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A doença coronáriana é uma das principais causas de morte em todo o mundo. Embora
vários fatores de risco sejam bem conhecidos; muitas lesões não podem ser explicadas
apenas por esses fatores.
A hipótese das artérias desenvolverem lesões devido à sua morfologia, conhecida como
fatores de risco geométricos e/ou devido a forças hemodinâmicas, foi levantada há mais
de trinta anos. Embora tenha sido encontrada uma conexão entre variáveis geométri-
cas/hemodinâmicas e lesões, não existe um índice quantificável que ajude os médicos a
prever os riscos reais.
Mesmo quando uma lesão grave está presente, estudos recentes descobriram que alguns
pacientes podem desenvolver circulação colateral para fornecer fluxo sanguíneo suficiente
para o miocárdio, evitando assim a isquemia. Por sua vez, o padrão ouro para avaliar
a funcionalidade de uma lesão é o exame médico invasivo chamado Reserva de Fluxo
Fracionada (FFR por suas siglas em inglês). Além disso, esses estudos são caros, exigem
profissionais altamente qualificados e envolvem riscos para o paciente durante a intervenção.
Nesse contexto, os objetivos desta tese são (i) caracterizar completamente as artérias
coronárias de uma perspectiva geométrica, buscar características geométricas hereditárias
e correlações entre morfologia e doença; (ii) construir uma metodologia de modelagem para
a estimativa do FFR, utilizando modelos da dinâmica dos fluidos computacional (CFD por
suas siglas em inglês) construídos a partir de imagens médicas de artérias coronárias de
pacientes específicos.
Resultados para meta (i) incluem a caracterização geométrica de uma amostra de pa-
cientes constituída por pares de irmãos. Vários estudos são realizados envolvendo índices
padronizados e não tradicionais baseados na geometria, nos quais foram encontradas as-
sociações entre geometria e presença de lesão, bem como indicações de herdabilidade de
geometria arterial entre irmãos. Em relação às simulações hemodinâmicas no contexto de
FFR, isto é, meta (ii), é apresentada e testada uma nova técnica para definir condições de
contorno específicas para cada paciente em modelos 3D; ainda, foi avaliado pela primeira
vez o impacto da modalidade de imagem, em particular, tomografia computadorizada
coronária (CCTA) e ultrassom intravascular (IVUS), sobre variáveis hemodinâmicas, o
que ajuda a avaliar melhor os resultados obtidos pela combinação de simulações numéricas
e imagens médicas. Também é apresentada uma comparação de simulações de CFD
empregando modelos 3D e 1D do fluxo sanguíneo coronário focado puramente na estimação
do FFR. Vários cenários são comparados com medidas invasivas com resultados similares
aos encontrados no estado de arte da técnica.
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Coronary heart disease is one of the leading causes of death worldwide. Although several
risk factors are well known; many lesions cannot be explained by these factors alone.
The hypothesis of arteries developing lesions due to its morphology, known as geometric
risk factors and/or due to hemodynamic forces, has been raised more than thirty years ago.
Although investigators have found connection between geometric/hemodynamic variables
and lesions, there exists no quantifiable index that helps physicians to predict actual risks.
Even when a severe lesion is present, recent studies have found that some patients can
develop collateral circulation to provide sufficient blood flow to the myocardium, thus
avoiding ischemia. In turn, the gold standard for functional stenosis assessment is an
invasive medical exam called Fractional Flow Reserve (FFR). Moreover, these studies
are expensive, require highly qualify professionals and involve risks to the patient during
intervention.
In this context, the goals of the proposed thesis are (i) to fully characterize coronary
arterial trees from a geometrical perspective, search for hereditary geometric features and
correlations between morphology and disease; (ii) to construct a modeling methodology
for the estimation of FFR making use of computational fluid dynamic models built on top
of patient-specific medical images of coronary arterial networks.
Results for goal (i) include the geometric characterization of a patient sample consisting of
siblings. Several studies involving standard and non-traditional geometry-based indexes, in
which associations between geometry and lesion presence was found, as well as indications
of arterial geometry heritability between siblings. Regarding hemodynamic simulations in
the context of FFR, i.e. goal (ii), a novel technique to define patient-specific boundary con-
ditions in 3D models was presented and tested; the impact of image modality, i.e. coronary
computed tomography (CCTA) and intravascular ultrasound (IVUS), on hemodynamics
variables was assessed for the first time, which helps to better assess the results obtained
from the combination of numerical simulations and medical images. A comparison of 3D
and 1D CFD simulations for coronary blood flow based purely on FFR is presented. Several
computational settings are compared to invasive measurements with results comparable to
the state of the art.
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Chapter 1

Introduction

“It ought to be remembered that there is nothing more difficult to take in hand, more
perilous to conduct, or more uncertain in its success, than to take the lead in the
introduction of a new order of things. Because the innovator has for enemies all those
who have done well under the old conditions, and lukewarm defenders in those who may
do well under the new. This coolness arises partly from fear of the opponents, who have
the laws on their side, and partly from the incredulity of men, who do not readily believe
in new things until they have had a long experience of them.”

Niccolò Machiavelli, The Prince

Cardiovascular diseases (CVD) are the main cause of death worldwide, and among
them, coronary artery disease (CAD) is the leading one [281]. Although usually affecting
the elderly, the antecedents of CVD, notably atherosclerosis, begin in early life, making
primary prevention efforts necessary even from childhood [217]. Therefore, the scientific
community has witnessed increasing emphasis on preventing atherosclerosis by tackling risk
factors. Even if the medical community agrees that the most important (modifiable) risk
factors are cigarette smoking, diabetes mellitus, hypertension, and hypercholesterolemia,
the amount of CVD explained by these factors is center of debate [143, 206, 60, 217].
This has encouraged research on novel markers and other non-traditional risk factors to
assess CVD risks [139]. For example, it is widely accepted that familial history of CAD
increases risk [314, 167, 148], indicating a genetic contribution to susceptibility for this
condition [253, 132, 104, 287, 221].

Regardless of the percentage of CAD explained by any of the previous risk factors, it
is noteworthy that all these markers are systemic in the sense that they do not explain the
localization and non-uniformity of the disease distribution, i.e. why the left coronary tree
is more susceptible to atherosclerosis than the right side [69]. This gap has been addressed
by the hypothesis that hemodynamically-induced mechanical forces play a fundamental
role on localization, initiation and progression of atherosclerosis [120]. This hypothesis has
been supported by evidence gathered from laboratory investigations that include in vivo
measurements, in vitro experiments, cell culture studies and gene expression profiling [189,
365, 123, 71, 82]. As a complementary tool, accurate characterization of patient-specific
hemodynamic forces acting over the endothelium is possible thanks to the combination of
image processing tools and computational fluid dynamics [122, 329, 66, 65, 79, 369]. The
correlation between atherosclerosis and hemodynamic variables can be taken as a second
type of risk factor, which acts at the arterial level instead of the systemic one.

Following the rationale behind the influence of hemodynamic variables on the rate
and site of the atherosclerotic process, the hypothesis of geometric risk factors [113] suggests
that the geometric variability of the human vasculature contributes to the development
of atherosclerosis. Specifically, it states that geometric features of a susceptible arterial
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segment can enhance an atherogenic hemodynamic stress. However, this reasoning relies on
fluid mechanics as the ultimate atherosclerosis mediator, which is also consistent with wall
shear stress hypothesis [331]. Remarkably, a significantly amount of clinical observations
backs up the geometric risk factors hypothesis [153, 114, 371, 101, 89, 23].

Despite the considerable inter-individual variation in arterial geometry, the idea that
specific geometric descriptors might be heritable, as other morphological characteristics are,
was reported elsewhere [153, 114]. Although the heritability of stenosis characteristics such
us localization, extent and morphology, as well as risk of coronary events in siblings has
been studied before [106, 107], there is no precedent work in the literature addressing the
hypothesis of arterial geometry heritability.

Coronary artery narrowing, induced by atherosclerosis, compromises the blood sup-
ply to the heart. Lesions can be asymptomatic at first, but as the lesion severity increases,
symptoms can be detected, e.g. chest pain (angina), shortness of breath, abnormal heart
rhythm (arrhythmia) and ultimately a heart attack. The study of risk factors for the
development of CAD can ultimately help to reduce the incidence of the disease, but deter-
mining the functional1 severity of an existing lesion, poses other challenges and represents
a research area by its own.

Nowadays, there are several clinical tests designed to detect the presence of CAD
and to quantify the functional significance of a stenosis. Such procedures can be roughly
divided into three categories2: (i) exercise test with monitoring of CAD symptoms or
direct observation of coronary flow, i.e. stress test, stress echocardiography and exercise
test with thallium scanning; (ii) invasive and noninvasive medical images, i.e. coronary
angiography (AX), optical coherence tomography (OCT), intra-vascular ultrasound (IVUS)
and coronary computed tomography angiography (CCTA); and (iii) functional assessment
of lesion through physiologic response, i.e. absolute/relative coronary flow reserve.

Finally, a type (iii) test known as Fractional Flow Reserve (FFR) turned into the
gold standard to detect risk of myocardial ischemia [35, 269, 332, 333, 341]. The FFR,
was introduced in the early 90’s by Pijls et al. [266]. It is defined as the maximally
achievable flow rate in the presence of a stenosis divided by the maximum flow rate expected
in the absence of the lesion, during maximal hyperemic conditions. Although the FFR
conceptually represents a relationship between blood flow rates, it can be, and in practice
it is, estimated from invasive pressure measurements during catheterization. Then, FFR =
Pd/Pa, is the ratio between distal (post-stenosis) and aortic pressures, and so FFR ∈ [0, 1],
for which the cut-off value of FFR < 0.8 is used to detect functionally significant lesions.

Coronary blood flow simulations have played a major role in the understanding of
hemodynamic mechanisms involved in the onset and progression of atherosclerotic dis-
ease [69, 70, 79, 187, 320], characterization of plaque location [278], plaque erosion [59]
and plaque rupture [73]. Moreover, there has been an increasing interest from the medical
community in the use of such computational tools to aid decision making process due to
feasible estimation of FFR noninvasively [152, 328, 275, 184, 337].

Patient-specific hemodynamic simulations rely on two fundamental issues: (i) com-
putational domains and (ii) boundary conditions. Vascular geometries are obtained using
imaging methods: CCTA [73, 278, 328, 275, 184] or AX, which can be utilized alone [59,
236], or in combination with either IVUS [70, 187, 320, 313] or OCT [103]. In turn,
definition of boundary condition requires knowledge of global and local hemodynamic in-
formation, i.e. systemic pressure, heart rate and blood flow distribution.

Most of computational hemodynamic studies are performed using CCTA and IVUS3.
1An stenosis is called functional, when it represents risk of myocardial ischemia, i.e. blood supply to

the cardiac muscle is insufficient.
2An overview of these CAD diagnostic procedures is presented in Appendix D
3Also, the use of OCT images to construct computational domains for blood flow simulations is gaining

popularity.
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Although there have been studies addressing the consistency between these two image
modalities concerning the overall decision-making process [105], it has been largely ac-
knowledged that these modalities feature several differences ranging from the economic
cost and patient risk to the resulting anatomical definition [188, 195]. Moreover, the
impact of the image modality on the conclusions drawn from CFD simulations has been
overlooked.

Regarding the definition of boundary conditions, estimation of total coronary flow
and flow distribution among branches are crucial to set reliable patient-specific simulations.
This is of the utmost importance for clinical applications either in the estimation of FFR
or wall shear stress (WSS).

1.1 Medicine assisted by scientific computing

Using an extremely simplified perspective, a big portion of the medical literature is
based on finding correlations between the so-call clinical data4 and disease (CAD) state,
progression and outcomes. This is the basic mechanism to support or reject hypotheses.
Recently, mathematical models started to be used to aid medical research in the under-
standing of underlying physical mechanisms, in the decision-making process, and in the
development of therapeutic actions. Many of these mathematical models only remain at
the level of basic research. Testing mathematical models in large clinical trails depends
on several factors, i.e. availability of multidiciplinary research centers, project budgets,
computational infrastructure, and so on. From the technical point of view, the scientific
community is aware that research will ultimately rely on computational infrastructures
capable of managing large sets of heterogeneous data, i.e. clinical information, raw im-
ages and patient-specific mathematical models parameterized from these data. Table 1.1
presents examples of projects worldwide, which make use of these kind of approaches to
conduct research in cardiovascular-related topics.

Over the years, hemodynamics modeling tools have been used to quantify blood
pressure, blood velocity and derived quantities such as FFR and WSS, in patient-specific
arterial districts obtained from medical images. Nevertheless, not all of such tools were
able to perform studies with moderate -large patient samples. Projects listed in Table 1.1
succeeded in this aspect of research. Remarkably, a lot of effort regarding geometric analy-
sis and computational simulations of blood flow in arteries focusing on cerebral aneurysms
can be found in the literature. In turn, studies with very large dataset of the heart do
not consider coronary vasculature. Up to date, publications in collaboration or sponsored
by the HeartFlow private company, reported roughly 250 patients [186, 247, 251], which
is unprecedented for studies involving patient-specific computational models of arteries.
Indeed, other research groups working in the same area than HeartFlow, published stud-
ies with at most 120 patients [76, 256, 137]. The private nature of HeartFlow resulted
in technical publications which cursorily treated the methodological aspects behind the
research [328], because they oriented the reported results to potential customers (clinical
community). One of the main reasons behind the difficulty in reproducibility, assessment
and scrutiny of their computational methodology for FFR estimation is that technical
references inside documents presenting results describe different methods for blood flow
simulations [182, 180, 181], and it is not clear which kind of methodology they actually
are using. Moreover, to the best of our knowledge, geometrical analyses of the coronary
arterial tree in patients samples of moderate size, have not been reported yet.

4Variables or phenotypes, that can be measured directly from the patient clinical records, procedures
or images.

3



Chapter 1. Introduction

Name and main focus Brief description

The Virtual Physiological Human
(VPH) initiative (1997) [12].
Integration of models of all physiologi-
cal systems and parameterization using
patient-specific data in order to make pos-
sible personalized, predictive and integra-
tive medicine.

