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Abstract. It is well known that hemodynamic factors are strongly influenced by the
arterial geometry. Combining computational fluid dynamics with three-dimensional med-
ical data can be of valuable aid for studying blood flow characteristics in real geometries.
In this manner it is possible to analyze the sensitivity of hemodynamic factors related to
shape changes in vascular districts. In this work the quantification of these sensitivities
for a carotid bifurcation with different degrees of stenosis was investigated. To this end a
multidimensional 3D - 1D FEM model of the whole arterial tree is implemented. It com-
prises a 3D compliant model of the carotid bifurcation coupled with a 1D model for the
remaining part of the arterial tree, which makes use of Windkessel models to implement
boundary conditions at the arteries ends. With this approach, difficulties arising from
the treatment of boundary conditions for the 3D model are naturally handled.

As mentioned above, several carotid bifurcation geometries were analyzed. Three of
them are based on a standard geometry and correspond to different degree of stenosis at
the carotid sinus. A fourth model was obtained from a patient-specific angiography using
different image segmentation and reconstruction techniques. Detailed flow patterns and
other associated hemodynamic factors are provided for all these models. Finally, these
data results are analyzed in order to determine how geometrical changes influence the
hemodynamic conditions for each case studied.
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1 INTRODUCTION

An increasingly number of research efforts has been tackling the problems associated
to vascular diseases with the aim of improving therapeutic, prevention and diagnostic
techniques. In this context, atherosclerosis is one of the most prevalent pathologies.
Clinical investigations reveal that atheroma plaques are mainly localized in vascular
districts where altered hemodynamic conditions are present [1, 2, 3]. These zones are
characterized by irregularities in the blood flow structure, such as flow separation and
reversal, as well as low oscillatory wall shear stresses. Due to in vivo experiments are
limited by lots of practical and ethical obstacles, computational models play a decisive
role in the progress of this research field.

Nowadays, it is possible to implement complex realistic computational models so as
to provide a better understanding of the hemodynamic phenomena present in the human
arterial system, at very low cost and without inconveniencing people. Arterial system
modelling implies some challenging issues such as geometry reconstruction from medical
images (MRI, CT, etc.)[1, 4, 5, 6, 7] and numerical solution of non-linear problems which
involve the fluid-structure interaction between blood flow and compliant arterial walls. As
local multidimensional models introduce artificial boundaries within the arterial tree[8,
9, 10], it is necessary to supply these models with proper boundary conditions, taking
into account the interactions with the rest of the arterial system in a time dependant
context. Thus, it is possible to use local representations so as to study the phenomena
associated to the flow dynamics in districts such as bifurcations and other singularities.
In this way, rather detailed descriptions of vortex development and wall shear stresses
-among other relevant hemodynamic phenomena- may be obtained in those locations.
In order to do this, appropriate coupling between complex 3D models and reduced 1D
models must be considered. These 1D models are used to represent the rest of the arterial
system supplying the 3D model with proper boundary conditions that take into account
the systemic interactions. With this approach, boundary conditions for localized models
will be naturally adjusted when changes occurs in any of the two models. This in turn,
facilitates the implementation of different situations of practical interest with easy.

In this work, we used this approach to analyze flow conditions in the carotid bifurca-
tion for different degrees of stenosis. Also, the standard geometry in normal conditions
was compared with a real geometry so as to determine how local geometry influences
hemodynamic factors.

2 GOVERNING EQUATIONS

In this section we present the governing equations for the 1D model, the 3D model
and the 1D-3D coupling scheme.
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2.1 THE 1D MODEL

By assuming appropriate simplification hypothesis on the geometry and flow char-
acteristics in the blood flow through arteries, it is possible to obtain a one dimensional
set of equations governing the blood flow in major arteries considering no flux across
the wall. The result of this simplification is the following system of non-linear partial
differential equations:

The 1D Model
Unidimensional flow in major vessels - System of equations

S,t + (Sv),x = 0
(Sv),t + [v2S(1 + δ̄)],x + S

ρ p,x = vN + µ
ρ (Sv),xx

p = p0 + EπR0h0
S

(√
S
S0
− 1

)
+ kπR0h0

S
1

2
√

S0S
S,t

being N = µ
ρ

∮
C(x,t)

φ,mdl

and δ̄ = 1
S

∫
S

φ2 dA− 1

(1)

were S represents the luminal area of the vessel, v the mean velocity of the blood and
p is the mean pressure at a point x. We also denoted by φ the velocity profile across
the transversal section S, C(x, t) is the curve limiting S and m is the outward normal of
C(x, t).

