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Raúl Antonino Feijóo
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Abstract—The computation of the optical flow field can be
performed through the minimization of some energy functional
that consists of two terms: a data term, that requires brightness
constancy of patterns in the image sequence, and a regularization
term to guarantee piecewise smoothness and to avoid ill-posed
problems. In this paper we propose a new regularization term
based on the symmetric gradient of the flow. The new algorithm
is discussed in terms of invariance and a numerical scheme
is developed based on Horn and Schunck’s technique. In the
numerical results we compare our method with the traditional
Horn and Schunck’s algorithm to show the potential of our
formulation when considering efficiency and precision.

I. I NTRODUCTION

According to Horn and Schunck, Optical Flow (OF) is the
distribution of apparent velocities of movement of brightness
patterns in an image [5]. The robust computation of OF is
strongly need for many applications in computer vision and
medical image analysis [3], [4]. There are a lot of papers about
OF computation. For instance, Barron et al. [2] summarize
the major algorithms and McCane et al. [6] evaluate the
performance of seven OF algorithms using synthetic and real
image sequences.

For the OF estimation, the Horn and Schunck algorithm is
one of the most used due to its simplicity and efficiency, which
justifies and motivates the study reported in this work. We
focus our attention on the smoothness constraint (regularizer)
of this algorithm [5]. It computes the regularization term as
the sum of the square magnitudes of the gradients of the OF
velocity components [1], [5]. The mathematical foundations
behind regularization theory in computer vision and OF is
considered in several works (see [7], [8] and references
therein).

The focus of the present paper is to examine the perfor-
mance and efficiency of Horn and Schunck’s algorithm when
the smoothness constraint is based on the symmetric gradient.
Up to the best of our knowledge, it is a new proposal in OF
computation. We provide the description of the new algorithm
and, in the numerical experiments, we compare the classical
and modified algorithms by using synthetic data.

The paper is organized as follows. In Section II, the original
algorithm of Horn and Schunck is described. The proposed
method is presented in Section III. The numerical tests are
shown in Section IV. Finally, Section V contains our conclu-
sions and discusses future directions of this work.

II. H ORN AND SCHUNCK’ S ALGORITHM

A sequence of 2D images is mathematically described as a
functionI(x, y, t), whereI is the image intensity at timet and
at position(x, y). The total derivative of change of brightness
is given by
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andv components of velocity, respectively. Horn and Schunck
suppose that, when the pattern moves, the intensityI(x, y, t) of
a particular point in the pattern is conserved, so thatDI
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, equation (1) can be rewritten as:

DI

Dt
= Ixu + Iyv + It = 0. (2)

We must observe that this is a single equation with two un-
knowns variablesu andv. Besides, no smoothness constraints
and prior knowledge about the solution have been considered
yet. All these problems can be addressed by introducing a
regularization term [1], [7] and a variational formulationfor
the OF problem. Therefore, Horn and Schunck [5] computeu

andv for each pixel of the image by minimizing the functional.
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whereα is a regularization parameter;E2
b andE2

c are, respec-
tively, the data and regularization terms, given by:
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wherev = (u, v). By minimizing the functional (3), we obtain
the Euler equations:

I2
xu + IxIyv = α2∇2u − IxIt

IxIyu + I2
yv = α2∇2v − IyIt (6)

The Laplacian∇2u and∇2v in equation (6) are approxi-
mated by [5]:

∇2u = 3(u − u),

∇2v = 3(v − v), (7)

whereu andv are local average values between the pixels:
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By replacing expression (7) in equation (6), we can obtain
the system

(3α2 + I2
x)u + IxIyv = 3α2u − IxIt,

IxIyu + (3α2 + I2
y )v = 3α2v − IyIt. (9)

whose solution is given by
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The system (10) can be iteratively solved through the
scheme:

uk+1 = uk −
Ix

(

Ixuk + Iyvk + It

)

3α2 + I2
x + I2

y

,

vk+1 = vk −
Iy

(

Ixuk + Iyvk + It

)

3α2 + I2
x + I2

y
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wherek indicates the current iteration of the algorithm, and
the partial derivativesIx, Iy andIt are computed by a forward
finite difference method [5]:

Ix = 0.25(Ii,j+1,k − Ii,j,k + Ii+1,j+1,k − Ii+1,j,k

+ Ii,j+1,k+1 − Ii,j,k+1 + Ii+1,j+1,k+1 − Ii+1,j,k+1),

Iy = 0.25(Ii+1,j,k − Ii,j,k + Ii+1,j+1,k − Ii,j+1,k
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It = 0.25(Ii,j,k+1 − Ii,j,k + Ii+1,j,k+1 − Ii+1,j,k

+ Ii,j+1,k+1 − Ii,j+1,k + Ii+1,j+1,k+1 − Ii+1,j+1,k).