The first and most ambitious project that accounts for patient
clinical data, medical images and mathematical models of different
spatial and temporal complexities. It can be defined as a frame-
work of methods and technologies [118] that aims to integrate all
information available for each patient and use it to parameterize
computer models capable of predicting how the health of that
patient will evolve under certain conditions. Database size (in
number of patient) is not available.

Computational hemodynamics labo-
ratory @GMU (2002)[240, 1].
Patient-specific blood flow modeling in
cerebral aneurysms.

It is a research group which develops methods and techniques
to model intracranial aneurysmal flow from 3D medical images.
The group aims to: Understand the mechanisms responsible for
the development, enlargement and rupture of cerebral aneurysms;
enhance aneurysm risk assessment and patient diagnosis; evaluate
endovascular devices and procedures such as flow diversion for
minimally invasive treatment of brain aneurysms. Database size
(in number of patients) is not available, although largest reported
study of the group used 210 patients [64].

AneuRisk (2005) [289, 5].
Cerebral arteries (aneurysm) morphology,
blood fluid dynamics and biomechanical
properties of the vascular wall.

This project investigates the role of vessel morphology, vascular
wall mechanics and hemodynamics on the pathogenesis of cerebral
aneurysms. Processing tools are based on the vascular modeling
toolkit (vmtk) [11]. Database consists of 99 patients.

Graphical Interface for Medical
Image Analysis and Simulation
(GIMIAS) (2007) [193, 9].
Workflow-oriented environment addressing
biomedical image processing and visualiza-
tion of computer simulation results.

It is an open source framework that allows extension through
problem-specific software plug-ins. It integrates contributions
from the Physiome community, and was specialized for cardiac
and cerebral aneurysm modeling [193, 344]. For such applications
the database size (in number of patient) is not available.

HeartFlow (2007)[3].
HeartFlow is a cardiovascular diagnostics
company developing solutions for the non-
invasive diagnosis of coronary artery dis-
ease.

The company offers FFRCT, a technique to estimate fractional
flow reserve from (noninvasive) computed tomography scan data.
Since 2007, it is the first company (to our knowledge) that was
able to transfer standard hemodynamic models to commercial ap-
plications. Database size (in number of patient) is not available,
although major clinical trials reported incremental patient sam-
ples of 103, 252, 254 patients [186, 247, 251].

ARCH (2008)[61, 6].
Patient-specific image-based computa-
tional modeling for improvement of short-
and long-term outcome of vascular access
in patients on hemodialysis therapy.

The main goal of the project is to predict arteriovenous fistula
function for improvement of surgical planning and management
on hemodialysis therapy. This is done through hemodynamics
simulation (using reduce models, 0D-1D) on image-based patient-
specific computational models of the blood vessels in the arm.
Last reported study [61] was performed with 98 patients.

euHeart (2008) [315, 2].
Development of individualized, computer-
based, human heart models.

Most of the clinical applications designed within euHeart are pro-
totyped within the GIMIAS application framework environment.
The project focused activities on specific cardiovascular diseases:
congestive, arrhythmias and abnormal myocardial tissue perfu-
sion. Computational models of the heart do not include arterial
structures. Database size (in number of patients) is not available.

Cardiac atlas project (2009) [109, 8].
Mapping and analysis of cardiac mor-
phometry, with particular regard to spatio-
temporal characteristics of regional heart
wall motion.

It seeks to establish a structural and functional atlas of the heart.
The project is dedicated to combine cardiac modeling and bio-
physical analysis methods with a structural database for the com-
prehensive mapping of heart structure and function. Patient-
specific heart models are obtained from magnetic resonance im-
ages (MRI). Database contain over 3000 patients.
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Name and main focus Brief description

The Brain Vasculature database,
BraVa (2013)[358, 7].
Characterization of healthy human brain
arterial arborizations with extracted mor-
phological measurements.

The projects aims to provide extended morphometric information
of the cerebral vasculature in healthy adults. No computational
hemodynamics data are reported on the samples. Database con-
tains 61 patients.

Table 1.1: Summary of projects, research initiatives and companies developing computa-
tional tools and performing research on mathematical models related to the cardiovascu-
lar system. Projects were selected for using moderate-large patient samples (in related
scientific publications) and or taking into account computational infrastructures for the
management of clinical and modeling data.

1.2 Objectives

This Thesis pursues two main goals: (i) to propose methods for the geometrical char-
acterization and comparison of coronary arterial trees; and (ii) to develop a methodology
for the computational estimation of FFR (FFRCE). Naturally, the achievement of such
objectives implies several activities, and also specific goals, which are listed here:

1. Definition of a computational framework to perform a systematic and comprehensive
assessment of the geometric features of coronary arteries from CCTA data. The
methodology should embrace medical image segmentation, arterial vessel represen-
tation, characterization and comparison, data storage and analysis.

2. Processing of a sufficiently large sample of patient that allows data exploration and
pilot studies.

3. Extraction of morphometric information of the coronary arterial tree based on a
comprehensive set of geometric descriptors.

4. Definition of new geometric descriptors for arterial structures.

5. Exploration of the hypothesis of geometric risk factors for CAD.

6. Investigation of the hypothesis of heritability of arterial geometry. This will require
that patients in the sample to be family relative, particularly, siblings.

7. Demonstration of illustrative examples of relevant applications of the geometric char-
acterization of the coronary arterial tree.

8. Completion of the computational infrastructure (item 1), for the generation and
processing of computational meshes suitable for fluid dynamic simulations. This will
require a patient sample with specific information, e.g. hemodynamic variables and
invasive measurements of FFR.

9. Definition of a methodology to perform patient-specific simulations of hyperemic
conditions for the FFRCE.

10. Study of the impact of medical image modalities, i.e CCTA and IVUS, in the outcome
of blood flow simulations, in the context of the FFRCE.

11. Study of the accuracy of 1D models to mimic 3D simulations in patient-specific
coronary models, targeting cheap simulations in the context of FFRCE.
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12. Exploration of the diagnostic capabilities of the FFRCE using invasive measurements
of FFR as gold standard.

1.3 Outline of this document

This Thesis is organized into two parts according to the list of goals and activities
presented in the previous section. Chapter 2 describes the computational framework and
modeling tools that are, up to some extent, shared by both parts of the Thesis. The
methodology embraces medical image segmentation, arterial vessel representation, charac-
terization and comparison, data storage and analysis.

Part I focuses on the geometric characterization and comparison of coronary arterial
trees. Chapter 3 presents the complete set of geometric features used to described arterial
structures. Such set includes a comprehensive group of features from the literature, and
a set of so-called non-conventional features developed in this work. Chapter 4 introduces
the methods for arterial comparison, summarizes statistical tools used in the rest of the
thesis and also briefly describes classification methods used in the first part. Chapter 5 is a
compilation of results, comprising morphometrics of the coronary vasculature, arterial geo-
metric likelihood and heritability of features in siblings, geometric risk factors for CAD and
some exploratory data analysis on fractal analysis and power laws. Chapter 6 summarizes
the contribution, discusses the implications and outlines the limitations of Part I.

Part II centers on the application of computational fluid dynamics for the estimation
of FFR. Chapter 7 provides a summary of coronary physiology and ischemia. It is intended
for readers that are not familiar with the basic concepts of coronary circulation, atheroscle-
rosis and hyperemia. Chapter 8 centers on the FFR index, presenting the basic concepts, its
derivation and limitations. A bibliographic summary of relevant clinical trails that explains
why it is considered the gold standard for detecting risk of ischemia is presented. Then,
the basic concepts and requirements for the FFRCE are presented, followed by a critical
review of the literature. Chapter 9 focuses on the modeling methodology. Specifically,
the construction of patient-specific computational domains for fluid dynamic simulations.
Then, the mathematical and numerical methods are detailed. The chapter concludes with
the definition of patient-specific hemodynamic parameters and hypotheses to determine
flow distribution, which defines boundary conditions. Chapter 10 is a compilation of re-
sults, starting with computational tests to ensure that computer simulations introduce
minimum numerical error in the calculation of hemodynamic variables, e.g. FFR and
WSS. The impact of image modality, i.e. CCTA and IVUS, on the outcomes of blood flow
simulations is studied in detail. Then, a comparison between 3D and 1D models to perform
numerical simulations in the coronary arteries is presented. The chapter ends by presenting
the diagnostic capabilities of the proposed methodologies, comparing with invasive FFR
measurements. Chapter 11 summarizes the contribution, discusses the implications and
outlines the limitations of Part II.

1.4 Contributions

During the preparation of this Thesis, relevant results were compiled in 6 manuscripts
and published in indexed journals. Preliminary results were presented in the form of 1
poster, 2 extended abstracts and 3 articles in national and international conferences.

Regarding Part I, methodological details and early preliminary results on the process-
ing pipeline and geometrical characterization of the coronary arterial tree were presented
at the XXXIV Congresso da Sociedade Brasileira de Computação [52] and the XXXVI
Iberian Latin-American Congress on Computational Methods in Engineering [51]. The
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final processing methodology presented in Chapters 2 and 4, together with the results pre-
sented Chapter 5, Sections 5.2, 5.4, regarding the geometric description and comparison
mechanisms of coronary arteries in the patient sampling of siblings, were published in the
International Journal for Numerical Methods in Biomedical Engendering (IJNMBE) [53].
The results of the association of geometric features and lesion presence in the LAD, see
Chapter 5, Section 5.6, were published in the Journal of Biomedical Signal Processing and
Control (JBSPC) [54]. Regarding the new set of non-conventional geometric descriptors
proposed in Chapter 3 and tested in Chapter 5, Section 5.7, an article was submitted to
JBSPC and is currently under review [57]. The study of heritability of geometric features
in siblings, Chapter 5, Section 5.5, was published in the International Journal of Cardiology
(IJC) [56].

The methodology to describe coronary arteries through geometric features is cur-
rently being used to characterize arterial models constructed from IVUS images. Although
such study was not included in this Thesis, preliminary results were published in the Revista
Brasileira de Cardiologia Invasiva [41] and were presented at the Congresso da Sociedade
Brasileira de Hemodinâmica e Cardiologia Intervencional [38] and at the V Congreso de
Matemática Aplicada, Computacional e Industrial [325].

Regarding Part II, methodological details on how to perform blood flow simulations
with a novel boundary condition in the context of computational estimation of FFR using
CCTA- and IVUS-derived models, see Chapter 9, and results on the impact of the image
modality on the simulations, see Chapter 10, Section 10.5, were published in the Journal
of Biomechanics (JBM) [55], and presented in the Journal of the American College of
Cardiology (JACC) [39]. Although not presented in the Thesis, a comparison between
CCTA- and IVUS-derived models using geometric features was explored, and preliminary
results presented in the JACC [40].

Finally, the author co-authored a work presenting hybrid element-based approxima-
tion for the Navier–Stokes equations in pipe-like domains, published in IJNMBE [211].
Such numerical methods could be an intermediate alternative (between 3D and 1D) to
perform blood flow simulations and estimate FFR and other relevant hemodynamic vari-
ables.
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Chapter 2

From medical images to arterial
models

“Winter is coming.”

George R.R. Martin, Game of Thrones

The impact of computer systems in human society is undeniable; information and
connectivity are redefining many aspects of our daily life. Particularly, clinical practice
has benefited from many technological developments, i.e. digitalization of clinical history,
computer aided equipment for image acquisition and processing techniques. In this sense,
computational models bring additional and valuable information into the problem, since
through mathematical equations and physical principles it is possible to predict quantita-
tively and qualitatively the behavior of variables of interests whose measurement is quite
difficult, expensive, or even impossible because of technical or ethical aspects. Recently,
such computational models of physiological systems have gained attention, because the
potential application for improving diagnostic and prognostic accuracy, as well as they ap-
plicability for risk factor identification. In this context, three major stages can be identified:
(i) basic research in mathematical models, (ii) clinical trials with a significant amount of
patients to test medical hypothesis, and (iii) development of specialized software/hardware
to apply such models in daily clinical practice. In stages (i-ii) the computational infras-
tructure is key. The present thesis aims to contribute with the development of models
(stage (i)), and with data analysis to test medical hypothesis (stage (ii)). Furthermore,
the work is structured within a computational framework, flexible enough to account for
future modifications that would allow to use the tools here presented in clinical routine,
stage (iii).

The computational approach used in this thesis is divided into two parts and cov-
ers: image segmentation, arterial representations (geometric models), characterization and
comparison, hemodynamics simulations and data analysis. All major processing steps,
involving the two parts of the thesis, are presented in this chapter. This chapter overviews
the common methodological aspects employed all along the thesis.

2.1 Methodology overview

Problems covered in both parts of this work share the first stages of the workflows il-
lustrated in Figure 2.1. The proposed processing pipelines for the geometric and functional
analysis of coronary circulation consist of five stages:

1. Input of medical data, which includes patient, study and imaging modalities (e.g.
CCTA, IVUS, AX, etc), as well as complementary information (see Section 2.2.1
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for details on the medical image modalities used). For the FFR study, additional
information containing specific data associated to the invasive procedure is recorded.

2. Image processing, which consists of the image segmentation pipeline (see Section 2.2.3),
and whose standard output is a triangulated surface mesh representing the arterial
lumen. This stage also accounts for the segmentation/estimation of other anatomical
structures such as myocardial surface and volume (see Section 2.2.2).

3. Arterial network modeling, post-processing of the surface meshes results in the rep-
resentation of vessels through their centerlines, also including arterial labeling and
branching patterns (see Section 2.3). Note that multiple models may be generated
from the same initial mesh, e.g. through normalization, as explained in forthcoming
sections. For the FFR study, surface meshes must be further processed to obtain
CFD-compatible1 models (see Section 2.3.1).

4. The fourth step depends on the problem under study,

• Geometrical and anatomical characterization of centerlines is performed, pro-
ducing a variety of geometric descriptors (see Part I, Chapter 3) that are stored
into a database.

