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1 Introduction

Over the past decade, the use of analytical and computational tools for the pre-
diction of the constitutive behaviour of materials relying on information at two
or more physical scales has been the subject of increasing interest in academic
circles. Particularly interesting applications of multi-scale concepts include:
(a) The estimation of the effective parameters of a pre-defined macroscopic
continuum constitutive model as well as the definition of new phenomeno-
logical macroscopic constitutive models through the analysis of a microscopic
representative volume element (RVE) (Hill (1963); Gurson (1977); Michel &
Suquet (1992); Gărăjeu & Suquet (1997); Michel et al. (1999, 2001); Pelle-
grino et al. (1997, 1999)), and (b) The development and use of macroscopic
constitutive models whose generally dissipative behaviour is the result of the
homogenisation of the response of a RVE, without reference to any pre-defined
set of constitutive equations at the macroscopic scale (Swan (1994); Miehe et

al. (1999, 2002); Kouznetsova et al. (2002); Terada et al. (2003)).

Within the category of applications classed as (a) in the above, the seminal
paper by Gurson (1977) deserves special mention. In his paper, Gurson has
derived upper bound yield loci estimates for porous ductile metals by means
of a semi-analytical method based on the study of the collapse of representa-
tive perforated rigid-perfectly plastic cells under an assumed mechanism. This
work has been followed up by other researchers who proposed refinements
to the original Gurson model (see, for example, Tvergaard (1981)). Further
multi-scale based studies of porous plastic media have been conducted, among
others, by Gărăjeu & Suquet (1997) who proposed a generalisation of Gur-
son’s yield function to account for the presence of rigid inclusions within the
porous microstructure, and by Michel et al. (2001) who assessed the influence
of the randomness of void distribution on the macroscopic yield strength.

Our main purpose in the present paper is to further investigate Gurson’s
plane strain criterion by assessing it against finite element predictions of ex-
tremal yield surfaces for porous plastic media. The numerical predictions are
obtained here within a purely kinematical homogenisation-based multi-scale
constitutive framework. Square RVEs consisting of an elastic-perfectly plas-
tic von Mises type matrix containing a circular void are considered in the
computational homogenisation procedure. The paper is organised as follows.
The kinematical multi-scale constitutive framework is reviewed in Section 2.
Within this framework, upper and lower bounds of the homogenised con-
stitutive behaviour correspond respectively to the choices of: (i) linear RVE
boundary displacements – the most constrained – and, (ii) minimum kine-
matical constraint – or uniform RVE boundary tractions. A further predic-
tion can be obtained under the kinematical assumption of periodicity of the
RVE boundary displacement fluctuation – typically associated with the anal-
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Fig. 1. Macro-continuum with a locally attached micro-structure.

ysis of microstructurally periodic media. The finite element implementation of
the resulting multi-scale constitutive models is described in Section 3. Here,
the linearised system of algebraic equations required by the Newton-Raphson
scheme for the solution of the associated incremental microscopic equilibrium
problems is briefly described. The kinematical constraints of the RVE are
enforced directly upon the finite element-generated spaces of displacement
fluctuations and virtual displacements. The main contribution is presented in
Section 4. Predictions of extremal yield surfaces are determined within the
computational homogenisation framework. The original Gurson upper bound
for porous plastic media under plane strain is assessed against the numerical
results. A modification of the original Gurson yield function is then suggested
which is able to capture the yield loci of porous metals under the three kine-
matical assumptions considered. The paper ends in Section 5 where some
concluding remarks are presented.

2 Homogenisation-based multi-scale constitutive theory

The starting point of the kinematically-based family of multi-scale constitu-
tive theories upon which the present paper relies is the assumption that any
material point x of the (macroscopic) continuum is associated to a local Rep-
resentative Volume Element (RVE) whose domain, Ωµ (refer to Fig. 1), has a
characteristic length, lµ, much smaller than the characteristic length, l, of the
macro-continuum. At any instant t, the strain tensor at an arbitrary point x

of the macro-continuum is assumed (de Souza Neto & Feijóo , 2006) to be the
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volume average of the microscopic strain tensor field, εµ, defined over Ωµ:

ε(t) =
1

Vµ

∫

Ωµ

εµ(y, t) dV, (1)

where Vµ is the volume of the RVE and

εµ = ∇suµ, (2)

where ∇suµ denotes the symmetric gradient of the microscopic displacement
field uµ of the RVE.

