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A sequence of 2D images is mathematically described as a
functionI(x,y,t), wherel is the image intensity at timeand
at position(z, y). The total derivative of change of brightness
is given by

1)

where 8L, 5L and 2L can be computed directly from a pair
T y t
of imagesI(z,y,t) and I(x,y,t + dt); Cfl—f and % are theu
andv components of velocity, respectively. Horn and Schunck
Abstract—The computation of the optical flow field can be SUDPO_SG that, \_Nh(_an the pattern_moves, the interiityy, t) 9f
performed through the minimization of some energy functioral & Particular point in the pattern is conserved, so at= 0 in
that consists of two terms: a data term, that requires brighhess expression (1). Considering this constraiht,= % I, = 2_15
constancy of patterns in the image sequence, and a regulaation _ oI ; ; . ‘
term to guarantee piecewise smoothness and to avoid ill-ped and/; ot €quation (1) can be rewritten as:
problems. In this paper we propose a new regularization term DI
based on the symmetric gradient of the flow. The new algorithm D= Iyu+ I+ 1, =0. (2)
is discussed in terms of invariance and a numerical scheme t

is developed based on Horn and Schunck’s technique. In the  \We must observe that this is a single equation with two un-

numerical results we compare our method with the traditiond  ynowns variables: andv. Besides, no smoothness constraints

E)?mulgggnS\,f/:ﬁ:rrl]cclzsns?é%?mgrgﬁit;eiggvéntgeprzgitggﬂél of our and prior knowledge about the solution have bee_n Consi_dered

yet. All these problems can be addressed by introducing a

regularization term [1], [7] and a variational formulatifor

the OF problem. Therefore, Horn and Schunck [5] compute
According to Horn and Schunck, Optical Flow (OF) is thandv for each pixel of the image by minimizing the functional.

distribution of apparent velocities of movement of brigkga

patterns in an image [5]. The robust computation of OF is E? :/ [0*E? + E7] dQ, 3)

strongly need for many applications in computer vision and Q

medical image analysis [3], [4]. There are a lot of papersiibayherea is a regularization parametef? and E2 are, respec-

OF computation. For instance, Barron et al. [2] summarizgely, the data and regularization terms, given by:
the major algorithms and McCane et al. [6] evaluate the

performance of seven OF algorithms using synthetic and real Ef = (Lu+ Lyv + I)?, (4)

image sequences. E} = (up)”+ ()" + (v2)* + ()" =|| Vv |3, (5)
For the OF estimation, the Horn and Schunck algorithm is . ) )

one of the most used due to its simplicity and efficiency, whi¢vherev = (u,v). By minimizing the functional (3), we obtain

justifies and motivates the study reported in this work. Wge Euler equations:

focus our attention on the smoothness constraint (regelgri

I. INTRODUCTION

: ) N Ru+ LIy = o*Vu—1,]
of this algorithm [5]. It computes the regularization ters a 2t ZU a2 2” K
the sum of the square magnitudes of the gradients of the OF Llyu+ Iy = o’Viv— Il (6)

velocity components [1], [5]. The mathematical foundasion The Laplacianv2u and V2
behind regularization theory in computer vision and OF i ated by [5]:
considered in several works (see [7], [8] and references
therein). Viu = 3(7—u),

The focus of the present paper is to examine the perfor- Vv = 3(m—v), )
mance and efficiency of Horn and Schunck’s algorithm when
the smoothness constraint is based on the symmetric gtadig¢herew andv are local average values between the pixels:

v in equation (6) are approxi-

Up to the best of our knowledge, it is a new proposal in OF 1

computation. We provide the description of the new algamith@; ;= g{uiq,j,k + Ui i1k + Yitd,jk T Wij—1,k}

and, in the numerical experiments, we compare the classical 1

and modified algorithms by using synthetic data. + E{Uifl,jfl.,k F U1k T Uik T Uik 11k )
The paper is organized as follows. In Section Il, the oribina 1

algorithm of Horn and Schunck is described. The proposé&dit = g{“i—lva’ak +Viga1k + Vi1 gk + Vigo1k}

method is presented in Section Ill. The numerical tests are 1

shown in Section IV. Finally, Section V contains our conclu- + ﬁ{“i—lvﬂ’—la’f F Uitk F Vittgnk i1k}

sions and discusses future directions of this work. (8)