• Hemodynamics simulations using patient-specific boundary conditions are per-
formed, and FFR is estimated from numerical results (see Part II, Chapter 9).

5. Data analysis is performed over application dependent data, see Part I, Chapter 5
for the geometric analysis and Part II, Chapter 10 for FFR results.

All image processing stages, as well as meshing and centerline processing, are per-
formed using vmtk [11], ImageLab [4] and HeMoLab [4] softwares.

2.2 Image acquisition and processing

Tasks associated to the second step of the workflow in Figure 2.1a are detailed in this
section. Specifically, we start by describing the image techniques and acquisition protocols
used, then we explain how image-based measurements are estimated. The section ends by
depicting the arterial segmentation pipeline employed.

2.2.1 Medical images

Due to the low risk (noninvasive) nature of the acquisition procedure, CCTA has
been adopted as a tool for CAD detection and diagnosis, [323, 67]. CCTA images may
have a resolution up to 0.23 mm, which is enough for visualization and measurement of
arterial diseases on the main arteries of the heart. On the other hand, typical CCTA exams
have very low or no time-related information, they comprise one or two snapshots of the
cardiac structures at diastolic phase.

Alternative heart imaging techniques are Magnetic Resonance Image (MRI), coro-
nary angiography (AX) and Intra-Vascular UltraSound (IVUS), among others. All three
can provide time-dependent data. Nevertheless, MRI has poor spatial resolution which
makes difficult to perform arterial segmentation. Although AX has better spatial resolu-
tion than CCTA, images are two-dimensional projections which lack from accurate three-
dimensional modeling of arterial structures, and, furthermore, it is an invasive procedure.
IVUS also needs catheterization, but can provide valuable information about arterial tissue

1CFD-compatibility must be understood in the sense of adequate triangular (surface) and tetrahedral
(volume) meshes to obtain accurate results from numerical simulations.
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(a)

(b)

Figure 2.1: Overview of the workflows proposed for the geometric (top, Part I), and func-
tional (bottom, Part II), analysis of the coronary circulation.

from inside the artery, with tremendous spatial resolution. Among the principal drawbacks
are the high noise, loss of three-dimensional spatial orientation and the small number of
arteries that can be acquired in a single procedure. Nevertheless, inPart II, Chapter 10
geometric models of coronary arteries imaged by means of IVUS+AX techniques are used
to study the impact of geometry and branching patterns in hemodynamic simulations.

In this work, CCTA images were acquired following standard clinical procedures,
ensuring patient heart rate below 65 bpm. Acquisitions were ECG-triggered prospectively
at 75% of the cardiac cycle to keep the lowest possible radiation dose, and artifacts.
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2.2.2 Myocardial volume estimation

Myocardial volume can be considered important towards the estimation of oxygen
demand and, therefore, as an indirect measurement of blood flow requirement. Myocardial
information, such us volume and area of external surface of the cardiac muscle, could be
used for patient-specific parametrization in hemodynamic simulations (see Part II, Chap-
ter 7). Furthermore, myocardial area can be used to perform a geometrical normalization
of the arterial network, as explained in Section 2.3.

The myocardium is approximated through the convex hull (C) computed from a
cloud of points manually selected over the medical image. This approach is valid for the
computation of the myocardial external surface area, as it can be considered convex when
it is relaxed, during diastole (when CCTA images are acquired). Furthermore, ventricular
cavities can also be roughly approximated from the corresponding C, which are also ob-
tained from the cloud of points defining each cavity. The C is computed using standard
algorithms available in the VTK library [298]. Subtracting the myocardial and cavities
volumes, the myocardial mass can be estimated. Figure 2.2 illustrates this procedure.

(a) (b)
(c)

Figure 2.2: Illustration of the procedure to estimate myocardial and ventricular external
surfaces. Panel (a) shows a set o points along the perimeter of the myocardium on a coronal
plane, which were manually selected. By performing point specification in a small number
of planes, the myocardial external surface is approximated. Panel (b) presents the convex
hull of a point set. Panel (c) presents the resulting myocardial and ventricular external
surfaces.

2.2.3 Arterial vessel segmentation

Segmentation of arterial vessels still remains as a challenging problem, strongly de-
pendent on image modality and acquisition quality, for which several techniques were
proposed over the years, see [198] for a comprehensive review. We adopted a method-
ology based on [21], which was refined and tuned to be used for the coronary arterial
network. The proposed segmentation pipeline is based on implicit deformable models,
which in the context of this work means a deformable surface S(t) : R2 × R+ → R3

described through the iso surface of the scalar function φ(x, t) : R3 × R+ → R, such that
S(t) = {x ∈ R3, φ(x, t) = 0}. The technique used to calculate the temporal evolution of
S(t) is known as Level-Set, and the model for this evolution is described by a minimization
process of a cost functional for which the associated partial differential equation is [21]

∂φ

∂t
= −wpP (x)|∇φ|+ 2wkK(x)κ(x)|∇φ| − wa∇A(x) · ∇φ, (2.2.1)

where the first term on the right-hand side represents surface inflation with a position-
dependent speed given by P (x), which can depend on image features or on shape con-
straints; the second term represents a smoothness constraint on the surface, being κ(x) =
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div ∇φ|∇φ| the mean curvature of the zero-level surface affected by factor K(x); and the last
term represents advection of the surface by means of the given vector field ∇A(x). Weights
wp, wk and wa control the influence of each term in the pseudo-temporal surface evolution.

The Level-Set equation (2.2.1) is solved using the Insight ToolKit (ITK) [10] 2.
The current implementation uses spatial modifiers (P,K,A) based on the image gradient,
hereafter called featured image (If ). Then, by definition, If goes to zero in homogeneous
regions of the image and increases its value near image boundaries, therefore we define

P (x) =
1

1 + If (x)
= K(x) = −A(x), (2.2.2)

implying that the propagation term goes to zero near boundaries, the smoothing of the
surface due to curvature increases in low gradient regions, and the potential field is such
that convection of the iso surface is forced towards the boundaries.

In order to solve Equation (2.2.1), an initial solution must be given, which is obtained
by the following semi-automatic procedure: For each arterial segment, (i) the user manually
places two seeds, one at the beginning and the other at the end of the segment; (ii) the
colliding front method [21] is used to obtain an initial segmentation of the vessel, which is
a binary image identifying the arterial lumen from the rest of the domain; (iii) the output
of the colliding front procedure is used as initial guess for the solution of the Level-Set
equation.

The complete segmentation pipeline is illustrated in Figure 2.3a and is executed by
performing five operations:

1. Extraction of the so-called Region Of Interest (ROI).

2. Standard curvature anisotropic filtering, as in [352], which is needed when the images
present high levels of noise. Typical parameters values are 10 iteration, a time step
of 0.0625 and conductance of 4.

3. Interactive initialization of individual arteries using colliding fronts [21].

4. Numerical approximation of the Level-Set equation. This needs the specification of
four parameters. For the patients analyzed in Chapter 5 the mean and standard
deviation of parameters used were: wp = 0.64 ± 0.24, wk = 0.59 ± 0.20, wa =
0.97± 0.16 and the number of iterations to solve the equation was 108± 46. These
parameters depend on image quality and arterial characteristics. For example, noisy
images are better segmented with larger values of wk and more iterations, while small
arteries are better defined with higher values of wp. Arterial regions with conventional
stents are challenging, and require more user interaction during initialization and
smaller values of wp.

5. Construction of surface mesh made of triangles using the marching cubes method [202].

Figure 2.3b features different coronary arterial networks extracted from patient-
specific images using the present segmentation procedure. As a general rule, the aortic
root and all visible arteries are segmented. Depending on image quality and vascular
anatomy the number of arterial structures varies among medical images. For the patients
analyzed in Section 5, the mean number of arteries for the coronary tree was 19± 6.

2.3 Geometric representation of arterial networks

Given a raw surface obtained from the segmentation process, two types of three-
dimensional models can be generated: (a) high-quality triangular meshes suitable for en-

2The implementation use homogeneous Neumann boundary conditions.
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(a)

(b)

Figure 2.3: Panel (a) Illustration of the image segmentation pipeline: (1) extraction of the
region of interest; (2) curvature anisotropic diffusion filtering to smooth out image noise;
(3) colliding front method with the resulting binary scalar field and associated implicit
surface for the proximal portion of a right coronary artery; (4) the Level-Set scalar field
and zero-level surface. Panel (b) presents examples of coronary tree segmentations.
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closing a three-dimensional volume in which hemodynamic simulations are to be performed
(see Part II, Chapter 9) and (b) centerline models used for geometric characterization as
well as for simplified 1D-0D (or 1D+-0D, see [44, 211]) blood flow simulations (see Part II,
Chapter 9). In this section, we present the pipeline used to construct these two classes of
models.

2.3.1 Three-dimensional mesh processing

The image segmentation stage delivers a closed triangular surface, this raw geometry
is the input of a processing pipeline that aims at improving mesh quality. The complete
pipeline is detailed in Appendix A, and is briefly overviewed here.

• The raw triangulation is smoothed and opened3 at terminal locations (outlets) and
at the aortic root (inlet).

– A centerline is computed using techniques and tools described in [20]. Then, it is
used for the geometric characterization (see Section 2.3.2), and for dimensionally-
reduced blood flow simulations see Part II, Chapter 9).

• Such surface with open inlet/outlets is re-meshed to improve triangulation quality,
producing a refined contour to define the arterial lumen.

– This improved surface encloses a volume in space, which is tetrahedralized to
produce finite element volume meshes to perform CFD simulations, see Part II,
Chapters 9.

2.3.2 Centerline model

Centerlines are widely accepted representations of arterial networks [252, 224, 372,
263, 48, 358, 241], because they retain most of the geometric characteristics of arteries in
a more compact and simpler structure. Three-dimensional centerlines are represented by
polylines with point-wise information (e.g. lumen radius for each point of the centerline).
Furthermore, centerlines admit classic differential geometry analysis to compute, for ex-
ample, point-wise curvature and torsion. Figure 2.4 illustrates how centerline geometric
models are obtained

(a) (b)
(c)

Figure 2.4: Illustration of the centerline extraction procedure. Panel (a) shows the raw
surface of an arterial segment and the corresponding auxiliary centerline; Panel (b) shows
the final surface with inlet and outlet and the resulting centerline model. Panel (c) shows
a branching region, light gray centerline regions represent the bifurcation mask, the bifur-
cation in/out vectors are also shown.

3Using the HeMoLab [4] software.
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Stenosis grade∗ Tissue type Lesion position

Normal Soft tissue Proximal
Minimal: <25% Calcification Middle
Mild: 25% - 49% Mixed Distal
Moderate: 50% - 69%
Severe: 70% - 99%
Occluded

Table 2.1: Parameters used by physicians for the characterization of stenotic lesions.
∗Stenosis grade is measured as the percentage of reduced maximal lumen diameter.

2.3.3 Arterial labeling

Labeling starts with detection of arterial tracks, which are polyline elements among
branching points. Then, these arterial segments are manually labeled by a cardiologist
using the HeMoLab software, and vessels with the same label are merged. Labeling is key
for correct data storage, statistical analysis and comparison of arterial structures. Labeling
is performed following standard guidelines [273] with some extra considerations presented
in Appendix B.

2.3.4 Arterial lesion

Arterial lesion specification is also performed by physicians. Lesions are characterized
according to [273] using a tuple of three variables, namely: stenosis grade, tissue type and
lesion position, as seen in Table 2.1.

2.3.5 Bifurcation description

Bifurcation regions over the centerline are detected and masked using the procedure
explained in [263]. Bifurcation vectors are then computed for the parent artery (in-vector)
and the branches (out-vectors), as seen in Figure 2.4c. The out-vectors are computed
by taking as origin the point at which the bifurcation mask ends, and as end point the
weighted mean of N successive points4, where weights are computed as (N+1−i)−1, being
i ∈ [1, N ] the index of the point. On the other hand, the in-vector is computed taking
as end point the beginning of the bifurcation mask and as origin the n-th point over the
parent centerline backwards from the end point.

2.3.6 Geometric normalization

Geometric normalization of centerlines is performed by affine transformations of
the centerline geometry and associated scaling of the point-wise radii. The proposed
methodology accounts for the computation and storage of different kinds of geometric
normalizations. In the clinical literature normalization is commonly used, for example [94]
studied the anatomy of coronary arteries and performed statistical analysis normalizing
measurements by body surface area. The main idea behind all kind of normalization is
that inter-patient variability, due to intrinsic difference in the anatomic size of hearts, is
ruled out. Regarding centerline analysis, other normalization/registration techniques were
proposed, see [290] and reference therein. In that work a warping-function procedure is

4In this work, N = 10, if the arterial segment has less than 10 points after bifurcation mask ended, the
remaining points are extrapolated in the direction defined by the last two points.
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performed for a single artery per patient, overcoming inter-patient variability in anatomic
size.

In this work, we propose a scaling factor to perform normalization such that all
patients have coronary trees centerlines enclosing a myocardium with the same surface
area (denoted by Smyo), that is, a scaling of coronary geometry to perfuse a heart with the
same size. This operation involves the computation of a dimensionless scale factor sfmyo,
which multiplies centerline coordinates and radii. Particularly, the pre-defined myocardium
area is Smyo = 40000mm2, and sfmyo has a mean value of 1.148 ± 0.0936 in our patient
sample.

In this work, normalized geometries are only taken into consideration when assess-
ing geometric similarity in siblings. In turn, statistics of the arterial morphometry are
computed using raw geometries (see Part I, Chapter 5).

2.3.7 Geometric characterization

Centerlines model are characterized using a set of geometric descriptors. In this work,
several point-wise and arterial-wide features are used. Several descriptors have already been
described in the literature. Nonetheless, a novel set of descriptors are proposed based on
thermodynamic concepts (see Part I, Chapters 3 and 5).