(12)

III. M ODIFIED HORN AND SCHUNCK’ S ALGORITHM

This section presents our method which is a modified Horn
and Schunck’s algorithm. We propose to compute the velocity
v = (u, v) for each pixel of the image by minimizing the
functional:
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dΩ, (13)

whereE2
b is given in expression (4) and:
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The expression∇s
v = (∇v)+(∇v)T

2 , is called symmetric
gradient. By minimizing the functional (13), we obtain the
Euler equations:
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Before considering the numerical issues, we shall discuss
some aspects of the proposed method. Firstly,G2

s remains
invariant when replacingv by w = v+ (βy + C1,−βx + C2)

because∇s
v =∇s

w. Also, a simple algebra shows that
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curl(v). Therefore,G2
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(orthogonal) matrix then we can show that:
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A. Numerical Scheme

Substituting (7) in (15), we obtain the system:
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The cross-partial derivatives are approximated by:

∂

∂y

(

∂u

∂y
−

∂v

∂x

)

≃ −2(Φu + u)

∂

∂x

(

∂u

∂y
−

∂v

∂x

)

≃ 2(Φv + v) (17)

where the difference operatorsΦu andΦv are given by:
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Using equation (17) we can rewrite the system (16) as:

u(2α2 + I2
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which can be iteratively solved through the scheme:
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wherek is the current iteration of the numerical procedure;
uk and vk are estimated by equation (8);Ix, Iy and It

are computed by (12);Φk
u and Φk

v are calculated through
expression (18).



IV. EXPERIMENTAL RESULTS

In order to demonstrate the efficiency and robustness of
the proposed algorithm, three numerical experiments will be
carried out and discussed. We compare the performance of our
model with the original algorithm of Horn and Schunck using
two error metrics. The first one, namelyE(θ), is the mean of
the angular errorθ computed by:

θ = cos−1(v· v̂),

wherev is the correct motion vector and̂v is the estimated
OF vector. The second error metrics is the mean-squared-error
(MSE) defined by:

MSE =
1

2(N × M)

N
∑

i=1

M
∑

j=1

‖vi,j − v̂i,j‖
2, (22)

whereN × M is the spatial resolution of the imageI.
For the test cases, we stop the iterative scheme when the

difference between the values of the functional (equations(3)
or (13)), calculated on two consecutive iterations, is lessthan
10−3.

• Case 1 – Translation. A texture is moving with the
constant speedv = (1, 1) pixel/frame. Figure 1a presents
the first frame of this case, which has80 × 80 pixels.
Consideringα = 0.4 (regularization parameter), the OF
estimated by both the original algorithm of Horn and
Schunck and the proposed model are pictured in Figures 3
and 4, respectively. As one can see from these figures, the
algorithms provided reasonable results when compared
with the real OF (see Figure 2). In these figures, it can
also be observed that the modified algorithm have a lower
diffusion velocity field (it preserves the discontinuities),
although some vectors are more distorted near the edge
of the texture.
Tables I and II show the convergence rate and errors of
the algorithms. It can be seen that the results of our model
are satisfactory when compared with those of the original
algorithm.

α iteration number E(θ) MSE
0.05 17 1.5733 0.0268
0.10 27 1.5728 0.0303
0.20 54 1.5720 0.0426
0.40 126 1.5714 0.0648
0.80 245 1.5710 0.0718

TABLE I
CASE 1 – PERFORMANCE OFHORN AND SCHUNCK’ S ALGORITHM.

α iteration number E(θ) MSE
0.05 18 1.5729 0.0292
0.10 25 1.5725 0.0310
0.20 32 1.5720 0.0333
0.40 50 1.5715 0.0380
0.80 212 1.5710 0.0773

TABLE II
CASE 1 – PERFORMANCE OF THE ALGORITHM PROPOSED IN THIS PAPER.