An equation representing the wall response, considering a linear viscoelastic relation
is used to close the system. In the equation for p, R0 is the arterial radius, h0 is the wall
thickness and S0 is the area. The three values R0, h0 and S0 are referred to the reference
pressure value p0. E is the effective Young Modulus and k is the fluidity coefficient due
to the parietal viscosity.

2.2 3D MODEL AND COUPLING EQUATIONS

Let Ω be the 3D region under consideration, x = (x1, x2, x3) is a arbitrary point in
Ω, v = v(x, t) represents the velocity of the blood flow, and u(x, t) is the movement of
the reference frame consistent with the ALE formulation. Then, from the Virtual Power
Principle we have:

∫

Ω

ρv,t · v̂ dΩ +
∫

Ω

ρ∇v(v− u) · v̂dΩ −
∫

Ω

p div(v̂) dΩ +
∫

Ω

µ∇v · ∇v̂ dΩ =

=
∫

Ω

b · v̂ −
n∑

i=1

∫

Si

p1Dn · v̂ dS ∀v̂ ∈ V arv (2)

∫

Ω

div(v)p̂ dΩ = 0 ∀p̂ ∈ V arp (3)

Being p1D the tension on the coupling surface Si from the 1D model. Then the
variational problem can be posed as:
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Variational Problem - 3D Incompressible Newtonian Fluid Flow

Given b, find v ∈ Kinv and p ∈ Kinp such that:
{

(v,t, v̂) + a(v, v̂) + b (v,u, v̂) + g(v̂, p) = (b, v̂) +
∑n

i=1 c(p̄i, v̂)
g(v, p̂) = 0 (4)

For Kinv, Kinp, V arv e V arp defined as:

Kinv = {v ∈ U ; v = 0 in ∂Vv̄}, V arv = {v̂ ∈ V ; v̂ = 0 in∂Vv̄}
Kinp = {p ∈ U ; p = p̄(t) in ∂Vp̄}, V arp = {p̂ ∈ V ; p̂ = 0 in ∂Vp̄}

With initial condition v|t=0 = v0, and:

a(v, v̂) = µ(∇v,∇v̂) a bilinear form in V ;

b(v,u, v̂) = ((∇v)(v− u), v̂) a trilinear form in V ;

c(p̄i, v̂) = − ∫
Si

p1Dn · v̂ dS a bilinear form in V ;

g(v̂, p̂) = −(div(v̂), p̂);

p̄i = mean pressure in the transversal section of ∂Vp̄;

(·, ·) = usual internal product in U .

(5)

In order to complete this set of equations we need to provide proper boundary condi-
tions and constitutive relations linking the pressure and the arterial wall displacement. In
this case, a simple independent ring wall model consistent with that of the 1D model was
chosen. Then, the following equations for the points over the surface ∂Ω (representing
the arterial wall) were used:

p = p0 +
Eh

R2
0

γ +
kh

R2
0

γ,t

4x = γn in ∂Ω (6)
v = x,t

where γ represents the displacements of the arterial wall in the direction n (the outward
normal of the wall).

In order to couple the 1D and 3D model we have to introduce another set of equations
on the interfaces between both models, which states for the proper coupling conditions
regarding a well-posed problem as mentioned in [11]. In order to satisfy continuity of
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mass we impose the following:

Qi = −
∫

Si

v · n dS (7)

being Qi the corresponding 1D flow rate at the coupling interface Si. To satisfy the
continuity of tensions in the 1D-3D interface we have:

∫

∂Ωi

T3Dn · v̂ d∂Ω +
∫

Si

p1Dn · v̂ dS = 0, i = 1, n ∀v̂ ∈ V arv (8)

where p1D is the mean pressure given by the 1D model in the coupling interface Si, T3D

is the stress tensor given by the 3D model in the coupling interface ∂Ωi and n is the
outward normal of ∂Ωi. These two equations imply continuity in mass and stress in the
1D-3D interface.