2.3.8 Database description

Adequate storage of input and generated data throughout the entire workflow is a
major concern to the framework. Typical data analysis requires a wide range of informa-
tion, from patient and medical input data to anatomical and geometric features generated
during the processing pipeline. The heterogeneity of data types poses a challenge in terms of
storage mechanisms. Furthermore, data mining and quantitative analysis typically require
extraction of large amount of data from different sets of subjects satisfying specific condi-
tions on patient, clinical and generated data, i.e. age, gender, presence of stenosis, arterial
features, etc. These query requirements are better addressed by conventional relational
databases, which in addition provide out of the box scalability and ease of access from web
or standalone applications. Besides, current database engines can be extended to support
storage and query on user defined data types. However our current implementation also
stores sophisticated bulk data, i.e. raw and segmented medical images, three-dimensional
arterial/myocardial meshes and centerlines (polylines with bifurcation and point-wise infor-
mation) using standard DICOM and VTK file formats in a human-readable folder hierarchy
defined by databases structure and identifiers. This allows storage of path as conventional
strings in the database, ensuring direct access through queries, and facilitating usage of
data from external applications for rapid prototyping and testing of new functionalities.

Data mining and analysis, which is the last stage in the workflow illustrated in
Figure 2.1, is currently performed in MATLAB©, using a data warehouse constructed
from the database.

Figure 2.5 presents a reduced version of our database Entity-Relationship Diagram
(ERD) covering the following major entities.

• Patient: Contains invariant patient information like gender and date of birth.

• FamilyRelatives: Identifies familial aggregation between patients, i.e. parents,
siblings, and so on.

• MedicalStudy: Contains medical data obtained during the clinical procedure that
may change over time. Typical information agglomerated in this entity include the
date of the study, copies of clinical reports, records of arterial pressure, weight, height,
etc.
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• MedicalImage: Depending on the imaging procedure and modality, more than one
image may be associated to the procedure. Bulk data is stored on file hierarchy while
information about quality, noise, artifacts and spatial resolution are stored on the
database.

• ImageSegmentation: Abstract representation of the segmentation procedure, con-
tains basic information about the method and parameters, the most relevant infor-
mation is the path to the segmented image. In addition, a segmentation can represent
arterial structures, myocardial, or any other physiological structure of interest.

• SurfaceMesh Different surface meshes may be generated from one segmentation.
In order to keep track of mesh-precessing operation (resulting in meshes used for
hemodynamics or geometric characterization), this entity allows a self-relations.

• CenterlineModel Each surface mesh may have various centerlines, e.g. given by
different normalization procedures. Information about normalization and paths to
the centerlines are kept in this entity.

• ArterialSegment A coronary tree is conformed of various arterial segment, each
one is kept as a separate record identified by corresponding arterial labels.

• ArterialFeature geometric descriptors, stenosis and anatomical features of each
artery are kept in series of tables, here grouped in an abstract entity for simplicity.

• HeartModel This entity accounts for patient-specific heart models, currently only
the approximated surface for myocardial surfaces and ventricular cavities are consid-
ered, with corresponding surface and volumes.

• HemodynamicModels Computational fluid dynamics for (3|1|0)D models derived
from surface meshes or centerlines are referenced in tables agglomerated in this entity.
Models are associated to different simulation outcomes depending on physiological
scenarios and definition of boundary conditions.

Note that the proposed schema allows high detailed querying over the patient popu-
lations, e.g. retrieving data of patients with specific arterial morphology and distribution,
which empowers data mining and analysis. In addition, the relational model provides a
natural mechanism for tracking down patient information, clinical data and model derived
quantities.
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Figure 2.5: Illustration of the database schema.



Chapter 2. From medical images to arterial models

20



Part I
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Chapter 3

Arterial geometry characterization

“He prescribed Euclidean geometry, followed by a dose of trigonometry and algebra.
That should cure anyone, they both thought, from having too many artistic or romantic
passions.”

Walter Isaacson, The Innovators: How a Group of Inventors, Hackers, Geniuses, and
Geeks Created the Digital Revolution

Ex-vivo anatomical characterization of coronary arterial trees from basic variables
like vessel length and lumen radius was explored by the medical community elsewhere [94,
31]. Advances on medical imaging and processing tools allow further characterization
from in-vivo data extracted from medical images. For instance, geometric characterization
of healthy left anterior descending (LAD) and right coronary (RCA) arteries based on
curvature, torsion and tortuosity was performed using AX images in [372]. Nevertheless,
using AX images implies dealing with an invasive medical procedure and with a rather
incomplete anatomic characterization. In contrast, as seen in Chapter 2, CCTA images
provide a complete overview of the coronary arterial network with a moderate degree of
invasiveness. To the best of our knowledge, complete coronary trees have not been geomet-
rically characterized from in-vivo images. Several studies have employed geometric descrip-
tors to characterize arterial centerlines from different parts of the body: Reference [252]
emphasized the limitation of quantifying arterial geometry from planar projections and
proposed a set of geometric parameters describing arterial branch origin, trajectory, and
vessel curvature in 3D space, methods where tested using arteries in the abdominal aorta
region. Reference [224] proposed two mathematical descriptors, namely torsion and cur-
vature energy, to characterize the internal carotid artery shape. Reference [263] presented
a new methodology for bifurcation patterns characterization and a set of computational
tools for the geometric description of vascular structures based on classical differential
geometry analysis, focusing on cerebral arteries and aneurysms. Reference [48] explored
the characterization and classification of carotid arteries, using a set of standard features,
i.e. length, tortuosity, radius, curvature, torsion, etc. Such work also made use of the
large deformation diffeomorphic metric curve mapping (LDDMCM) [125], to provide cor-
respondences between centerlines and to define a metric in shape space. Reference [358]
performed statistical analysis of morphometric variables (e.g. size, distances, angles and
branching structure) of the brain arterial vasculature; it was extended and complemented
by [241] by describing the population-averaged shape and geographic distribution of the
brain arterial trees based on a probabilistic vascular atlas.

As described in Chapter 2, centerline models of vascular trees are labeled, lesions
are identified, and bifurcations are characterized by vectors and angles. These descriptors
are invariant to rigid transformations of the geometry. As commented in Section 2.3.6,
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normalization of the models are based on rigid transformations. Although the infras-
tructure employed in this work supports storing all kind of normalizations, we only used
normalization by myocardial surface, and use it to test similarity in Chapter 5. When
performing all other tests in Chapter 5 the raw geometric models are used. All these study
cases are based on the geometric descriptors outlined in this chapter.

3.1 Conventional geometric features

In this work a collection of geometric and anatomical descriptors was selected among
the wide variety of features available in the literature. Table 3.1 presents a formal definition
and descriptions of the complete conventional set of features used in this work for any given
artery denoted by A.

Feature Definition

Parent: The label of the artery that gives rise to A according to
the network topology. In some pathological cases, the coronary tree
deviates from its normal topology, for example the left circumflex
(LCx) and the left anterior descending (LAD) may branch directly
from the aorta (Ao) in patients with absence of left main artery (LM).

parent(A)

Branch count: The number of arteries (in the centerline model)
branching from A. Υ

Length: The arc length of the curve in 3D space described by A. `
Tortuosity: [263] The relative increment in the length of a curve
deviating from a straight line. Where d is the euclidean distance
between the starting and ending points of A. The tortuosity defined
in (3.1.1) has a minimum value (zero) when the vessel is straight,
and increases as A is more tortuous.

χ =
`

d
− 1 (3.1.1)

Radius: The arterial lumen radius, which is a point-wise variable
defined along the centerline abscissa s ∈ [0, `], the minimum (rm),
maximum (rM ) andmean (r̄) values are then computed. The arterial
radius is computed as the radius of the circumscribed sphere at s,
which is the biggest sphere at the associated cross-section of the
artery.

r(s)

Curvature: [263] It measures the deviation of the curve from a
straight line (zero curvature). The Frenet–Serret theory of differ-
ential geometry provides the standard definition. Where c(s) is the
centerline curve parametrized with the curvilinear abscissa, and (·)′
indicates the derivative operator. As κ is defined for each point along
the centerline, the minimum (κm), maximum (κM ), mean (κ̄) and
total (κT , integral of the curvature over the centerline) values are
computed.

κ(s) =
|c′(s)× c′′(s)|
|c′(s)|3

(3.1.2)

Torsion: [263] It measures the curve local deviation from lying on
the osculating plane, or equivalently, how sharply the line is twisting
in space. The standard definition of torsion is analogous to curvature,
the torsion is defined for each point along the centerline, therefore
the minimum (τm), maximum (τM ), mean (τ̄) and total (τT ) values
are computed.

τ(s) =
|(c′(s)× c′′(s)) · c′′′(s)|
|c′(s)× c′′(s)|2

(3.1.3)

Combined curvature: [252] It accounts for curvature and torsion
at each point of the curve. As in the case of other point-wise defined
variables, the minimum (ζm), maximum (ζM ), mean (ζ̄) and total
(ζT ) values are computed.

ζ(s) =
√
κ(s)2 + τ(s)2 (3.1.4)

Aspect ratio: [241] It is the ratio between the arterial length and
the mean radius. Λr =

`

r̄
(3.1.5)

Curvature ratio: [48] It is the dimensionless product of vessel radius
with curvature, where N is the number of points in the centerlines
that represents the artery.

Λκ =
1

N

N∑
i=1

κ2
i r

2
i (3.1.6)
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Feature Definition

Torsion ratio: [48] It is defined as the mean product between torsion
and radius along the centerline. Λτ =

1

N

N∑
i=1

τ2
i r

2
i (3.1.7)

Bending energy: [224] It is defined as the energy needed to bend
a straight line into its curved shape. It corresponds to the average
value of the square curvature scaled by the total arc length of the
centerline under analysis. The `2 factor guarantees scale invariance
(i.e., any circle will always have the same energy value), which is
required for comparisons between curves with different lengths.

ξκ =
`2

N

N∑
i=1

κ2
i (3.1.8)

Twisting energy: [224] It is the energy needed to twist an straight
line into its curved shape also in dimensionless form. ξτ =

`2

N

N∑
i=1

τ2
i (3.1.9)

Fractal dimension: [358] It is defined as the slope of the linear
regression obtained from the log-log scatter plot of length vs. eu-
clidean distance, moving from the second to the last point along the
centerline.

%

Rising angle: It is the angle between the artery A and its parent. It
is computed over the plane formed by the bifurcation vectors. Where
v is the parent artery vector indicating the direction towards the
branch and w the vector indicating the branching direction of A.

α = arccos(v ·w) (3.1.10)

Offspring mean raising angle: Defined as the mean of α over the
offspring of A. β

Lesions count: A list of arterial lesions defined by variables de-
scribed in Table 2.1 is produced for each arterial segment, based on
clinical data. From this list, the quantity of lesions is then obtained. η

Table 3.1: List of standard geometrical and morphological descriptors, together with the
mathematical definition and notation, as well as a description and a bibliographic reference
that reports previous usage of the feature in the related literature.

It is worth noting that computation of curvature and torsion parameters is performed
using finite differences over a smoothed centerline which is constructed using a Laplacian
filter to get rid of spurious high-frequency noise, as detailed in [263]. This procedure is
only employed for the computation of derivatives with respect to the parametric coordinate.
Alternatively, high-order continuous representation of centerlines could be achieved using
free-knots regression splines [291], which allows analytic computation of derivatives.

3.2 Non-conventional geometric features

The so called non-conventional geometric descriptors are a new set of arterial fea-
tures, designed and developed in this work. These features are demonstrated to be useful for
RCA shape identification and LAD healthy/diseased classification, as shown in Chapter 5.

3.2.1 Average distal curvature

Although mean curvature of arteries is commonly used in the literature [372], it is
usually computed using the total length of the arterial centerline. Medical literature usually
establishes criterion for discriminating proximal, middle and distal arterial segments of the
main coronary arteries based on branching points of specific vessels. Note that anatomical
variability may introduce an observer bias on the identification of such dividing points.
However, this division facilitates anatomical descriptions and simple measurements from
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medical images (such as AX or CCTA) or ex-vivo dissections without quantitative models
of vessels, e.g. lesion location or arterial radius at the beginning of segment [94]. Curvature
patterns in these three segments of the LAD, LCx and RCA have been characterized for
healthy arteries elsewhere [372].

Average distal curvature (κ̄d) is presented in this work as a geometric descriptor of the
LAD artery associated to lesion presence. The rationale behind this feature was inspired
by visual inspection of medical data from the patient sample described in Chapter 5 (see
Section 5.1). Patients were divided in two groups, healthy (H, n=21) and diseased (D,
n=27) LAD arteries. The behavior of the point-wise curvature for each class, D and H,
was explored by averaging the variables over each subsample at each position s ∈ [0, 1]
over the centerlines1.

The formal definition of average distal curvature is as follows,

κ̄d = mean(κ(s >= d)), d ∈ (0, 1), s ∈ [0, 1], (3.2.1)

where d defines the beginning of the distal segment of the artery. Although our study
focused on LAD vessels (see Chapter 5), the value of κ̄d can be computed for any arterial
vessel.

3.2.2 Thermodynamics of curves

The theory known as thermodynamics of plane curves was originally proposed by
Mendès France [223, 98]. The core idea was to characterize planar curves with classical
thermodynamics quantities, e.g. entropy, temperature and pressure, preserving analogies
to the corresponding physical laws. The very foundation of the theory relies on a theorem
from the field of integral geometry, known as the Cauchy-Crofton theorem [80], which states
that the expected number of intersections (n̄) between a plane curve Γ and a random line
intersecting it, is related to the length (`) of Γ and the perimeter (C) of its convex hull. The
link to thermodynamics came from an information-theory based analysis of the discrete
probability distribution (pn) of the intersection count function.