2.1 Kinematically admissible RVE displacement fields

By replacing (2) into (1) and making use of Green’s theorem, it can easily
be established that the averaging relation (1) is equivalent to the following
constraint on the displacement field of the RVE (de Souza Neto & Feijóo ,
2006):

∫

∂Ωµ

uµ ⊗s n dA = Vµ ε, (3)

where n denotes the outward unit normal field on ∂Ωµ and

a ⊗s b ≡ 1
2
(a ⊗ b + b ⊗ a) (4)

for any vectors a and b. This constraint requires the (as yet not defined) set Kµ

of kinematically admissible RVE displacement fields to be a subset of the min-

imally constrained set of kinematically admissible microscopic displacements ,
K

∗
µ :

Kµ ⊂ K
∗

µ ≡
{

v, sufficiently regular |
∫

∂Ωµ

v ⊗s n dA = Vµ ε

}

, (5)

with sufficiently regular meaning that the relevant functions have the sufficient
degree of regularity so that all operations in which they are involved make
sense. By splitting uµ into a sum

uµ(y, t) = ε(t) y + ũµ(y, t), (6)

of a homogeneous strain displacement, ε(t) y, and a displacement fluctuation

field, ũµ, the above constraint is made equivalent to requiring that the space

K̃µ of kinematically admissible displacement fluctuations of the RVE be a
subspace of the of the minimally constrained space of kinematically admissible

displacement fluctuations , K̃ ∗
µ :

K̃µ ⊂ K̃
∗

µ ≡
{

v, sufficiently regular |
∫

∂Ωµ

v ⊗s n dA = 0

}

. (7)
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Further, it can be trivially established (refer to de Souza Neto & Feijóo (2006)
for details) that the (yet to be defined) space K̃µ coincides with the space of
virtual displacements of the RVE.

Following the split (6) the microscopic strain (2) can be expressed as the sum

εµ(y, t) = ε (t) + ∇sũµ(y, t), (8)

of a homogeneous strain field (coinciding with the macroscopic, average strain)
and a field ∇sũµ that represents a fluctuation about the average.

2.2 Macroscopic stress, Hill-Mandel Principle and RVE equilibrium

Similarly to the macroscopic strain definition (2), the macroscopic stress ten-
sor, σ, is defined as the volume average of the microscopic stress field, σµ,
over the RVE:

σ(t) ≡ 1

Vµ

∫

Ωµ

σµ(y, t) dV. (9)

Another crucial concept underlying models of the present type is the Hill-
Mandel Principle of Macro-homogeneity (Hill , 1965; Mandel , 1971) which
requires the macroscopic stress power to equal the volume average of the
microscopic stress power for any kinematically admissible motion of the RVE.
This is expressed by the equation

σ : ε̇ =
1

Vµ

∫

Ωµ

σµ : ε̇µ dV, (10)

that must hold for any kinematically admissible microscopic strain rate field,
ε̇µ. The above is equivalent to the following variational equation:

∫

∂Ωµ

t · η dA = 0 ;
∫

Ωµ

b · η dV = 0 ∀η ∈ K̃µ, (11)

in terms of the RVE boundary traction and body force fields denoted, respec-
tively, t and b. That is, the virtual work of the RVE body force and surface
traction fields vanish – they are the reaction forces associated to the imposed
kinematical constraints embedded in the choice of K̃µ.

With the above at hand, the variational equilibrium statement – the virtual
work equation – for the RVE is given by

∫

Ωµ

σµ : ∇sη dV = 0 ∀η ∈ K̃µ. (12)
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Further, we assume that at any time t the stress at each point y of the RVE
is delivered by a generic constitutive functional Sy of the strain history εt

µ(y)
at that point up to time t:

σ(y, t) = Sy(ε
t
µ(y)). (13)

This constitutive assumption, together with the equilibrium equation (12)
leads to the definition of the RVE equilibrium problem which consists in find-
ing, for a given macroscopic strain ε (a function of time), a displacement
fluctuation function ũµ ∈ K̃µ such that

∫

Ωs
µ

Sy{[ε(t) + ∇sũµ(y, t)]t} : ∇sη dV = 0 ∀η ∈ K̃µ. (14)

2.3 Characterisation of the multi-scale constitutive model

The general multi-scale constitutive model in the present context is defined
as follows. For a given macroscopic strain history, we must firstly solve the
RVE equilibrium problem defined by (14). With the solution ũµ at hand, the
macroscopic stress tensor is determined according to the averaging relation
(9), i.e., we have

σ(t) = S(εt) ≡ 1

Vµ

∫

Ωµ

Sy{[ε + ∇sũµ]t} dV, (15)

where S denotes the resulting (homogenised) macroscopic constitutive func-
tional.

2.3.1 The choice of kinematical constraints

The characterisation of a multi-scale model of the present type is completed
with the choice of a suitable space of kinematically admissible displacement
fluctuations, K̃µ ⊂ K̃ ∗

µ . In general, different choices lead to different macro-
scopic response functionals. The following choices will be considered in the
assessment of the Gurson model addressed in Section 4:

(i) Linear boundary displacements (or zero boundary fluctuations) model:

K̃µ = K̃ lin ≡ { v, sufficiently regular | v(y) = 0 ∀y ∈ ∂Ωµ}. (16)

The displacements of the boundary of the RVE for this class of models are
fully prescribed as

uµ(y) = ε y ∀y ∈ ∂Ωµ. (17)
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Fig. 2. RVE geometries for periodic media. Square and hexagonal cells.

