6).

In all the simulations no auto-regulatory mechanism has been taken into account, noting that
this is relevant for the correct description of the problem since the control mechanism play a
main role in re-establishing the pressure to physiological values.

In Figures 8-11 we address the response of the system at several points. Figure 8 shows
a notorious decrease in the left ventricle pressure during early systole, provoking the early
opening of the aortic valve as seen also in that figure. In turn, the regurgitation in the aortic
valve does not affect the dynamics of the mitral valve (opening angle) as shown in Figure 9.
Nevertheless it affects the pressure in the right atrium, increasing its value.

Figure 8: Comparison at the left ventricle between healthy and regurgitant aortic valve.

Concerning the resuls in the systemic arteries (specifically at the aortic root), Figures 10 and 11
present the flow rate and the pressure at the aortic root and at the common carotid artery, re-
spectively. In Figure 10 the decrease in the diastolic pressure is significant, result of the valve
insufficiency. Observe that the flow at the common carotid decreases to a point in which is
becomes negative during diastole (due to the lack of auto-regulation in the system). Both fig-
ures also evince the decrease in the pressure during early systole, as with the pressure at the
left ventricle. The lack of increase in the systolic pressure can be justified as a result of the
lack for autoregulation in the cardiovascular system. It is easy to see that if such mechanisms



Figure 9: Comparison at the left atrium (and mitral valve) between healthy and regurgitant aortic valve.

are present, then they push the system back to a physiological mean pressure. Now, since the
systole-to-diastole pressure drop has been increased we would have an increased value of the
pressure during systole and a decreased value during diastole.

Figure 10: Comparison at the aortic root between healthy and regurgitant aortic valve.

5.3 Case 2: 3D-1D-0D closed-loop model

In this example we introduce a patient-specific cerebral aneurism into the 1D-0D closed-loop
model for the cardiovascular system and performa simulation accounting for all the phenomena
discussed in the preeceding sections. Schematically, we have the situation shown in Figure 12.

Figure 13 presents the flow rate and the pressure at the proximal coupling interface. This
solution matches the one obtained with the pure 1D model, which means that replacing the
small 1D piece by a 3D counterpart (including an aneurism) is not visible from the global
hemodynamics viewpoint.

As well, we present in Figure 14 the streamlines within the 3D domain as the result of the in-
teraction between the 3D model and the closed-loop system. Evidently, with such an approach
it is possible to set up quite general cardiovascular scenarios. The sensitivity of the hemody-
namics at this aneurism with respect to global factors is something that may help in answering
questions about the influence of global variables, such as heart rate, peripheral resistance, mean
pressure, to local hemodynamics indexes which are believed to be connected with aneurysm
rupture. No further comment is made here, since the discussion of these results is out of the
scope of the present work.



Figure 11: Comparison at the common carotid artery between healthy and regurgitant aortic valve.

Figure 12: Scheme of the 1D-0D closed-loop model with a 3D patient-specific aneurism embedded in it.

Figure 13: Pressure and flow rate at the proximal coupling interface.



(a) t = 0.1. (b) t = 0.2. (c) t = 0.4.

(d) t = 0.6. (e) t = 0.8. (f) t = 1.0.

Figure 14: Streamlines at different instants throughout one cardiac cycle.

6 CONCLUSIONS

In this paper we have presented an integrative model of the cardiovascular system coupling
different levels of circulation, ranging from the arterial/venous circulation to blood flow in spe-
cific vessels, accounting also for the peripheral circulation and non-ideal valve functioning.

This work comprises a step towards establishing a quite complex model which allows to
analyze the interplay among several factors that render the closed-loop behavior of the car-
diovascular system such as the arterial/venous coupling, the local/global hemodynamics and
cardiac/arterial interactions, among others. With this kind of models it is possible to reach a
truly wide range of physiological and pathofisiological scenarios being characterized by either
global and local changes in the cardiovascular state.

A simple example of aortic valve regurgitation was addressed, and the sensitivity with respect
to the insufficiency severity and its impact in terms of hemodynamics variables was briefly
discussed. As seen in this analysis, further work is needed to incorporate to the present model
homeostatic mechanisms like baroreflex or chemoreflex in order to incorporate the possibility
of auto-regulation in the cardiovascular system.

Finally, with the present model a truly 3D-1D-0D simulation in the physiological regime was
presented for the case of a patient-specific aneurism embedded in the 1D-0D closed-loop model
for the cardiovascular system.
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