Over the years the ideas behind the theory of thermodynamics of plane curves were
further explored in close relation to fractal theory, with strong theoretical flavors and a
modest number of applications. For example, [235] revisited the theory for planar curves
and related the entropy to the notion of dimension of curves. [169] used the rationale
behind thermodynamic analogies to define the temperature of non-random maps. Almost
two decades after the introduction of the theory, [92] adapted the concept of entropy for
application in time/spatial series, showing practical examples in geological data processing;
specifically it was shown that the entropy of time series obtained from vibrations of drilling
equipment can be used to localize stationary zones and assess the degree of homogeneity
of geological formations. The same research group then used entropy of time/spatial series
to the identification of functional relationships between atmospheric pressure and carbon
dioxide in the cave of Lascaux [91]. More recently, [29, 30] adapted the entropy of curves,
generalizing it to an arbitrary number of dimensions, with application to analysis and
classification of dynamical systems. [17] recently presented applications of the n̄, also known
as inconstancy, to numerical sequences and proposed some practical applications. More
recent contributions in the area focused on the use of other well known entropy definitions,
like Rényi’s [95].

It is worthwhile to remark that neither the entropy adaptations for time/spatial
series [92], nor the one proposed by [29] for curves in Rn, are linked to the expected
number of intersection (n̄) between a curve and hyperplanes, which is a cornerstone of the

1The normalized arc-length coordinate s is discretized in an evenly-spaced scale and linearly interpolated
for each patient in the range [0, 1].
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original theory. In fact, both works proposed a new definition of the entropy function based
on the series/curve characteristics, without considering any probability distribution. This
strays those contributions from the original notion: an information-theory-based entropy
with analogy to statistical mechanics.

In this section, a natural extension of the thermodynamic-based descriptors to curves
in three-dimensional (3D) space is presented. In order to do that, the probability distri-
bution pn is used directly, instead of the Cauchy-Crofton theorem. Then, a computational
approximation of pn allows the numerical estimation of the entropy, temperature and
pressure descriptors of a 3D curve. The use of probability distributions also inspired a
generalization of these thermodynamic descriptors for characterizing curves from spatially
distributed information, e.g. curvature, torsion. In Chapter 5, such descriptors are used
for the characterization of human coronary arteries.

3.2.2.1 Basic theory

The theory of thermodynamics of plane curves, as presented by Mendès France, relies
on the Cauchy-Crofton theorem [80], which states that the expected number of intersections
between a plane curve Γ and a random line intersecting it, is given by

n̄ =
∞∑
n=1

npn =
2`

C
, (3.2.2)

where pn is the probability of a line intersecting Γ at n points, ` is the length of Γ and C
is the perimeter of the convex hull of Γ. If the curve is a straight line, then C = 2`, and
n̄ = 1. The analogy to thermodynamics can be made when the entropy of the probability
distribution is computed using Shannon’s measure of entropy from information theory [306],

H = −
∞∑
n=1

pn log pn. (3.2.3)

In physics, finding the probability distribution p that maximizes Shannon’s informa-
tion entropy H, is the basis of the so called MaxEnt thermodynamics principle, developed
by Edwin T. Jaynes [157, 158], which explains statistical mechanics and equilibrium ther-
modynamics as inference processes. Maximization of H subjected to a restriction on the
mean value was first tackled by J. Willard Gibbs [121]. The classical solution, known as
Gibbs algorithm, makes use of Lagrange multipliers to find the stationary points of the
functional

L(p) = −
∞∑
n=1

pn log pn − φ

(
n̄−

∞∑
n=1

npn

)
− λ

(
1−

∞∑
n=1

pn

)
. (3.2.4)

Solving the equation L′ = 0 yields

pn = (eφ − 1)e−φn, φ = log

(
n̄

n̄− 1

)
, e−1−λ = eφ − 1, (3.2.5)

then, the maximum entropy corresponds to a planar curve in “thermodynamic equilibrium”,
and can be written in terms of the mean number of intersection points as

Hmax = log(n̄) +
φ

eφ − 1
= n̄ log(n̄)− (n̄− 1) log(n̄− 1). (3.2.6)

In quantum thermodynamics, pn usually represents the probability that a system of parti-
cles (e.g., atoms or molecules) is in the discrete energy level En. Furthermore, the classical
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definition of temperature is T = kφ−1, where k is the Boltzmann constant (hereafter taken
equal to one). In the present context the temperature is defined by analogy as

T =
1

φ
=

[
log

(
n̄

n̄− 1

)]−1

. (3.2.7)

In an attempt to push further the analogy with physics, the “volume” V and “pressure” P
of a curve are defined by the length (V := `) and perimeter of the convex hull (P := 1/C).
For planar curves, using the Cauchy-Crofton theorem equation (3.2.2), the “equation of
state” of a curve can be written as

T =

[
log

(
2V

2V − P−1

)]−1

⇒ PV =
1

2

(
1− e−

1
T

)−1
. (3.2.8)

When the temperature vanishes (T = 0), the curve freezes to a straight line and PV =
`/C = 1/2. Furthermore, the entropy also vanishes (H = Hmax = 0), which agrees with
classical thermodynamics, where at zero temperature the entropy of the system vanishes.
On the other hand, when the temperature is increased, the approximation PV ∼ T/2 is
valid, resulting in the state equation of a perfect gas.

Following Mendès first proposal, publications in the field usually express the ther-
modynamic quantities of curves in terms of 2`/C, through expression (3.2.2). However,
observe that given pn, the thermodynamics can be defined for any curve in any dimension.
It is the use of the Cauchy-Crofton theorem, and the lack of an extension of such theorem
to higher dimensions, what has limited the theory to the plane. Since we are interested
in applying the thermodynamic analogy to curves in 3D, we propose to overcome this
limitation by defining the pressure of a curve in terms of its entropy, equation (3.2.3), and
its temperature, equation (3.2.7), in analogy with the thermodynamics of ideal gases, that
is:

H =
γ

1− γ
log T + logP, (3.2.9)

where γ is the ratio of specific heats, and the universal gas constant is set to one. P and
γ will be taken as parameters that, hopefully, remain the same for a given class of curves
(e.g., with similar shape). Note that γ(1 − γ)−1 is the slope of the linear approximation
in a (log T vs. H) plot.

3.2.2.2 Extended framework

As shown in Section 3.2.2.1, the thermodynamics of curves can be computed from a
discrete probability distribution function (DPDF). In the original theory of Mèndes France,
the DPDF accounts for the number of intersections between a plane curve and a random
line. This notion can be naturally extended to 3D curves intersected by a random plane.
Given a curve Γ, the procedure to produce a generalized thermodynamic characterization
is as follows:

i. Choose a random variable (X) associated to the geometry of the curve, e.g. the
number of intersection points of Γ with random planes. Note that in the context of
the thermodynamics analogy, X ∈ G ⊂ R represents the “energy levels” of the curve.
Here, G represents the subset of admissible energy levels.

ii. Compute the probability distribution, p(X,Γ) = p, for the given curve Γ. This step
strongly depends on the choice of the random variable X.

iii. Compute curve descriptors based on the probability function, for example

i. Statistical moments of p, such as the mean.
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ii. Entropy (H) of p. In this work Shannon’s entropy is used, but other definitions
like [335] or [284] entropies may be used as well.

iii. Using the mean, thermodynamic descriptors can be calculated using equa-
tions (3.2.3), (3.2.7) and (3.2.9).

3.2.2.3 Probability distribution for intersection counting

As said, the generalization of the thermodynamic framework is done by defining X
as the intersection count between the curve and random planes. This generalization allows
direct use of thermodynamics descriptors defined in equations (3.2.3), (3.2.7) and (3.2.9),
since the probability distribution p and the mean value of X, hereafter n̄, are known.
Nonetheless, estimation of p requires a computer simulation. The following methodology
generalizes the computation of p for any parametric function, not just planes.

i. Choose a parametric function {F(m) ∈ FN | F : RN → R3}, where m ∈ RN is
the vector of parameters. And FN is the space of all parametric functions with N
parameters. Particularly, for planes N = 3.

ii. Define a functional operator {O(Γ,F) ∈ O | O : F 1 ×FN → G}. Where Γ ∈ F 1

is a curve parametrized by arc length; F ∈ FN is the test parametric function; O is
the functional operator which retrieves an admissible energy level X ∈ G.

iii. Define an exploration set of parameters S = {m1,m2, . . . ,mJ}. In theory, S would
be an infinite set. In practice, the cardinality of S is finite and equals J . The
selection of S must ensure an homogeneous spatial distribution of the parametric
function. This means that no spatial region of R3 should be privileged with a higher
density of functions covering the region.

iv. Compute a histogram for the random variable X, hereafter called hist(X). This
is performed by applying the functional operator to the complete set of parametric
functions spanned by S. That is, Xj = O(Γ,F(mj)), j = 1, 2, . . . , J .

v. Compute p from hist(X).

In the present work, (i) the parametric functions are intersecting planes, and so N =
3. (ii) The functional operator is the operation through which the number of intersections
(n) between a plane and the curve is counted. The number of intersections is the chosen
random variable (X = n). (iii) The set of parameters S, in this work, has cardinality
J = 440000 and was defined from a regular grid containing all possible curves. A series
of rotations of the grid in azimuthal and polar angles is performed, and for each grid
configuration the normal vectors to the planes are also rotated in both directions. This
procedure ensures a homogeneous density of planes in the region where the curves are
defined.

3.2.2.4 Pseudo-probability distribution based on curve features

The thermodynamics of a curve, as defined in this work, depends on the DPDF of a
random variable X. When X stands for the number of intersections between a planar curve
and a random line, the thermodynamics proposed by Mendès is recovered. In this section
we exploit spatially distributed information which can be associated to the curves, e.g.
curvature or lumen radius, to construct a probability distribution and use it to compute
thermodynamic descriptors. Such DPDF is computed in four steps:

i. Define a spatial partition of the curve into M buckets, called Bi, i = 1, . . . ,M .

29



Chapter 3. Arterial geometry characterization

ii. List the buckets in ascending order according to the natural order of the curve.

iii. For a given spatially distributed feature f , compute the cumulative value (Fi) of f
for each bucket Bi, i = 1, . . . ,M , namely

Fi =

Li∑
j=1

fj , i = 1, . . . ,M,

for a given bucket Bi, containing Li points.

iv. Compute the discrete pseudo-probability distribution

pi = Fi

 M∑
j=1

Fj

−1

. (3.2.10)

Note that in this case, the discrete random variable, X = B, represents the bucket index
with expected value B̄ =

∑
ipi. Given pi and B̄, the entropy, temperature and pressure

as defined in equations (3.2.3), (3.2.7) and (3.2.9) can be calculated. In this work, (i) each
arterial vessel to be analyzed is divided into N = 20 equally sized buckets, (ii) bucket
order starts in the points of the vessel near the heart (proximal) and increases towards the
distal location, following the blood flow direction, and particularly (iii) we emphasize the
analysis when using the curvature as the spatially distributed feature (f = κ).

3.2.2.5 Convergence of the numerical strategy for intersection-counting-based
thermodynamic variables calculation

Convergence tests were performed to ensure that the computational methodology
presented in Section 3.2.2.3 does not introduce errors in the statistical analysis of the
thermodynamics variables. For the parameters used in this work, it was found that the
mean relative difference in all thermodynamic variables for a set of 144 curves2 was sig-
nificantly higher (thirty to sixty times) than the mean of relative convergence difference
for successive planes of intersection. These results ensure that errors due to the numerical
procedure used in the computation of thermodynamic variables are negligible compared to
the differences among different curves. Figure 3.1 presents the evolution of the difference
for successive intersection planes for the 3D curves. The median and interquartile range
for the 144 curves are displayed.

2Such set contains the LAD, RCA and RCA arteries of 48 patients, see Section 5.1 for a description of
the population sample.
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3.2.3 Summary of non-conventional features
The thermodynamics features derived in previous sections and used in this work are

summarized in Table 3.2.

Feature Definition

The average of point-wise curvature in the distal quarter of
the artery.

κ̄d = mean(κ(s >= 0.75)) (3.2.11)

The expected number of intersections between a given center-
line and a random plane.

n̄

The Shanon entropy based on the probability distribution of
number of intersection points between a given centerline and
a random plane.

Hn = −
maxn∑
n=1

pn log pn (3.2.12)

The temperature of the centerline associated to n̄ Tn =

[
log

(
n̄

n̄− 1

)]−1

(3.2.13)

The pressure of the centerline associated to Tn and Hn Pn = eHn−γ(1−γ)−1 log Tn (3.2.14)

The Shanon entropy based on the pseudo-probability distri-
bution derived from point-wise curvature.

Hκ = −
N=20∑
i=1

pi log pi (3.2.15)

The temperature of the centerline associated to the point-wise
curvature.

Tκ =

[
log

(
B̄

B̄ − 1

)]−1

(3.2.16)

The pressure of the centerline associated to Tκ and Hκ Pκ = eHκ−γ(1−γ)−1 log Tκ (3.2.17)

Table 3.2: List of non-conventional geometric features used in this work.

31



Chapter 3. Arterial geometry characterization

Figure 3.1: Relative error evolution for all intersection-counting-based thermodynamic
variables. The set of intersecting planes is the same for all curves and the number of
planes that effectively intersect each curve is different. Therefore, the pressure P was
computed using all 144 curves until the minimum number of intersecting planes for all 144
curves.
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Chapter 4

Comparison of arterial structures

“One can state, without exaggeration, that the observation of and the search for
similarities and differences are the basis of all human knowledge.”

Alfred Nobel

The geometric characterization of arteries presented in Chapter 3 is the first step
towards a broad spectrum of quantitative and statistical analysis that can be performed to
evaluate clinical hypotheses. Some examples of such analyses are presented in Chapter 5.
In this chapter, a methodology to establish similarity and comparison of arterial geometry
is presented. Furthermore, some statistical concepts and classification techniques which
are used in Chapter 5, are summarized.

Geometric assessment of vascular structures has been employed to study other vas-
cular territories, i.e. the AneuRisk [5] project investigated the role of vessel morphology,
vascular wall mechanics and hemodynamics on the pathogenesis of cerebral aneurysms [263,
290, 262, 257]; the BraVa project [7] aimed to provide extended morphometric information
of the cerebral vasculature in healthy adults [358, 241].