(ii) Periodic boundary fluctuations. This assumption is typically associated with
the description of media with periodic microstructure. The macrostructure
in this case is generated by the periodic repetition of the RVE (Michel et

al. , 1999). For simplicity, we will focus the description on two-dimensional
problems and we shall follow the notation adopted by Miehe et al. (1999).
Consider, for example, the square or hexagonal RVEs, as illustrated in Fig-
ure 2. In this case, each pair i of sides consists of equally sized subsets

Γ+
i and Γ−

i

of ∂Ωµ, with respective unit normals

n+
i and n−

i ,

such that
n−

i = −n+
i . (18)

A one-to-one correspondence exists between the points of Γ+
i and Γ−

i . That
is, each point y+ ∈ Γ+

i has a corresponding pair y− ∈ Γ−
i .

The key kinematical constraint for this class of models is that the dis-
placement fluctuation must be periodic on the boundary of the RVE. That
is, for each pair {y+, y−} of boundary material points we have

ũµ(y+, t) = ũµ(y
−, t). (19)

Accordingly, the space K̃µ is defined as

K̃µ =K̃per≡{ũµ, suff. reg. | ũµ(y+, t) = ũµ(y−, t) ∀ pairs {y+, y−}}. (20)

(iii) The minimally constrained (or uniform boundary traction) model:

K̃µ ≡ K̃
∗

µ . (21)

It can be shown (de Souza Neto & Feijóo , 2006) that the distribution
of stress vector on the RVE boundary, reactive to the minimal kinematic

7



constraint, satisfies

σµ(y, t) n(y) = σ(t) n(y) ∀y ∈ ∂Ωµ. (22)

As for the linear boundary displacements assumption, there are no restric-
tions on the geometry of the RVE in the present case.

3 Finite element approximation

This section provides a brief description of the computational implementation
of multi-scale constitutive theories of the above type within a non-linear finite
element framework. At the outset, we shall assume the constitutive behaviour
at the RVE level to be described by conventional internal variable-based dissi-
pative constitutive theories, whereby the stress tensor is obtained by integrat-
ing a set of ordinary differential equations in time (or pseudo-time) for the
given strain tensor history. Elasto-plasticity and visco-plasticity are classical,
widely used examples of such specialisations of (13). In these cases, numerical
approximations to the initial value problem defined by the constitutive equa-
tions of the model are usually obtained by Euler-type difference schemes. For a
typical time (or pseudo-time) interval [tn, tn+1], with known set αn of internal
variables at tn, the stress σn+1

µ at tn+1 is a (generally implicit) function of the
(prescribed) strain εn+1

µ at tn+1 (refer, for instance, to Simo & Hughes (1998)
for a detailed account of procedures of this kind in the context of plasticity
and visco-plasticity). This can be symbolically represented as

σn+1
µ = σ̂y(ε

n+1
µ ; αn), (23)

where σ̂y denotes the integration algorithm-related implicit incremental con-
stitutive function at the point of interest, y.

The above leads to the definition of an incremental version of the homogenised
constitutive function defined in (15), obtained by replacing Sy with its time-
discrete counterpart σ̂y:

σn+1 = σ̂(εn+1; ᾱn) ≡ 1

Vµ

∫

Ωµ

σ̂y(ε
n+1 + ∇sũn+1

µ ; αn) dV, (24)

where ᾱn denotes the field of internal variable sets over Ωµ at time tn and
ũn+1

µ is the displacement fluctuation field of the RVE at tn+1 – the solution to
the time-discrete version of equilibrium problem (14):

∫

Ωs
µ

σ̂y(ε
n+1 + ∇sũn+1

µ ; αn) : ∇sη dV = 0 ∀η ∈ K̃µ. (25)
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3.1 Finite element discretisation and solution

We now focus on the finite element solution of the time-discrete equilibrium
problem (25) – a crucial step in the definition of the approximate homogenised
constitutive functional. Following a standard notation, the finite element ap-
proximation to problem (25) for a given discretisation h consists in determining
the unknown vector ũn+1

µ ∈ K̃ h
µ of global nodal displacement fluctuations such

that

Gh(ũn+1
µ ) ≡

{

∫

Ωh
µ

BT
σ̂y(ε

n+1 + B ũn+1
µ ) dV

}

· η = 0

∀ η ∈ K̃
h

µ,

(26)

where Ωh
µ denotes the discretised RVE domain, B the global strain-displacement

matrix (or discrete symmetric gradient operator), ε
n+1 is the fixed (given) ar-

ray of macroscopic engineering strains at tn+1, σ̂y (with upright σ) is the
functional that delivers the finite element array of stress components, η de-
notes global vectors of nodal virtual displacements of the RVE and K̃ h

µ is the
finite-dimensional space of virtual nodal displacement vectors associated with
the finite element discretisation h of the domain Ωµ.