By replacing expression (7) in equation (6), we can obtalrecausév®v =V*®w. Also, a simple algebra shows that
the system | Vov |12= Vv |13 —0.5(u, —v,)?. Moreover,(u, —v,)? =
IV x v||§, where V x v is an alternative way to denote

2 2 _ 2—
(3a +I””)u2+ Im.gyv B 30‘; L1t curl(v). Therefore,G? is also rotation invariant regularizer
LIyju+ (Ba” + L)v = 30— Iy, (9) [8] because if we replace by w = Av, with A a rotation
whose solution is given by (orthoggnal) matrix t2hen we can show tr;at: ,
(302 + I2)T — I,1,5 — LI, IVewl[3 = Vw3 = 0.5[V x (Av)[l; = [Vv]3 -
I y2 121 yp wt’ 0.5V xvl|5.
) 30; _+ at v A. Numerical Scheme
v = (30 +3112)1_121i7}1; _ IyIt, (10) Substituting (7) in (15), we obtain the system:
(0%
vy a2 9 [(Ou Owv
The system (10) can be iteratively solved through tHe(3e” + I2) +v(I.1,) = 3a’u— 3y (ay 8_:c) — L1y
scheme: 028 /ou O
. _ 2 2 _ 2— - = _ - _
uk+1 _ uk ~ Iz (Imuk +vak +It) u(Ime) —|—U(3a +Iy) = 30U+ 2 9z (ay 817) yIt
3a2 4+ 12412 7 (16)
—k —k
oL = gk Iy (Iw“ + I,7" + It) (11) The cross-partial derivatives are approximated by:
3a24+ 12412 7
c Y 9 (Ou_0v —2(®,, +u)
wherek indicates the current iteration of the algorithm, and oy \0y Oz v
the partial derivative$,, I, andl; are computed by a forward 9 [Ou v o(® 17
finite difference method [5]: oz (8_y - 8_:c) ~ 2(Py +v) 17)
I, = 0.25(L 416 — Lije + Livaj+1.6 — Lit1,j.k where the difference operato#s, and ®, are given by:
+ Lijiiksr — Ligrer + Livr et — Liv1jer1)s ®, = _§(ui,j+1,k Fuiio1n)
I, = 025(Liy1jk — Lijk + Livijrie — Lijrik 1
+ Ii+1 gk+1 — Ii,j,kJrl =+ Ii+1,j+1,k+1 — Ii,jJrl,kJrl), + g(vi-ﬁ-l,j-ﬁ-l,k — Vi—1,5+1,k — Vi4+1,j—1,k + ’Ui—l,j—l,k)a
Iy = 0.25(L, Li gk + Liv1,jk41 — Liva,
¢ (Tigias = Luge - Livtgben = L o, = —5(0i+1,j,k + Vic1,5k)
+ L1k — Lk + Liv1 41641 — Lit1,j41.k)- .
(12) + g(uiJrl,jJrl,k — Uit 1k — Witd j—1,k T Wim1,j—1,k)-
I1l. M ODIFIED HORN AND SCHUNCK'S ALGORITHM (18)
This section presents our method which is a modified Horn Using equation (17) we can rewrite the system (16) as:
and Schunck’s algorithm. We propose to compute the velocity w(20® + I2) + (I, 1) = 30%T+ a’®, — I,
v = (u,v) for each pixel of the image by minimizing the 5 o o
functional: u(I1,) +v(2a® + L) = 3av+a ®, —[,1;. (19)
F = / [oﬂGﬁ 4 Ef] s, (13) The solution of the system (19) is given by:
@ (3T + @,)(I2 + 202) — (30 + ®,) .1, — 21,1
where E? is given in expression (4) and: u = : 4?4 212 + 212 ;
T? 30 + @,) (12 4 2a2) — (30 + By )1, — 21,1
GE:”VSVHSZ M , (14) v = (30 + U)(w+ C;) (2U+2u)my yt’
2 ) 402 + 212 + 212
(V) (vw)” (20)