4.1 Arterial comparison

This section presents a feature-based criterion to perform comparisons of arterial
vessels. The concept of comparison implies seeking for similarities, which can be assessed
for any two given patients. Furthermore, for a sample of patients, relative likelihoods
can be established using ranking (ordering). The set of features presented in Tables 3.1
and 3.2 is used to construct an euclidean space F , in which comparison is defined through
an euclidean distance.

After computing the features, an array of real numbers for each artery is obtained.
The goal is to construct a mathematical environment suitable for quantifiable comparisons
which is performed in four steps, as explained next.

1. Arterial selection: A subset of arteries (SA ) is used to represent each patient.
In Chapter 5 (see Section 5.4) we provide examples considering the left anterior
descending (LAD), left circumflex (LCx) and right coronary (RCA) arteries, either
separately or altogether.

2. Feature selection: A subset of features GA
D is chosen to characterize each artery

A , for which D is an identifier of the set of features of artery A , i.e. all and min,
as used in Chapter 5 (see Section 5.4). Then each patient is represented by a vector
p̂ constructed from the concatenation of features per artery, this is p̂ ∈ Rn, with
n = |GA1

D1
| + · · · + |GAm

Dm
|, where m = |SA | is the cardinality of the arterial subset.
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In Chapter 5 (see Section 5.4) we present results for GA
D = GA

all (the complete set of
features, presented in Table 3.1, for each artery A ), and for GA

D = GA
min which is the

subset of features that minimizes a given metric for each artery A .

3. Feature space construction: As features differ in metric units and magnitude, a
normalization of each feature (adimensionalization) is required. Given a vector p̂,
the normalization results in a vector p, whose components are pf = (p̂f − µ̂f )/σ̂f ,
f = 1, . . . , n, where µ̂f is the mean value of feature f for all the patients and σ̂f is the
corresponding standard deviation for the entire set. The resulting euclidean space
is called feature space and is denoted by F = F (GA

D ). Note that the zero element
of F is that associated to the arterial structure with all geometric features equal to
the mean values, and therefore, patients are characterized as a deviation from the
average geometry of the population. This interpretation is key to understand the
upcoming definition of likelihood.

4. Elements of the feature space: Each patient is normalized and its vector repre-
sentation in F is computed. Once all patients are represented in the feature space,
distances and likelihoods between patients are straightforwardly obtained.

In this work we define arterial comparison through the euclidean norm (denoted by
|| · ||) in the feature space. Given two patients a,b ∈ F , the distance between them,
denoted by d(a,b), is defined as

d(a,b) = ||a− b|| (4.1.1)

Note that d→ 0 means proximity (similarity) between patients. This approach leads
to the concept of ranking r(a,b),a,b ∈ F , an index that measures how similar patient b
is to a relative to all patients in F . For a given patient a, the ranking for the sample is
computed in three steps,

• Compute distance d(a, c), ∀c ∈ F generating a list of distances.

• Sort (in ascending order) the list.

• For each patient c ∈ F , compute the ranking referred to a as the position of d(a, c)
in the sorted list.

The ranking is a positive natural number, r ∈ N+, and its maximum value depends on
the cardinality of the patients sample (denoted by |P|). Note that r can be used to query
the m patients in the database which are more similar to a given one. This information
can be used, for example, to assess if patients sharing some external characteristic tend
to cluster in F . In Chapter 5 (see Section 5.4) we show that for a given patient, his/her
sibling tends to present low ranking positions, thus having similar geometric attributes.
Computing the median of the ranking of each patient with the corresponding sibling leads
to what we call the Siblings Ranking Index,

SRI = median(r(a,b)),∀a ∈ F , (4.1.2)

where b = sib(a) is sibling of a. The SRI assesses likelihood at population level. In order
to decouple the SRI from |P|, a further normalization is performed, which leads to the
relative sibling ranking index, rSRI = SRI/|P|. Given two patients who are siblings, say
a and b, it would be expected that d(a,b) → 0 and r(a,b) → 1, which is analogous to
rSRI→ 0.
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4.2 Statistical analysis

Several statistical tests are performed in Chapter 5 and Part II, Chapter 10. Most
of such tools are standard and taught in introductory statistics courses. For the sake of
completeness, this section provides a brief summary of the concepts and tools used in this
work.

4.2.1 Difference in the mean value of two samples

Given a continuous variable (x) and two defined classes, e.g. healthy (H) and diseased
(D) arteries. It can be determined, to a certain level of statistical significance (the so called
p-value), if the mean value of the variable is different between both classes. In our example,
consider that x is larger in H than in D arteries. Depending on the probability distribution
of the continuous variable, several tests can be performed. Particularly, when the variable
is normally distributed, a Student’s t-test [321] is the common choice. The Mann-Whitney
U test1 [210] can be used when the probability distribution of the variable is not known.

4.2.2 Association of categorical variable

When assessing significant association of two categorical variables, e.g. shape of the
RCA and lesion presence, of the same population, a chi-square (χ2) test for independence
is used. In that example the test can confirm, with a significance level (p-value) whether
the shape is associated to the presence of lesion in the the RCA.

4.2.3 Correlation coefficient

In statistics, the strength of a relation (association or dependence) between two ran-
dom variables (or observed data values), can be quantified through the so called correlation
coefficient. Typically, such coefficient takes values in the range [−1, 1], where zero indicates
no association, 1 states a perfect positive correlation and -1 perfect negative correlation.
Types of correlation coefficients include: (a) Pearson product-moment correlation coeffi-
cient (r), which measures the strength and direction of the linear relationship between two
variables. (b) Spearman’s rank correlation coefficient (ρ), which measures how well the
relationship between two variables can be described by a monotonic function. Spearman’s
coefficient, is usually preferred to assess discrete and ordinal variables, and it also can
capture non-linear association between variables.

4.2.4 Bland-Altman plots

In data analysis, Bland-Altman plots [46] are extensively used to evaluate the agree-
ment between two different instruments or two measurements techniques. The method
allows to detect any systematic difference between the measurements, i.e. fixed bias, and
to identify possible outliers. The mean difference is the estimated bias, and the standard
deviation (SD) of the differences measures the random fluctuations around this mean. If
the mean value of the difference differs significantly from 0 on the basis of a paired t-test
or U-test, this indicates the presence of fixed bias. When comparing methods, or assessing
repeatability, it is important to calculate confidence intervals for 95% limits of agreement
(average difference ±1.96× SD). If the differences within the confidence intervals are not
relevant in the context of the measurements, the two methods can be used interchangeably.

1Also called the Mann-Whitney-Wilcoxon (MWW), Wilcoxon rank-sum test, or Wilcoxon-Mann-
Whitney test.
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4.2.5 Association of features between siblings

The distance (d) and related ranking indexes (rSRI) defined in Section 4.1 can be
used to assess similarity between siblings using an arbitrary number of features. Restricting
the cardinality of the feature space to 1, it allows as to use a broad spectrum of statistical
indexes to explore for heritability landmarks. Most of these indicators are designed to work
with categorical or binary variables, i.e. patient has a disease or not. Indicators under
this category are marked with a (D) symbol in the following subsections. Nevertheless,
continuous or ordinal variables can be dichotomized, and such indicators can also be used.
In this study, the only binary variable are the presence or absence of lesion, and the shape
of the RCA. In Chapter 5 (see Section 5.5), dichotomization is performed in relation to
the mean value of the feature among the patient sample.

In the context of heritability assessment, arterial features are phenotypes, and saying
that a patient tested positive for a given phenotype, means that the feature value is larger
than the mean of the sample. Therefore, these types of tests should be interpreted as
association of the feature between siblings relative to the mean value of the feature.

Nevertheless, other indicators are designed for continuous or ordinal variables, and
are identified with (C) symbol in the following subsections. Such indicators directly mea-
sure the relationship among variables.

4.2.5.1 ProbandWise ratio, PBWR [D]

Probability that a patient tests positive given that his sibling tested positive. Proband-
Wise and CaseWise (CWR) ratios measure the same probability. In cases when double
assertion in diagnosis is used, and there is a chance of discordance in diagnosis, the PBWR
proved to be the best choice for establishing the concordance rate between pairs of pa-
tients [220]. Nevertheless when such discordance is not possible, as in this work, the
PBWR and CWR are algebraically equivalent. Such probability is computed as

PBWR =
2B

2B +O
, (4.2.1)

where B and O are, respectively, the number of sibling pairs where both patients tested
positive and where only one sibling tested positive.

4.2.5.2 Similarity Index, SimI [D]

Probability that both siblings have the same test results. It is defined as

SimI =
B + E

B +O + E
, (4.2.2)

where B and O are the same as in Equation (4.2.1), and E is the number of sibling pairs
where neither patient tested positive.

4.2.5.3 Relative sibling ranking index, rSRI [C]

Introduced in Section 4.1 this indicator measures how similar (in terms of a given
feature) siblings are in relation to the rest of the sample. A value of 0.5 implies that siblings
are as similar as they are to the general population. There is no statistical significance
p-value asssociated to this index.
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4.2.5.4 p-value of the Mann-Whitney U-Test, p-UTest [C]

The test assesses if distance (in terms of the feature) between siblings is smaller than
between non-sibling patients. A non-parametric Mann-Whitney U-Test [210] is used. In
this work, p-UTest < 0.05 are statistically significant. This test is used in Chapter 5 (see
Section 5.4) to assess similarity in different feature spaces, here, the feature spaces contain
one feature only.

4.2.5.5 Intraclass correlation coefficient, ICC [C]

It describes how strongly siblings resemble each other. The One-way random single
measure is used [219]. In addition to estimation of ICC, a hypothesis test is performed
with the null hypothesis that ICC = 0. In this work, p-ICC < 0.05 indicates statistical
significance on the ICC value.

4.2.5.6 Risk-ratio or relative-risk, RR [D]

In epidemiological terms [282], RR is the risk to test positive for individuals with a
given susceptibility genotype (in this case the susceptibility genotype is that the sibling
tested positive), divided by the risk of disease for those without it. In addition, the
confidence interval (RR_CI), can be computed to test for statistical significance. If the
confidence interval (CI) contains the value 1, then the RR has no statistical significance.

4.2.5.7 Odds-ratio, OR [D]

The odds ratio (OR) quantifies how strongly the presence or absence of property A
is associated with the presence or absence of property B in a given population. If each
individual in a population either does or does not have property “A”, (e.g. “patient has
lesion”), and also either does or does not have a property “B” (e.g. “sibling has lesion”) where
both properties are appropriately defined, then a ratio can be formed which quantitatively
describes the association between the presence/absence of “A” (patient has lesion) and the
presence/absence of “B” (sibling has lesion), for individuals in the population. This ratio
is the OR [78].

Furthermore, an associated confidence interval (OR_CI) can be computed to test for
statistical significance. If the interval contains the value 1, then the OR is not statistically
significant.

4.2.5.8 Association Parameter, PHI [D]

If the OR_CI does not encompass the value OR=1, then the Bayesian Credibility
Assessment [285] of the test is computed. If the test is credible, the Association Parameter
PHI is computed.

PHI =

√
χ2

N
, (4.2.3)

where χ2 is the associated chi-square statistic of the contingency table used to compute the
OR. PHI > 0 implies positive association (risk factor). PHI < 0 implies negative association
(protective factor). |PHI| ≤ 0.3 is considered a weak association. 0.3 < |PHI| ≤ 0.7 is
considered moderate association. |PHI|>0.7 is considered a strong association.

4.2.5.9 Critical Odds Ratio, COR [D]

While the OR statistical significance criterion is a widespread indicator to assess
the efficacy of the OR, in some cases, statistical significance is not a good indicator of
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the credibility of a finding (that is, the extent to which it provides convincing evidence
for efficacy), as it fails to take full account of the size of the trial, or of pre-existing
insights [216]. The credibility of any given OR with statistical significance can be assessed
using a Bayesian method [216]. For a given result to meet this standard, the prior evidence
for efficacy must exceed a specific level; this level is captured by the Critical Odds Ratio
(COR). The assessment of a given clinical trial result can then proceed as follows:

• If the stated 95% CI excludes an OR of 1.00 (corresponding to no effect), the result
can be deemed statistically significant at the 95% level;

• If OR is at least as impressive as that indicated by the COR, the result can also be
deemed credible at the 95% level.

Typically, when the number of patients is large, the COR is undemanding and the OR
easily covers the credibility criterion. This is justified on the basis of current knowledge.
On the other hand, when the number of patients is relatively low, the associated COR
demands a substantial amount of prior evidence before the new result can be deemed
credible.

4.2.5.10 Power, Pw [D]

It is the probability of detecting an effect, given that the effect is really there. Or
likewise, the probability of rejecting the null hypothesis when it is in fact false [285]. It is
recommended a Pw ≥ 0.8, which means that if we perform a study N times, we would see
a statistically significant difference 80% of the times.

4.3 Classification

Classification is defined as the action or process of assigning a category to something
according to shared qualities or characteristics. The most general form of the classification
problem belongs to the field of pattern recognition. In machine learning and statistics,
classification refers to the identification of the class to which a new observation belongs,
by means of an algorithm tuned with data (observations) whose category membership is
known a priori. Such algorithms are known as classifiers.

Depending on the number of categories to which a classifier has to map the data,
two types of problems are defined: binary and multiclass classification. In the former, only
two classes are involved, whereas the later involves more than two. Particularly, in this
work, examples of binary classifications are given in Chapter 5.

The most common way to model data for classification is through a so called feature
vector containing the measurable properties of the data. In the context of this thesis, the
vector of geometric features described in Section 4.1 spanning the feature space, can be
used directly for classification purposes.