The solution to the (generally non-linear) problem (26) can be efficiently un-
dertaken by the Newton-Raphson iterative scheme, whose typical iteration (k)
consists in solving the linearised form,

[

F(k−1) + K(k−1) δũ(k)
µ

]

· η = 0 ∀ η ∈ K̃
h

µ, (27)

for the unknown iterative nodal displacement fluctuations vector, δũ(k)
µ ∈ K̃

h
µ

where

F(k−1) ≡
∫

Ωh
µ

BT
σ̂y(ε

n+1 + B ũ(k−1)
µ ) dV, (28)

and

K(k−1) ≡
∫

Ωh
µ

BT D(k−1) B dV (29)

is the tangent stiffness matrix of the RVE with

D(k−1) ≡ dσ̂y

dε

∣

∣

∣

∣

∣

ε=εn+1+Bũ
(k−1)
µ

(30)

denoting the consistent constitutive tangent matrix field over the RVE domain.
In the above the bracketed superscript denotes the Newton iteration number
and the time station superscript n+1 has been dropped whenever convenient
for ease of notational. With the solution δũ(k)

µ at hand, the new guess ũ(k)
µ

for the displacement fluctuation at tn+1 is obtained according to the Newton-
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Raphson update formula

ũ(k)
µ = ũ(k−1)

µ + δũ(k)
µ . (31)

Under the assumption of linear boundary displacements, the solution of prob-
lem (27) follows the conventional route of general linear solid mechanics prob-
lems – here with the degrees of freedom (fluctuations) of the boundary fully
prescribed as zero. Hence, the finite element implementation of this class of
multi-scale models requires no further consideration. For the periodic bound-
ary condition and minimally constrained models, however, the kinematic bound-
ary conditions of the RVE are non-conventional. The main difference lies in the
finite element-generated finite dimensional spaces of admissible fluctuations
and virtual displacements whose constraints, here, are not simply described in
terms of either fully constrained or completely free nodal degrees of freedom.
For the sake of completeness, this issue is addressed in the following.

3.1.1 Periodic boundary fluctuations model

For the periodic boundary displacement fluctuations model, the RVE geome-
try must comply with the constraints set out in item (iii) listed in Section 2.3.1.
In this case, it is convenient to assume, 1 further, that each boundary node
i+, with coordinates y+

i , has a pair i−, with coordinates y−
i , as schematically

illustrated in Figure 3. Under this assumption, the space K̃
h

µ of discretised
kinematically admissible nodal displacement fluctuation vectors (with period-

1 This assumption is not necessary, but simplifies considerably the finite element
implementation of the periodic fluctuations model.
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icity on the boundary) can then be defined as

K̃
h

µ =



























v =















vi

v+

v−















| v+ = v−



























, (32)

where vi, v+ and v− denote the vectors containing, respectively, the degrees of
freedom of the RVE interior and the portions Γ+ and Γ− of the RVE boundary.
Here we adopt the direct approach suggested by Michel et al. (1999) whereby
the periodicity constraint is enforced exactly in the discretised space of fluc-
tuations and virtual displacements. This is at variance with the treatment
adopted by Miehe & Koch (2002) who used a Lagrange multiplier method to
enforce the discrete space constraint.

By splitting F, K, δũµ and η in the same fashion as v in the above and taking
into account definition (32) as well as the fact that both η and δũ(k)

µ belong

to space K̃ h
µ , the linearised equation (27) takes the form













































Fi

F+

F−















(k−1)

+















kii ki+ ki−

k+i k++ k+−

k−i k−+ k−−















(k−1) 













δũi

δũ+

δũ+















(k)






























·















ηi

η+

η+















= 0 ∀ ηi, η+.

(33)
Straightfoward manipulations, considering the repetition of δũ+ and η+ in
the relevant vectors of nodal degrees of freedom, reduce the linearised discrete
equilibrium equation (33) to the following form















Fi

F++F−





(k−1)

+





kii ki+ + ki−

k+i+k−i k+++k+−+k−++k−−





(k−1)



δũi

δũ+





(k)










·





ηi

η+



= 0

∀ηi, η+,

(34)

which, finally, in view of the arbitrariness of ηi and η+, yields the linear system

of algebraic equations for the unknown vectors δũ
(k)
i and δũ

(k)
+ ,







kii ki+ + ki−

k+i+k−i k+++k+−+k−++k−−







(k−1) 





δũi

δũ+







(k)

= −






Fi

F++F−







(k−1)

.