It is easy to show that, for high Reynold numbers, equation 8 implies continuity on
pressure.

3 MODELS

3.1 One Dimensional Tree

The full arterial system was built using 128 segments (see Figure 1(a)). Geometrical
and mechanical parameters are based on those proposed by Avolio in [12]. Regarding the
parietal viscosity, it is defined the angle φ as φ = arctg

(
ωk
E

)
where ω = 2π

T , being T the
heart beat period. This parameter is a measure of the relative magnitude of the parietal
viscosity force to the elastic one. For the inflow boundary condition, the flow ejected by
the left ventricle at the aortic root was considered. In Figure 1(b) the curve used in this
work is shown, taken from Stettler[13]. On bifurcations, continuity on pressure and flow is
considered [14]. In order to include the action of the peripheral beds, lumped Windkessel
models[14, 15, 16] are used. These elements comprise a resistance R1 in series with the
parallel of a resistance R2 and a capacitor C. The values of the resistances are such that
the flow distribution towards the different parts of the body is according to that given
in [17], always verifying the relation R1 = 0.2RT [15, 16] with RT = R1 + R2. The total
peripheral compliance is taken from Stergiopulos[15]. This compliance is distributed on
each Windkessel terminal following the same guidelines proposed there. The equation
which corresponds to each terminal is as follows:

Q,t =
1

R1R2C
[R2Cp,t + p− (R1 + R2)Q] (9)

The one-dimensional model has 1212 nodes and 1326 linear elements. Equations in
system (1) are discretized by means of the Finite Element Method, using a Galerkin-Least
Squares formulation over the characteristic lines corresponding to the normal equations
associated with the resulting hyperbolic system when k = 0. Such scheme is operated
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(a) 1D Tree topology
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Figure 1: One dimensional tree.

with a stabilization parameter corresponding to the optimal value for the SUPG[18]
method. The implementation is made within the context of a framework[19] for the
solution of discrete problems, which allows a simple and direct use of different kinds of
elements despite their formulations or dimensions.

3.2 3D Model - Method

The Finite Elements Method is used to solve the above mentioned systems of equa-
tions for 3D domains. The domain is composed of P1b-P1 tetrahedral elements with
bubble shape functions for the velocity field and linear shape functions for the scalar
pressure field [20]. The solution is stabilized using the SUPG method. Temporal deriva-
tives are solved with a θ-Euler implicit finite difference scheme, using Picard interations
in order to treat the non-linear convective terms. The solution of the problem is split into
three sub-steps: in the first one, the bubble degrees of freedom are eliminated by direct
substitution and the 3D model problem is solved using the pressure values obtained in
1D model in the previous time step as boundary conditions. In the second sub-step,
the solution for the 1D model is calculated with the flow rate values obtained from the
multidimensional model in the first sub-step, and finally in the third step, we solve the
bubble degrees of freedom to be used in the following time step. This coupling alternative
does not require the calculation of the Riemann invariants in contrast with that proposed
in [10]. The domain is updated from the position of the nodes on the surface -that are
obtained from eq. (6)- solving a Laplace problem for each nodal coordinate.

3.3 3D Model - Standard Geometry

The 3D standard geometry (NCG) upon which three of the four cases presented in
this work are based, was proposed by Bharadvaj et. al. [21]. This geometry was scaled
to be consistent with the common carotid diameter value of the 1D model. From this
geometry, two different classes of stenosis were considered as shown in Figures 2(a) and
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(c) Real carotid geometry
(RCG)

Figure 2: Different geometries used.