The expressiorvVev = , is called symmetric
gradient. By minimizing the functional (13), we obtain thevhich can be iteratively solved through the scheme:

Euler equations: (3u” + ®F)(I7 + 20%) — (30" + ©F) 1,1, — 21,1,

uk+1
1 402 + 212 + 212 ’
Pu+ LIy = o {VQU——3 <@—@>} — LI, as+ 2l + 20y
20y \ 0y Ox 1 (30" + ®F) (12 + 202) — (3u* + K[, 1, — 21,1,
10 (Ou Ov v - 402 + 212 + 212 g
Llju+Ijv = V2ot s (o — || = I, L. a? 4217 + 217
yu { oo <ay axﬂ uit 21)

(15) where k is the current iteration of the numerical procedure;
Before considering the numerical issues, we shall discugs and % are estimated by equation (8);, I, and I,
some aspects of the proposed method. Firgfly, remains are computed by (12)®* and ®* are calculated through
invariant when replacing by w = v+ (8y + C1, —fz + C2)  expression (18).



IV. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency and robustness of
the proposed algorithm, three numerical experiments véll b

carried out and discussed. We compare the performance of our

model with the original algorithm of Horn and Schunck using
two error metrics. The first one, namely(9), is the mean of
the angular errof computed by:

6 = cos™H(v- V),

wherev is the correct motion vector and is the estimated
OF vector. The second error metrics is the mean-squared-err
(MSE) defined by:

1 N M
— R
MSE—WZZHWJ Viill®,

i=1 j=1

(22)

where N x M is the spatial resolution of the imade

For the test cases, we stop the iterative scheme when the
difference between the values of the functional (equat{8hs
or (13)), calculated on two consecutive iterations, is tass
1073,

o Case 1- Translation. A texture is moving with the
constant speed = (1, 1) pixel/frame. Figure 1a presents
the first frame of this case, which h&® x 80 pixels.
Consideringa = 0.4 (regularization parameter), the OF
estimated by both the original algorithm of Horn and
Schunck and the proposed model are pictured in Figures 3
and 4, respectively. As one can see from these figures, the
algorithms provided reasonable results when compared
with the real OF (see Figure 2). In these figures, it can
also be observed that the modified algorithm have a lower
diffusion velocity field (it preserves the discontinuilies
although some vectors are more distorted near the edge
of the texture.

Fig. 1.

(a) Case 1 (b) Case 2
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First frames of the synthetic sequence in the casesl2a

Case 2— Adding noise. We add multiplicative noise to
the imagel in Figure la, using the equatioh= I +nl,
wheren is uniformly distributed random noise with mean

0 and variance 0.2. Figure 1b shows the first frame of
this case. Figures 5 and 6 present the OF computed
by the original algorithm of Horn and Schunck and
model proposed, respectively, for = 0.4. From these
figures, it can be noted that the modified algorithm have
a lower diffusion velocity field as in case 1, although
some vectors are more distorted near the edge of the
texture. It can also be seen from these figures that both
algorithms properly compute the OF when compared with
the real OF (see Figure 2). This observation is supported
by the errors shown in Tables Il and IV. Also, the
number of iterations reported in these tables show that the
convergence rate of the proposed algorithm was superior
to the one observed by the original method.

o iteration number| FE(0) MSE
0.05 16 1.5758 | 0.0427
0.10 26 1.5705 | 0.0375
0.20 53 1.5746 | 0.0429
0.40 116 1.5711 | 0.0548
0.80 235 1.5706 | 0.0621