(35)
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3.1.2 Minimally constrained model

A procedure completely analogous to the one above is followed to obtain the
final Newton-Raphson set of algebraic finite element equations under the as-
sumption of minimally constrained kinematics (or uniform RVE boundary
traction). We then start by defining the discrete counterpart of the minimally
constrained space of fluctuations and virtual displacements (7,21):

K̃
h

µ ≡











v =







vi

vb





 |
∫

∂Ωh
µ

Nbvb ⊗s n dA = 0











, (36)

where vb is the vector containing the boundary degrees of freedom and Nb is
the global interpolation matrix associated solely with the boundary nodes of
the discretised RVE.

It can be easily established that the integral constraint on vb can be equiva-
lently written in matrix form as

Cvb = 0, (37)

where C is the constraint matrix . For a RVE mesh with k interior nodes and
m boundary nodes, in the two-dimensional case vb is a vector of dimension
2m and C is the 3×2m matrix given by

C =











∫

∂Ωh
µ

Nk+1 n1 dA 0 · · ·

∫

∂Ωh
µ

Nk+m n1 dA 0

0
∫

∂Ωh
µ

Nk+1 n2 dA · · · 0
∫

∂Ωh
µ

Nk+m n2 dA

∫

∂Ωh
µ

Nk+1 n2 dA

∫

∂Ωh
µ

Nk+1 n1 dA · · ·

∫

∂Ωh
µ

Nm n2 dA

∫

∂Ωh
µ

Nm n1 dA











, (38)

where n1 and n2 denote the components of the outward unit normal field along
the global orthonormal basis {e1, e2} and Nj , j = 1, · · · , m, are the global
shape functions associated with the boundary nodes. In this case, equation
(37) poses three linear constraints upon the total number of 2m boundary
degrees of freedom of the discrete RVE. For three-dimensional RVEs, vb is of
dimension 3m and matrix C has dimension 6×3m.

In practice, rather than using global shape functions, matrix C is obtained by
assembling elemental matrices which in two dimensions, for an element e with
p nodes on the intersection Γ(e) between the boundary of the element and the
boundary of the RVE, read

C(e) =









∫

Γ(e)
N

(e)
1

n1 dA 0 · · ·

∫

Γ(e)
N

(e)
p n1 dA 0

0
∫

Γ(e)
N

(e)
1

n2 dA · · · 0
∫

Γ(e)
N

(e)
p n2 dA

∫

Γ(e)
N

(e)
1

n2 dA

∫

Γ(e)
N

(e)
1

n1 dA · · ·

∫

Γ(e)
N

(e)
p n2 dA

∫

Γ(e)
N

(e)
p n1 dA









, (39)

where we have assumed that the nodes of element e lying on Γ(e) are locally
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numbered 1 to p and N
(e)
j , j = 1, · · · , p, are the associated local shape func-

tions. For example, a conventional eight-noded bilinear quadrilateral element
(of the type employed in Section 4), having a single straight side of length l(e)

with n = e1 and three equally spaced nodes intersecting the RVE boundary,
has

C(e) = l(e)















1
6

0 2
3

0 1
6

0

0 0 0 0 0 0

0 1
6

0 2
3

0 1
6















. (40)

In order to handle constraint (37) upon the discrete space of fluctuations and
virtual displacements it is convenient to split vb as

vb =















vf

vd

vp















, (41)

where the subscripts f , d and p stand, respectively, for free, dependent and
prescribed degrees of freedom on the boundary of the discrete RVE. Accord-
ingly, the global constraint matrix is partitioned as

C = [ Cf Cd Cp ] , (42)

so that the constraint equation (37) reads

[ Cf Cd Cp ]















vf

vd

vp















= 0. (43)

Prescribed degrees of freedom are needed here in order to remove rigid body
displacements of the RVE and make the corresponding discrete equilibrium
problem (26) well-posed. Trivially, we then prescribe

vp = 0, (44)

where, in two and three dimensions, vp contains, respectively, three and six
suitably chosen degrees of freedom. The constraint equation is now reduced
to

[ Cf Cd ]







vf

vd






= 0. (45)

In two dimensions, the above represents three scalar equations involving 2m−3
variables, whereas in the three-dimensional case, we have six scalar equations
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and 3m−6 variables. Hence, the number of dependent variables – the dimen-
sion of vd and of the square sub-matrix Cd – is 3 and 6 for the two- and
three-dimensional cases, respectively. The total number of free variables – the
dimension of vf and number of columns of Cf – is 2m−6 and 3m−12, respec-
tively in two and three dimensions. Finally, following a trivial manipulation
of (45), vd can be expressed in terms of vf as

vd = Rvf , (46)

where

R ≡ −C−1
d Cf . (47)

Note that the dependent degrees of freedom (corresponding to vd) must be
chosen such that Cd is invertible.