4.3.1 Linear classification

The use of a linear function to map the feature vector (f ∈ Rn) to a real number
(c ∈ R) and classification using threshold (t ∈ R) on c is one of the simplest and used
classification techniques. Such linear function takes the form of a linear combination of
the feature vector and a vector of weights (w ∈ Rn),

c = f ·w. (4.3.1)

For this kind of classifiers, the determination of w and of the threshold used on c are key.
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4.3.2 Kernel density classification

Kernel density estimation (KDE) is an unsupervised learning procedure, which leads
naturally to a simple family of procedures for nonparametric classification, the so called
kernel density classification (KDC). A good review of these methods, can be found in [112,
Chapter 6]. Given a random sampleX = {x1, . . . , xN} drawn from an unknown probability
density function fX(x), one can estimate fX at any given point x0 by means of the KDE
method. In Rp using the Gaussian product kernel yields

f̂X(x0) =
1

N(2λ2π)
p
2

N∑
i=1

e
− 1

2

(
||xi−x0||

λ

)2

, (4.3.2)

where φλ(xi, x0) = e
− 1

2

(
||xi−x0||

λ

)2

is the so called Gaussian kernel with mean zero and
standard deviation λ. In this work, a value of λ = 0.75 was chosen by rule of thumb.
Many kernel functions φλ were proposed in the literature, being the Gaussian function
the simplest and most popular. Note that the estimation f̂X(x0) is smooth, due to the
weighting average of the observations closed to x0, with weights that decrease with distance
from x0.

Multivariate, multiclass classification from the probability estimate (4.3.2) is straight-
forward using Bayes’ theorem. Given a problem with J classes, and a training data set of
N samples, three steps are needed. First, the density estimation is computed (separately)
for each class, this is f̂j(Xj), with j = 1, . . . , J . Given the sample proportions πj . Then,
the posterior probability of a new data x0 belonging to class j is estimated as

P̂j(class = j|X = x0) =
πj f̂j(x0)
J∑
k=1

πkf̂k(x0)

. (4.3.3)

Finally, x0 is assigned to the class with the biggest probability P̂j .
Taking into account that the size of the available data sample is small and that

trained classification algorithms often produce overoptimistic assessments, all uses of KDC
in Chapter 5 are evaluated by means of an standard leave-one-out cross validation test
(LOOCV). Such cross-validation technique performs classification of each data object by
training the classifier with the rest of the data sample.

4.3.3 Classification performance

Many metrics have been developed to evaluate the performance of binary classifiers,
see [142] for a good review on the subject. For a given set of data with known class
membership, any classification output on such data can be summarized using the so called
confusion or misclassification matrix, see Table 4.1. Given two classes C0 and C1, for
each data object, the classification outcome can be positive (i.e. C1) or negative (i.e.
C0). The classifier result for each data object may, or may not, match the actual class.
In such a general setting, where positives can be interpreted as identified and negative as
rejected, there are four possible outcomes, namely: True Positive (TP, correctly identified),
False Positive (FP, incorrectly identified), True Negative (TN, correctly rejected) and False
Negative (FN, incorrectly rejected).

Accuracy (Acc), is the proportion of true results (both TP and TN) among the
entire sample.

ACC =
TP + TN

TP + TN + FP + FN
(4.3.4)
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True class
C1 C0

Predicted class C1 True positive (TP) False negative (FN)
C0 False positive (FP) True negative (TN)

Table 4.1: Illustration of a confusion matrix.

Sensitivity (Sen), refers to the classifier’s ability to correctly detect TP. The sen-
sitivity of a classifier is the proportion of data objects classified as C1 among those which
actually belong to C1. Mathematically, this can be expressed as:

Sen =
TP

TP + FN
, (4.3.5)

which is equal to the conditional probability P (predicted = C1|true = C1).
Specificity (Spe), relates to the classifier’s ability to correctly detect TN. The speci-

ficity of a classifier is the proportion of data objects known to belong to C0, which will be
classified as C0. Mathematically, can be written as:

Spe =
TN

TN + FP
, (4.3.6)

which is equal to the conditional probability P (predicted = C0|true = C0).
The positive and negative predictive values (PPV and NPV, respectively) are

the proportions of positive and negative classifier results that are true positive and true
negative results. The PPV and NPV are not intrinsic to the test; they depend also on the
prevalence (Prev) of C1 over the entire data sample. Mathematically, these indexes are
written as:

PPV =
TP

TP + FP
, (4.3.7)

NPV =
TN

TN + FN
. (4.3.8)

Prev =
TP + FN

TP + TN + FP + FN
. (4.3.9)

For threshold-based classifiers, one of the most widely used measures of classification
performance is the area under the receiver operating characteristic curve (AUC).
It is simply the probability that a randomly chosen member of class C0 has a lower score
than a randomly chosen member of class C1.

The receiver operating characteristic or ROC curve is a plot of the cumulative distri-
bution of class C0 on the vertical axis against the cumulative distribution of class C1 on the
horizontal axis. Sometimes alternative axes are used, but the principles remain the same.
For the labeling we have introduced, this implies that the ROC curve is a plot of specificity
against 1-sensitivity. Then the AUC is simply the area under this curve. Where each point
of the curve is computed by performing classification of the complete data sample with
different values of the threshold value t.
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Data analysis examples

“In God we trust; all others must bring data.”

William Edwards Deming

In this chapter, several data analyses making use of the framework proposed in
previous chapters are presented. First, the specification of the medical protocols used in
the selection of the patient sample used in all studies of the chapter is detailed in Section 5.1.
A demographic summary in terms of clinical data associated to the sample is also shown.
Section 5.2 presents extended statistical morphometric information of the coronary tree;
furthermore inter- and intra-arterial correlation among descriptors is explored. Section 5.3
presents the application of geometric features to identify the characteristic shape of the
RCA. In Section 5.4 it is shown how the similarity criterion between arterial structures
can be used to provide insight about medical hypotheses, specifically the existence of
similar geometric attributes between siblings. In Section 5.5 the heritability of individual
geometric features for the main coronary arteries through a set of indexes is explored. In
Section 5.6 the rationale behind the distal average curvature feature for the LAD artery is
explained. In Section 5.7 the association between stenotic lesions and geometric features
is addressed. Finally, in Section 5.8 it is shown that models of coronary arterial networks
obtained from noninvasive medical images can be used to construct descriptive power laws,
rooted in fractal theory. Regarding the denomination of arterial vessels along this chapter,
the reader is referred to Appendix B for a complete description of the notation and to
Appendix C for the basic knowledge of coronary anatomy.

5.1 Patient sample

All patients were referred to Coronary Computed Tomography Angiography (CCTA)
between February 2008 and March 2013 to the Radiology Department at the Heart Institute
(InCor), University of São Paulo Medical School, Brazil. Eligible patients had suspected
or known coronary artery disease. The InCor database was queried for patients with
CCTA using the terms: age gap of 10 years AND same name of the mother AND father.
Exclusion criteria included a history of allergy to iodinated contrast material or contrast-
induced nephropathy, hepatic failure, serum creatinine > 2 mg/dL or calculated creatinine
clearance of <60 mL/min, dyspnea at rest, known neoplasm and pregnancy. A total of 48
patients were selected for this study, consisting of 24 pairs of siblings, 4 sisters, 14 brothers
and 6 female/male siblings. Making a total of 14 females and 34 males patients with an
average age of 53 ± 13 years old. The demographics of these patients are summarized in
Table 5.1, where continuous variables are expressed as means ± SD. Normality was assessed
using Shapiro-Wilk test [307]. Categorical data are described as number (percentage).
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Group 1 Group 2 p-value

Age, years ± SD 53.4± 14.4 53.6± 12.1 0.82
Female, n(%) 7(29.2) 7(29.2) 1.00
BMI, Kg/m2 ± SD 28.4± 3.9 29.6± 6.24 0.73
Hypertension, n(%) 17(70.8) 20(83.3) 0.30
Diabetes, n(%) 6(25) 4(16.7) 0.47
Dyslipidemia, n(%) 20(83.3) 19(79.2) 0.71

LDL 127.5± 35.4 118.6± 38.5 0.41
HDL 48.9± 10.8 44.9± 10.1 0.18
Colesterol 192.6± 46.6 188.3± 41.1 0.73

Smoking, n(%) 8(33.3) 6(25) 0.52
Family history, n(%) 12(50) 11(45.8) 0.77
Previous MI, n(%) 4(16.7) 3(12.5) 0.68
Previous PCI, n(%) 4(16.7) 1(4.2) 0.17
Previous CABG, n(%) 2(8.3) 1(4.2) 0.50
LVEF, % ± SD 63.2± 3.9 63.1± 3.7 0.97

Table 5.1: Demographic summary for sibling subdivision of patient sample. Abbrevia-
tions stand for: Body mass index (BMI); Low-density lipoprotein (LDL); High-density
lipoprotein (HDL); Myocardial infarction (MI); Percutaneous coronary innervation (PCI);
Coronary artery bypass graft (CABG); Left ventricle ejection fraction (LVEF).

Comparisons of continuous variables were made using Student’s t-test or Mann-Whitney
U-test [210] for parametric and non-parametric data, respectively, and χ2 test or Fisher’s
exact test for categorical ones. All these tests were performed using STATA 11.0 software
(StataCorp., Texas, USA). Groups in Table 5.1 separate family members (in a random
fashion), for all comparisons a two tailed p-value <0.05 was considered as statistically
significant. It was found no statistically significant difference between groups, and all
patients have at least one of the major CAD systemic risks factors (smoker, hypertension,
diabetes or dyslipidemia).

As stated in Chapter 2 (see Section 2.3.4), the existence of arterial lesions in the
arteries was specified by physicians, and the lesions are characterized according to [273]
using a tuple of three variables, namely: stenosis grade, tissue type and lesion position.
In all data analyses presented in this work, an artery was consider as diseased when a
stenotic lesion of any grade, tissue and position was present in the artery. For each one
of the major arteries (LAD, LCx and RCA), two subgroups can be classified according
to presence of at least one stenosis (disease, class D) as opposed to the complete absence
of stenosis (healthy, class H). The demographics of these classes are summarized in Ta-
ble 5.2, where continuous variables are expressed as means ± SD. Categorical data are
described as numbers (percentage). Comparisons of continuous variables were made using
non parametric two tailed Mann-Whitney U-test. A χ2 test was used for categorical ones.

In our sample, it was found that: (i) for the LAD artery, statistically significant
difference between groups was found for previous percutaneous coronary intervention (PCI)
and left ventricle ejection fraction (LVEF); (ii) the LCx presented statically significant
differences for the gender, previous myocardial infarction (MI) and previous coronary artery
bypass graft (CABG); (iii) in turn, lesioned RCA were associated to dyslipidemia, previous
MI, PCI and CABG. Furthermore, presence of lesion in one of the major arteries (LAD,
LCx or RCA) was strongly associated to lesion in at least other of the remaining two
arteries.

In addition, all patients have at least one of the major CAD systemic risks factors
(smoker, hypertension, diabetes or dyslipidemia). Despite the familial relationship present
in the data set, it is shown in Section 5.2 that the patient sample is representative from
the point of view of the anatomical description of the coronary vasculature, i.e. circulation
dominance, lumen radius measurements and arterial occurrence.
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Baseline Characteristics All (n=48) LAD LCx RCA
H (n=21) D (n=27) p-value H (n=36) D (n=12) p-value H (n=29) D (n=19) p-value

Age, years±SD 53.0±13.1 49±14 56±12 0.096 52.7±13.8 54.1±11.1 0.849 50.4±14.0 57.1±10.7 0.116
Male, n (%) 34 (70.8) 12 (57.1) 22 (81.5) 0.066 22 (61.1) 12 (100) 0.010 18 (62.1) 16 (84.2) 0.099
BMI, Kg/m2±SD 29.0±5.2 28.8±5.8 29.2±4.8 0.467 29.0±5.1 29.1±5.7 1.000 29.4±5.7 28.4±4.4 0.841
Hypertension, n (%) 37 (77.1) 15 (71.4) 22 (81.5) 0.411 26 (72.2) 11 (91.7) 0.165 21 (72.4) 16 (84.2) 0.342
Diabetes, n (%) 10 (20.6) 3 (14.3) 7 (25.9) 0.325 6 (16.7) 4 (33.3) 0.218 3 (10.3) 7 (36.8) 0.027
Dyslipidemia, n (%) 39 (81.2) 16 (76.2) 23 (85.2) 0.428 29 (80.6) 10 (83.3) 0.831 23 (79.3) 16 (84.2) 0.671

LDL 123.1±36.9 125.3±40.2 121.3±34.8 0.835 123.0±38.4 123.3±33.8 0.748 121.1±38.5 126.1±35.1 0.541
HDL 46.9±10.6 46.7±10.8 47.0±10.6 0.950 47.4±11.5 45.2±7.3 0.489 47.8±11.5 45.4±9.1 0.364
Cholesterol 190.4±43.6 192.0±50.4 189.2±38.3 0.934 186.4±43.7 202.6±42.5 0.225 187.3±44.9 195.3±42.1 0.429

Smoking, n (%) 14 (29.2) 6 (28.6) 8 (29.6) 0.936 9 (25.0) 5 (41.7) 0.271 7 (24.1) 7 (36.8) 0.344
Familiar CAD Hist., n (%) 23 (47.9) 9 (42.9) 14 (51.9) 0.536 16 (44.4) 7 (58.3) 0.404 13 (44.8) 10 (52.6) 0.597
Previous MI, n (%) 7 (14.6) 1 (4.8) 6 (22.2) 0.089 3 (8.3) 4 (33.3) 0.034 1 (3.4) 6 (31.6) 0.007
Previous PCI, n (%) 5 (10.4) 0 (0) 5 (18.5) 0.037 2 (5.6) 3 (25.0) 0.056 0 (0) 5 (26.3) 0.004
Previous CABG, n (%) 3 (6.2) 0 (0) 3 (11.1) 0.115 0 (0) 3 (25.0) 0.002 0 (0) 3 (15.8) 0.027
LVEF, %±SD 63.7±3.7 65.0±3.4 62.7±3.7 0.033 63.6±3.8 64.3±3.4 0.777 64.2±3.7 63.1±3.7 0.256
Lesion?, n (%) 28 (58.3) - - - - - - - - -
Lesioned LCx/RCA, n (%) - 1 (4.8) 19 (70.4) 0.000 - - - - - -
Lesioned LAD/RCA, n (%) - - - - 16 (44.4) 12 (100) 0.001 - - -
Lesioned LAD/LCx, n (%) - - - - - - - 9 (31.0) 19 (100) 0.000

Table 5.2: Summary of the patient sample demographics when considering lesion in the LAD, LCx and RCA arteries. Abbreviations stand for:
Body mass index (BMI); Low-density lipoprotein (LDL); High-density lipoprotein (HDL); Myocardial infarction (MI); Percutaneous coronary inner-
vation (PCI); Coronary artery bypass graft (CABG); Left ventricle ejection fraction (LVEF).
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5.2 Morphometry of coronary vasculature

Quantitative measurement of the geometry and anatomy of coronary arteries can
also be useful in clinical practice as well as to provide researchers with physical parameters
to set up computational models. The medical literature is vast in terms of qualitative
description of the coronary system [345, 108, 204], but quantitative information is more
likely presented in terms of simple variables [94, 31]. The arrival of highly detailed models
of the human circulatory system [42, 43] is a clear example of scientific research exploiting
morphometric information. In this section, we provide statistics and quantification of
the geometric features introduced in Chapter 3. First we show point-wise (spatially dis-
tributed) information for the LAD, LCx and RCA arteries, and then we show arterial-level
features for a bigger set of arterial branches, finally we present correlation among features.