(a) Case 1 (b) Case 2

Fig. 1. First frames of the synthetic sequence in the cases 1 and 2.

• Case 2– Adding noise. We add multiplicative noise to
the imageI in Figure 1a, using the equationJ = I +nI,
wheren is uniformly distributed random noise with mean
0 and variance 0.2. Figure 1b shows the first frame of
this case. Figures 5 and 6 present the OF computed
by the original algorithm of Horn and Schunck and
model proposed, respectively, forα = 0.4. From these
figures, it can be noted that the modified algorithm have
a lower diffusion velocity field as in case 1, although
some vectors are more distorted near the edge of the
texture. It can also be seen from these figures that both
algorithms properly compute the OF when compared with
the real OF (see Figure 2). This observation is supported
by the errors shown in Tables III and IV. Also, the
number of iterations reported in these tables show that the
convergence rate of the proposed algorithm was superior
to the one observed by the original method.

α iteration number E(θ) MSE
0.05 16 1.5758 0.0427
0.10 26 1.5705 0.0375
0.20 53 1.5746 0.0429
0.40 116 1.5711 0.0548
0.80 235 1.5706 0.0621

TABLE III
CASE 2 – PERFORMANCE OFHORN AND SCHUNCK’ S ALGORITHM.

α iteration number E(θ) MSE
0.05 16 1.5663 0.0530
0.10 20 1.5738 0.0406
0.20 28 1.5728 0.0395
0.40 52 1.5710 0.0378
0.80 198 1.5681 0.0632

TABLE IV
CASE 2 – PERFORMANCE OF OUR ALGORITHM.



Fig. 2. Real OF for the cases 1 and 2.

Fig. 3. OF estimated in the case 1 by the original Horn and Schunck
algorithm.

Fig. 4. OF estimated in the case 1 by the algorithm proposed inthis paper.

Fig. 5. OF computed in the case 2 by the original Horn and Schunck
algorithm.

Fig. 6. OF computed in the case 2 by our algorithm.

• Case 3 – Intravascular Ultrasound (IVUS). Figure 7
shows the IVUS image which is rotated with angular
velocity of -1 degree/frame. It is an interesting test case,
because IVUS image sequences have much noise and
non-trivial patterns.
In this case, images of186× 192 pixels are used. Tables
V and VI show that the performance of the OF algorithms
is quite similar, indicating that these techniques are of the
same order.
The OF determined by the algorithm of Horn and
Schunck and model proposed is presented in Figures 9
and 10, respectively, forα = 0.4. It is clear from these
figures that the algorithms yield practically analogous
results and such OF solutions agree with the real OF
(see Figure 8).



α iteration number E(θ) MSE
0.05 28 0.6544 0.2766
0.10 37 0.6500 0.2653
0.20 54 0.6436 0.2502
0.40 82 0.6375 0.2333
0.80 126 0.6307 0.2186

TABLE V
CASE 3 – PERFORMANCE OFHORN AND SCHUNCK’ S ALGORITHM.

α iteration number E(θ) MSE
0.05 28 0.6574 0.2845
0.10 36 0.6533 0.2756
0.20 52 0.6473 0.2633
0.40 78 0.6404 0.2493
0.80 120 0.6327 0.2353

TABLE VI
CASE 3 – PERFORMANCE OF THE OUR ALGORITHM.

Fig. 7. First frame of the synthetic sequence in the case 3.

Fig. 8. Real OF for the case 3.

Fig. 9. OF estimated in the case 3 by the original Horn and Schunck
algorithm.

Fig. 10. OF estimated in the case 3 by our algorithm.

V. CONCLUSION

The performance of the modified version of Horn and
Schunck’s algorithm has been evaluated on synthetic image
sequences and compared with that of the classical algorithm.
In the performed experiments the precision of our model was
practically similar to the original algorithm. Moreover, the
numerical experiments indicate that the modified Horn and
Schunck’s algorithm has convergence rate quite satisfactory
when compared to the original model. Further directions for
this work are to explore connections with diffusion filters and
the effects of the invariancev → v+ (βy + C1,−βx + C2) ,

observed in section III, for real world image sequences [8].
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