2(b). These cases were named SCGI and SCGII respectively. In Table 1 the dimensions
of both stenosis types are specified, and are such that the carotid sinus is 80%-stenosed
regarding the reduction of the section SS3. The finite element meshes have 57009 nodes
and 323711 elements for case NCG, 40373 nodes and 198154 elements for case SCGI and
38433 nodes and 208196 elements for case SCGII.

3.4 3D Model - Reconstructed Geometry

The real carotid geometry (case RCG) was acquired from a MRA. The input image
was segmented using a novel segmentation method based on Topological Derivative [22].
From this segmentation, by means of Marching Cubes algorithm, the 3D mesh of the
carotid artery internal wall was reconstructed. This initial mesh was post-processed to
obtain the final surface mesh and then, using a frontal method, a tetrahedral mesh was
constructed from the triangularized surface. The resulting mesh (94732 nodes, 638128
elements) is presented in Figure 2(c).

4 RESULTS

In this section computational results of this work are presented. Subsection 4.1 cor-
responds to the comparison between flow rate and pressure curves corresponding to a
standard healthy carotid geometry and the two different stenosis mentioned above (Table
1).
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Section SS1 SS2 SS3 SS4 SS5 SS6 SS7

Diameter[cm] 0.77182 0.8214 0.8214 0.76368 0.6364 0.5254 0.5254

Section CC1 CC2 EC1 EC2 EC3 EC4

Diameter[cm] 0.74 0.74 0.51356 0.42032 0.42032 0.42032

SCGI S1 S2

S[cm] 2 2.20535

SCGII R1 R2 CX1 CY1 CX2 CY2

R/CX/CY[cm] 1.00555 3.11198 -1.711571 1.785855 -3.35534 0.375378

Table 1: Dimensions corresponding to both stenosis geometries.

In subsection 4.2 the same curves, for the standard healthy geometry and the real
carotid (shown in Figure 2(c)), are compared. In order to correlate results to the feasi-
bility of development of stenosis with flow patterns, the oscillating shear stresses index
(OSI[23]) was calculated as follows:

OSI =
1
2


1−

∣∣∣
∫ T

0
τdt

∣∣∣
∫ T

0
|τ |dt


 (10)

where T is the cardiac period, and τ is the wall shear stress tensor.

4.1 Different Stenosis Geometries

As mentioned, the standard carotid geometry (NCG) and the two different stenosis
geometries SCGI and SCGII (Figure 2), are compared. For each case the pressure and
flow rate curves were compared at the Common Carotid Artery (CCA, labelled as 1© )
and after the carotid bifurcation, at the Internal Carotid Artery (ICA, labelled as 2© )
and External Carotid Artery (ECA, labelled as 3© ). It can be seen from these curves
that the arterial pulse and flow rate does not suffer significant perturbations.

4.2 Real Geometry vs. Standard Geometry

In this section we compare the NCG with the RCG. For each case the pressure and
flow rate curve were compared at the same points mentioned above. No major differences
were found in the shape of the curve besides that, for the real carotid, the flow rate and
pressure maximum (and minimum) does not reach the same value as in the case of the
standard geometry.

Finally, the distribution of the OSI for the different geometries is presented in Figure
4.2. Strong variations of blood flow direction are associated to values of the OSI close to
0.5.
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Figure 3: Flow rate and Pressure at CCA 1© , ICA 2© and ECA 3© for the standard
geometry with different stenosis(NCG, SCGI and SCGI).

5 CONCLUSIONS

In this work, by means of a coupled 1D-3D model, a comparison between different
degrees of stenosis at the carotid bifurcation using an standard geometry and a geometry
obtained form a patient-specific MRA was performed. The aim of this comparison was
to quantify the sensitivity of hemodynamic factors such as flow rate, pressure and OSI.

As shown by Figures 4.1 and 4.2 the flow rate and pressure curves are not substantially
affected by changes in the geometry.

On the other hand, the flow pattern is strongly dependent of the geometry as evi-
denced by the comparison of the OSI shown in Figure 4.2.
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Figure 4: Flow rate and Pressure at CCA 1© , ICA 2© and ECA 3© for the standard
and real geometry(NCG and RCG).
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