TABLE Il

Tables | and 1l show the convergence rate and errors of case 2 - PERFORMANCE OFHORN AND SCHUNCK' S ALGORITHM.

the algorithms. It can be seen that the results of our model
are satisfactory when compared with those of the original

algorithm.
« iteration number| FE(0) MSE
0.05 17 1.5733 | 0.0268
0.10 27 1.5728 | 0.0303
0.20 54 1.5720 | 0.0426
0.40 126 1.5714 | 0.0648
0.80 245 1.5710 | 0.0718
TABLE |

CASE 1 — PERFORMANCE OFHORN AND SCHUNCK'S ALGORITHM.

o iteration number| FE(0) MSE
0.05 18 15729 | 0.0292
0.10 25 1.5725| 0.0310
0.20 32 1.5720 | 0.0333
0.40 50 1.5715| 0.0380
0.80 212 1.5710 | 0.0773

TABLE Il

CASE 1 — PERFORMANCE OF THE ALGORITHM PROPOSED IN THIS PAPER

a iteration number| FE(0) MSE
0.05 16 1.5663 | 0.0530
0.10 20 1.5738 | 0.0406
0.20 28 1.5728 | 0.0395
0.40 52 1.5710 | 0.0378
0.80 198 1.5681 | 0.0632

TABLE IV

CASE 2 — PERFORMANCE OF OUR ALGORITHM



Fig. 2. Real OF for the cases 1 and 2.

Fig. 3. OF estimated in the case 1 by the original Horn and Sdhu

algorithm.

Fig. 4. OF estimated in the case 1 by the algorithm proposéhisnpaper.

Fig. 5. OF computed in the case 2 by the original Horn and Szhun
algorithm.

Fig. 6. OF computed in the case 2 by our algorithm.

o Case 3 - Intravascular Ultrasound (IVUS). Figure 7

shows the IVUS image which is rotated with angular
velocity of -1 degree/frame. It is an interesting test case,
because IVUS image sequences have much noise and
non-trivial patterns.

In this case, images df86 x 192 pixels are used. Tables

V and VI show that the performance of the OF algorithms
is quite similar, indicating that these techniques are ef th
same order.

The OF determined by the algorithm of Horn and
Schunck and model proposed is presented in Figures 9
and 10, respectively, foix = 0.4. It is clear from these
figures that the algorithms yield practically analogous
results and such OF solutions agree with the real OF
(see Figure 8).



[ iteration number| FE(0) MSE
0.05 28 0.6544 | 0.2766
0.10 37 0.6500 | 0.2653
0.20 54 0.6436 | 0.2502
0.40 82 0.6375 | 0.2333
0.80 126 0.6307 | 0.2186

TABLE V

CASE 3 — PERFORMANCE OFHORN AND SCHUNCK’ S ALGORITHM.

« iteration number| FE(0) MSE
0.05 28 0.6574 | 0.2845
0.10 36 0.6533 | 0.2756
0.20 52 0.6473 | 0.2633
0.40 78 0.6404 | 0.2493
0.80 120 0.6327 | 0.2353 ) . . .
TABLE VI Fig. 9. OF estimated in the case 3 by the original Horn and Sdhu

CASE 3 — PERFORMANCE OF THE OUR ALGORITHM algorithm.

EIEIEEEIEIE T el

Fig. 7. First frame of the synthetic sequence in the case 3. Fig. 10. OF estimated in the case 3 by our algorithm.

V. CONCLUSION

The performance of the modified version of Horn and
Schunck’s algorithm has been evaluated on synthetic image
sequences and compared with that of the classical algarithm
In the performed experiments the precision of our model was
practically similar to the original algorithm. Moreovehet
numerical experiments indicate that the modified Horn and
Schunck’s algorithm has convergence rate quite satisfacto
when compared to the original model. Further directions for
this work are to explore connections with diffusion filtersda
the effects of the invariance — v+ (By + C1, — Gz + Cs),
observed in section lll, for real world image sequences [8].
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Fig. 8. Real OF for the case 3.
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