With the above considerations at hand, we can re-define the discrete space
(36) of fluctuations and virtual displacements of the RVE as

K̃
h

µ ≡



























v =















vi

vf

vd















| vd = Rvf



























, (48)

which, for convenience, contains now only the non-prescribed degrees of free-
dom.

The particularisation of the linearised finite element equation (27) for the
present case is obtained, analogously to (33), by splitting the corresponding
vectors and tangential stiffness matrix according to the above partitioning and
taking (48) into account. This gives













































Fi

Ff

Fd















(k−1)

+















kii kif kid

kfi kff kfd

kdi kdf kdd















(k−1) 













δũi

δũf

R δũf















(k)






























·















ηi

ηf

R ηf















= 0 ∀ ηi, ηf ,

(49)
which, after straightforward matrix manipulations taking into account the
arbitrariness of ηi and ηf , is reduced to the final form







kii kif +kidR

kfi+RTkdi kff +kfdR+RTkdf +RTkddR







(k−1)





δũi

δũf







(k)

= −







Fi

Ff +RTFd







(k−1)

.

(50)
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4 Assessment of the Gurson porous plasticity model

In his landmark paper, Gurson (1977) has proposed macroscopic yield surfaces
for porous ductile metals by means of a semi-analytical approach relying on the
use of the upper bound theorem of plasticity and the analysis of representative
cells of material containing a pore embedded in a von Mises type rigid-perfectly
plastic matrix. In Gurson’s procedure, a sufficient number of points on the
corresponding macroscopic yield surface in p–q space 2 are firstly obtained by
computing numerically the overall stress required to cause plastic collapse of
the cell under an assumed mechanism. The macroscopic (upper bound) yield
surface is then approximated by curve fitting of the resulting points. Under
plane strain, the Gurson yield surface has been derived for a cylindrical cell
with a single centered cylindrical void and is expressed by means of the yield
function

Φ = q −
{

1

Ceq

[

1 + f 2 − 2f cosh

(√
3p

σY

)]}

1
2

σY , (51)

were

Ceq = (1 + 3f + 24f 6)2, (52)

with f denoting the void volume fraction of the cell and σY the uniaxial yield
stress of the matrix material.

In what follows we shall derive alternative predictions of yield functions for
porous metals following a methodology similar to that of Gurson. The essential
difference between Gurson’s approach and present procedure is that, here, the
yield surface points will be computed by means of finite element simulations of
the plastic collapse of the underlying RVE within the multi-scale constitutive
framework described in Sections 2 and 3. That is, each computed point of
the macroscopic yield surface point represents the homogenised stress state
at which plastic collapse of the RVE occurs under a prescribed monotonically
increasing proportional macroscopic strain loading and a particular choice
of space K̃ h

µ . This approach has been employed originally by Pellegrino et

al. (1997, 1999) in the estimation of yield surfaces for periodic elasto-plastic
composites where, accordingly, the periodic boundary fluctuations constraint
is enforced. In the present study, we shall focus the application on square
RVEs under plane strain containing a single centered circular void within an
elastic-perfectly plastic von Mises type matrix. In addition to macroscopic
yield surfaces predicted under the periodicity constraint, which correspond to
periodically perforated media, we shall obtain upper and lower bound surfaces
by adopting, respectively, the linear boundary displacements and minimum
kinematical constraint assumptions.

2 p and q here denote, respectively, the hydrostatic component of the stress tensor
and the von Mises equivalent stress.
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(a) f = 0.5%. (b) f = 2%.

(c) f = 10%. (d) f = 30%.

Fig. 4. RVE geometries and finite element meshes.

4.1 Computational homogenisation-based methodology

In order to predict macroscopic yield surfaces as functions of the void ratio of
the porous metal, the procedure outlined in the above and further described
below will be carried out for RVEs with f = 0.5%, 2%, 10% and 30% – the
same void ratios used in Gurson’s calculations. The corresponding finite el-
ement meshes adopted – all consisting exclusively of isoparametric 8-noded
bi-quadratic quadrilaterals with (reduced) 2×2-point Gaussian integration
quadrature – are illustrated in Figure 4. The material properties chosen for
the von Mises matrix are the following: Young’s modulus E =200GPa, Pois-
son’s ratio ν =0.3 and yield stress σY =0.24GPa.

The loading programme imposed on the RVEs consists in prescribing a macro-
scopic strain path

ε(γ) = γ ε̄ (53)

parametrised by a monotonically increasing load factor γ, where ε̄ is the unit
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plane strain tensor defined as

ε̄ = α







1√
2

0

0 1√
2






+
√

1 − α2







0 1√
2

1√
2

0






, (54)

satisfying

‖ε̄‖ = 1, (55)

and α ∈ [0, 1] is a prescribed parameter defining the direction of ε in strain
space. Note that α=0 corresponds to a pure shear direction whereas α=1 is
the in-plane spherical direction. Any other value of α within this range is a
combination of both.

For each chosen value of f , finite element simulations are carried out for a num-
ber of values of α (or directions in strain space) covering the range [0, 1]. For
each value of α, the load factor γ is increased monotonically, starting from an
unstressed plastically virgin state of the RVE with γ = 0, until plastic collapse
of the RVE occurs. The corresponding macroscopic collapse stress is computed
according to (9) as the volume average of the finite element-predicted micro-
scopic stress field σµ at the collapse state of the RVE. The hydrostatic and
von Mises components of the macroscopic collapse stress define a yield surface
point. Finally, an estimate of the functional format of the p-q space yield sur-
face is obtained by curve fitting of the yield surface points obtained by this
procedure.

4.2 Estimated yield surfaces

The macroscopic yield surface points obtained according to the above method-
ology are plotted in Figure 5 in the normalised p̄-q̄ space, where

p̄ ≡ p

σY

and q̄ ≡ q

σY

. (56)

The results are shown for the four values of void ratio considered. To describe
the corresponding approximate yield surfaces which fit the computed points
we propose the following alternative to the original plane strain Gurson yield
function (51):

Φ̄ = q − C1

[

1 − C2 sin2
(

πp

2Pm

)]

{

1

Ceq

[

1 + f 2 − 2fC3 cosh

(√
3C4p

σY

)]}

1
2

σY ,

(57)
where Pm is the value of p at failure obtained with α=1 and Ci, i = 1, · · · , 4,
are non-dimensional parameters determined so as to provide a best fit to the
yield surface point data. The resulting approximate yield surfaces in p̄-q̄ space
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Fig. 5. Estimated yield surfaces for f =0.5%, 2%, 10% and 30%. Computed points
and approximate functional form. (a) Linear boundary displacements; (b) Periodic
boundary fluctuations; and (c) Minimum kinematical constraint (uniform boundary
tractions).
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(b) f = 10%.

Fig. 6. Estimated yield surfaces under different RVE kinematical constraints.

are also shown in Figure 5. For ease of comparison, the results for the three
RVE kinematical constraints considered are re-grouped in Figures 6(a) and (b)
for f =0.5% and 10%, respectively. As expected, the linear boundary displace-
ments condition (the most constraining of the three kinematical assumptions
considered) provides an upper bound for the yield locus of the porous metal.
The minimum kinematical constraint, in turn, provides a lower bound. The
results under the periodicity assumption lie between the other two in very
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Fig. 7. Gurson’s criterion and computed lower and upper bounds.

close proximity to the lower bound.

In Figure 7 the upper and lower bounds are plotted along the original plane
strain Gurson yield surface. The approximate surface obtained under the pe-
riodicity assumption is omitted due to its proximity to the lower bound. It
should be noted that the present upper and lower bounds lie farther apart for
higher void ratios. For higher void ratios, the Gurson surface lies between the
present upper and lower bounds – closer to the upper bound for states near
pure hydrostatic stress and closer to the lower bound for states close to pure
shear. For lower void ratios the Gurson surface predicts, for some combina-
tions of hydrostatic and von Mises equivalent stress, a yield limit above the
present upper bound. Under such conditions, the Gurson criterion is expected
to overestimate the yield strength of the porous metal.

4.3 General functional forms

The values of the Ci parameters of the proposed yield function (57), obtained
for the estimated yield surfaces presented in the above, are given in Table 1.
In order to obtain general functional forms of yield function for each type of
assumed kinematical constraint under a range of void ratios, we carry out one
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f 0.5% 2% 10% 30%

lin. per. min. lin. per. min. lin. per. min. lin. per. min.

C1 1.04 0.98 0.98 1.17 1.055 1.055 1.58 1.235 1.23 2.05 1.295 1.26

C2 0.005 0.02 0.06 0.0188 0.128 0.145 0.035 0.255 0.2415 0.0459 0.345 0.307

C3 6.776 8.034 8.08 5.52 6.45 6.45 2.055 2.30 2.32 0.6344 0.81 0.90

C4 0.6347 0.63 0.635 0.55 0.535 0.535 0.61 0.615 0.645 0.99 1.01 1.00

Table 1
Parameters C1, · · · , C4 for alternative (57) to Gurson’s yield function. Linear RVE
boundary displacements, periodic fluctuations and minimum kinematical constraint.

last curve fitting exercise based on the data of Table 1 to express the coeffi-
cients Ci as functions of f . Upon close inspection of the data, we find that each
coefficient varies as a function of f following trends that do not depend on
the assumed kinematical constraint. The functional forms found to be partic-
ularly suitable to express C1, C2, C3 and C4 as functions of f are, respectively,
as a fourth order polynomial, a logarithmic function, an exponential function
and a fifth order polynomial. Under the assumption of linear RVE boundary
displacements, for which an upper bound for the homogenised yield surface is
obtained, the following functional form for the coefficients Ci is determined:

C1(f) = −435.6f 4 + 277.9f 3 − 66.4f 2 + 10.2f + 0.99

C2(f) = 0.01 ln (0.015f) + 0.1

C3(f) = 6.7 exp (−15f) + 0.56

C4(f) = −2604f 5 + 2524f 4 − 921.2f 3 + 153f 2 − 9f + 0.6761.

(58)

Under the assumption of periodicity of displacement fluctuations, we have:

C1(f) = −256.2f 4 + 183.3f 3 − 48.5f 2 + 6.12f + 0.95

C2(f) = 0.08 ln (0.01f) + 0.81

C3(f) = 7.9 exp (−16.5f) + 0.76

C4(f) = −3232f 5 + 3095.6f 4 − 1111f 3 + 180f 2 − 10.3f + 0.677,

(59)

and, finally, for the minimum kinematical constraint (or uniform RVE bound-
ary traction), which provides a lower bound yield surface, we obtain:

C1(f) = −223.6f 4 + 170.7f 3 − 48f 2 + 6.11f + 0.95

C2(f) = 0.06 ln (0.03f) + 0.59

C3(f) = 7.9 exp (−16.5f) + 0.82

C4(f) = −3813f 5 + 3588f 4 − 1264.6f 3 + 199.7f 2 − 11f + 0.6853.

(60)
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Fig. 8. Estimated coefficients for expression Φ̄.

The above functions together with the data of Table 1 are plotted in Figure
8.

4.4 Mechanisms of plastic collapse

The differences in macroscopic yield strength observed under the assumed
RVE kinematic constraints considered arise from the fact that distinct kine-
matical constraints lead in general to different mechanisms being responsible
for the plastic collapse of the RVE. This is illustrated Figures 9 and 10. These
show contour plots of incremental effective plastic strain of the RVE obtained
at collapse states in the finite element solution for α = 0 (pure shear strain
path) and α = 1 (spherical in-plane strain path), respectively. In both cases
the void ratio is f =10% and the three kinematical constraints are considered.
It is clear that the collapse mechanism triggered under the linear boundary
displacements constraint is quite different from the mechanisms under the
other two constraints considered This explains the yield strength differences
observed previously. Also, it should be noted that the mechanisms associ-
ated with collapse under the periodic fluctuations and minimum constraint
assumptions are very similar to each other, justifying the similarity between
the homogenised yield surfaces obtained under these two conditions.
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(a) Linear boundary dis-
placements.

(b) Periodic fluctuation. (c) Minimum constraint.

Fig. 9. RVE collapse for f = 10% and α = 0. Contour plots of incremental effective
plastic strain.

(a) Linear boundary dis-
placements.

(b) Periodic fluctuation. (c) Minimum constraint.

Fig. 10. RVE collapse for f = 10% and α = 1. Contour plots of incremental effective
plastic strain.

5 Concluding remarks

Yield surface estimates for porous metals have been obtained by means of a
purely kinematical finite element-based multi-scale constitutive modelling ap-
proach relying on the volume averaging of the strain and stress tensors over a
representative volume element of material. The macroscopic yield surface esti-
mates have been obtained under three different kinematical constraints of the
RVE: linear boundary displacements (an upper bound); periodic displacement
fluctuations (corresponding to periodically perforated media); and, minimum
kinematical constraint or uniform boundary traction (a lower bound). An as-
sessment of the classical Gurson criterion has been carried out in the light of
the computed bounds. A modification of the Gurson yield function has been
proposed which is able to capture the yield loci of porous metals under the
three kinematical assumptions considered. The proposed functional form can
be used in the estimation of bounds for the plastic behaviour of porous metals
under plane strain.
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Springer-Verlag, Udine, Italy.
Michel, J.C. & Suquet, P. (1992) The constitutive law of nonlinear viscous

and porous materials, J. Mech. Phys. Solids, 40(4):783–812.
Michel, J.C., Moulinec, H. & Suquet, P. (1999) Effective properties of com-

posite materials with periodic microstructure: a computational approach,
Comp. Meth. Appl. Mech. Engng., 172:109–143.

Michel, J.C., Moulinec, H. & Suquet, P. (2001) A computational scheme for
linear and non-linear composites with arbitrary phase contrast, Int. J. Nu-

mer. Meth. Engng., 52:139–160.
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