5.2.1 Morphometric information

Figure 5.1 presents the point-wise average and standard deviation of radius and
curvature for the LAD, LCx and RCA arteries. The well known tapering behavior of
arteries is observed in the radius plots. Ostium and distal values agree with those previously
reported in [94, 31]. Point-wise curvature shows different behavior in each artery: the LAD
tends to have a fairly straight proximal third, while curvature increases as it describes a
meandering path; the LCx rises from the LM with high curvature as it deviates to the
left atrioventricular sulcus, traverses the sulcus at a fairly constant curvature and only
presents large variations at the most distal part; in turn, the RCA does not present a
region of constant mean curvature, which is due to the mix of patients with C and Σ-shaped
arteries.

For the patient sample considered in this work, a total of 92 different arteries were
labeled, the mean frequency of appearance was F̄ = 10 ± 14. Figure 5.2 presents the
frequency (F ) of arteries such that FA ≥ F̄ . The main arteries, LAD, LCx and RCA
are present in all patients, while the left main artery (LM) is absent in one patient, in
which the LCx branches from the right sinus of valsalva (pathology known as anomalous
origin of coronary artery from opposite sinus (AOCAOS) [108], which is rare). The ramus
intermedius artery (RI) was identified in cases of trifurcations of the LM artery, and was
present in 27% of patients, which agrees with data reported in [345]. The high frequency
of the right posterior descending arteries (RPD) and right posterolateral segment arteries
(RPLSA) relative to their left counterparts is explained by circulation dominance. For our
patient sample, 87.5% has right-dominant, 6.25% left-dominant and 6.25% has co-dominant
circulation, which agrees with the literature [108]. The criterion used to identify circulation
dominance was the following: Right, if the RPD11 artery was present and the {LPLSA2,
LPDA13} are not present, for patients were image quality did not allow segmentation of
RPDA and do not have LPLSA neither LPDA1, but the RCA was larger than the mean (120
mm) right dominance was assumed; Left, if the patient has LPLSA and LPDA1 arteries
but does not have RPDA1, left-dominance was considered; Co-dominant circulation was
identified when patients are neither left nor right dominant. The artery to the sinoatrial
was identified as the first atrial branch of the RCA or of the LCx (labels RCA_AB1 and
LCx_AB1) which was found in 54% and 33% of the patient population, respectively, and
which also agrees with anatomical reports [108]. These data suggest that we are using a
representative sample in terms of anatomical description of the coronary vasculature.

Image quality and resolution limits the segmentation of small arteries to small prox-
imal segments, which are sufficient to compute rising angles, but not to perform significant

1First right posterior descending artery.
2Left posterolateral segment artery.
3First left posterior descending artery.
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Figure 5.1: Point-wise variables, radius (left column) and curvature (right column) along
LAD (top row), LCx (mid row) and RCA (bottom row).

geometric characterization of such small arteries. Figure 5.3 presents box plots of some
geometric descriptors for relevant arteries. In the construction of these plots, only arteries
larger than 15 mm in length were taken into account.

Our data indicates that the major coronary arteries (LAD, LCx and RCA) have
a mean length of roughly 130, 60 and 120 mm, respectively, which matches anatomical
data [349, 345]. Mean lengths of diagonal and obtuse branches of the LAD and LCx tend
to decrease from proximal to distal, while proximal branches of the RCA are shorter than
mid-distal ones.

Arterial radius is commonly discriminated among ostium and proximal-middle-distal
tracks, because arteries generally taper in diameter, and usually, measures are taken at a
single point for clinical usage [94, 345, 31]. This explains underestimation of the mean
radius feature, when compared to the literature, and the smaller r̄ value of the LAD when
compared to the other two major arteries. As expected, mean radii of bifurcating branches
are smaller. The RPDA and RPLSA typically rise from the end point of the RCA and
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Figure 5.2: Appearance frequency of arteries with FA ≥ F̄ = 10. For notation, refer to
Appendix B.

therefore are continuations rather than side branches (ConusA4, RM5), this explains the
increase in mean radius of those arteries compared to proximal branches of the RCA.

Tortuosity of the major arteries is larger than those of branching vessels mainly
because of their path over the myocardium surface. By definition, see equation (3.1.1),
larger values of length and small euclidean distance between ostium and terminal points
imply larger tortuosity. These conditions are present in all three major arteries: the RCA
and LCx traverse the atrioventricular sulcus towards the crux, which is reached by the
RCA in most cases (right circulation dominance), which explains the higher tortuosity of
the RCA when compared to the LCx. The LAD artery travels into the upper portion
of the interventricular sulcus, and continues towards the apex of the heart, in the cases
when the artery passes the apex, the euclidean distance decreases, resulting in increased
tortuosity. These loop-back paths are characteristics of these long arteries, and explain
smaller tortuosity in the other branches.

On the other hand, mean curvature shows a different distribution when compared
to tortuosity. Although the main arteries have similar mean curvatures, the branches tend
to have larger values as their bending is more pronounced in space. It was found that the
left subtrees (originating from the LAD and LCx) have similar mean curvature and were
smaller when compared to those of the right subtree.

Clinical literature addressing bifurcation angle quantification can be based on in-vivo
images or ex-vivo dissections. There are many forms of measuring angles. For example, in
three-dimensional images three angles of take-off of the RCA and LM can be considered.
They are measured in relation to the axis of the aortic root in three planes: seen from
above (equivalent to the transversal plane), seen from lateral (equivalent to the sagittal
plane) and seen from the front (equivalent to the coronal plane) [345]. The angle mea-
suring technique employed in this work is objective and well defined for all arteries (see
Chapter 2, Section 2.3.5). It was found that the septal branches of the LAD had wider
bifurcation angles than the diagonals, while the latter had larger rising angles than the
obtuse marginals of the LCx artery. The LCx had a wider rising angle than the LAD,
which is sometimes considered as the LM continuation [108]. In the right tree, branches
arise with larger angles except for the terminal branches.

4Conus artery
5Right marginal artery.

46



Chapter 5. Data analysis examples

LAD D1 D2 S1 LCx OM1 OM2 RI RCA ConusA1 RM1 RM2 RPDA1 RPLSA

0

20

40

60

80

100

120

140

160

180

200

220

ℓ
[m

m
]

n=48 n=27 n=18 n=6 n=48 n=30 n=18 n=10 n=48 n=28 n=29 n=14 n=36 n=28

LAD D1 D2 S1 LCx OM1 OM2 RI RCA ConusA1 RM1 RM2 RPDA1 RPLSA

0

0.5

1

1.5

2

2.5

χ

LAD D1 D2 S1 LCx OM1 OM2 RI RCA ConusA1 RM1 RM2 RPDA1 RPLSA
0

0.05

0.1

0.15

0.2

κ̄
[m

m
−
1
]

LAD D1 D2 S1 LCx OM1 OM2 RI RCA ConusA1 RM1 RM2 RPDA1 RPLSA

0.5

1

1.5

2

2.5

r̄
[m

m
]

LAD D1 D2 S1 LCx OM1 OM2 RI RCA ConusA1 RM1 RM2 RPDA1 RPLSA

0

20

40

60

80

100

120

140

α
[d
e
g
]

Figure 5.3: From top to bottom, box plots of length, tortuosity, mean curvature, mean
radius and rising angle distribution along the most relevant coronary arteries that satisfied
a cut-off criterion of ` ≥ 15 mm. The occurrence of each artery (n) is presented in the
length plot. Gray circles and lines indicate mean values, and link connected arteries.
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5.2.2 Association among geometric features

In Chapter 3, we have incorporated morphometric descriptors to complement the
simpler measures reported in the specialized literature. But we can further analyze the
feature space by identifying relationship between descriptors intra and inter arteries. Fig-
ure 5.4 presents significant feature correlations (p < 0.01) through hive and arc plots for
the three major arteries. The Spearman correlation coefficient was used for continuous
and ordinal variables. Features representing minima and maxima were skipped. In all
plots, red links between arteries stand for positive correlation, and blue ones for negative
correlation.

5.2.2.1 Intra-arterial correlation

Similar association patterns are observed in the three arc graphs in Figure 5.4, i.e:

• Correlation among curvature derived features;

• Lack of strong association between lesion number (η) and any geometric feature, for
the chosen level of significance;

• Negative correlations involve entropy (Hκ) and pressure (Pκ) derived from point-wise
curvature;

• Mean and total torsion (τ̄ , τT ) only correlate with each other. This behavior is
attributed to the fact that point-wise τ can be positive or negative, but the absolute
value is not accounted in these two features, while τ2 is used in the other torsion
derived features;

Most of the feature associations were somehow expected since many features depend on
point-wise or average values of other features, e.g. κ̄, κT , ζ̄, or ` and χ, indicating that two
descriptors characterize similar geometric aspects. Besides, it is observed that features of
the RCA are more correlated when compared to the LAD and LCx, the latter presenting
fewer strong correlations.

Nevertheless, there are some relationships that are characteristics of each artery, e.g.:

• Angle α only correlates with other features (particularly the κ̄) in the LCx;

• In the LCx and LAD, the number of visible (large) branches Υ is positively correlated
to the mean rising angle of the offspring (β). Although Υ increases with r̄ in the
three arteries, only in the LCx a strong correlation exists between Υ and `;

• An expected negative correlation is present between r̄ and Λr in the LCx and RCA,
but it is not present at the LAD with the current level of statistical confidence;

• The average distal curvature κ̄d, presents more associations with other features in
the LAD than in the other arteries;

• Curvature-derived thermodynamics, present different association patterns in the three
arteries, i.e. few correlations in the LCx, more positive correlations involving Tκ in
the LAD, and more negative correlations involving Pκ in the RCA. These differences
may be explained by the characterized point-wise distribution of κ in the arteries
(see Figure 5.1)
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5.2.2.2 Inter-arterial correlation

Several observations can be made from the analysis of inter arterial feature correla-
tion, summarized below:

• Curvature derived features are correlated among the three arteries;

• Mean radius and aspect ratio are somehow related among the three arteries, suggest-
ing a global relationship of vascular caliber;

• Positive lesion correlation among the three arteries suggests an increasing risk of
developing three vessel disease, when individual arteries are compromised. These
result agrees with the fact that all patient present at least one systemic risk factor,
which increase risk of atherosclerosis at a systemic level;

• The high number of association between features of the LCx and RCA, when com-
pared to the LAD, can be explained by the fact that both arteries run analogous paths
over the heart anatomy, travel the left and right atrioventricular sulcus respectively.
Therefore, a global geometric similarity is expected,

These findings suggest that descriptors reflect a global geometrical structure, where the
complete coronary tree tends to present larger or smaller arterial curvature and lumen
radius.
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Figure 5.4: Features relationship for the LAD, LCx and RCA arteries. Inter arterial
features correlation in a hive plot at the top, intra arterial features correlations at the
bottom.

5.3 Geometric features of the RCA

Up to date, the shape of the coronary arteries is not to be a known risk factor
for CAD. In turn, there is evidence that the shape of the right coronary artery (RCA),
which is known to be C or Σ shaped, is influential. Dvir et. al. [100] first pointed out
that short RCA where associated to arterial narrowing. In a successive work [101], the
RCA shape was studied by the first time, exploring the association to the length and
the presence of lesions. Thus, it was found that C-shape are shorter than Σ-shape RCAs
and also associated to lesion presence. More recently, [23] reported that flow-mediated
endothelium-dependent dilation in the brachial artery is significantly higher in Σ-shaped
compared to C-shaped, suggesting a potential mechanism whereby C-shaped RCA are
susceptible to atherosclerosis. Other groups [89], showed that C-shape is an independent
predictor of significant CAD. All these studies rely on invasive angiographic images, and
manual measurements to classify the RCA shape. In this section, the association between
RCA shape and the geometric features, introduced in Chapter 3, is explored. Shape
classification methods, based on the true geometry of the RCA obtained from noninvasive
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CCTA images, are tested with encouraging results.
The RCA shape was classified by an specialized cardiologist from the constructed

geometrical models. Different classification criteria had been used in the literature. For
example, some authors [101, 89] define shape from manual measurements of distance in the
angiographic image, which must be acquired following a specific protocol. In this work,
the criterion defined in [23] was used: Σ-shape arteries have an indentation of at least the
width of the artery. Any RCA that did not comply with this definition is defined as C-shape
RCA.

From the original sample of 48 patients, one arterial model could not be classified
because the RCA was too short. This patient and the associated sibling were removed from
the sample used in the section. Expert classification resulted in 30 C and 16 Σ shaped
arteries.

Geometric descriptors association to RCA-shape can be identified by standard Mann-
Whitney U-Test. Figure 5.5 presents box-plots of features with statistically significant
(p < 0.05 in the U-Test) difference in the mean values between C-shape and Σ-shape
RCA. Note that feature values have been normalized to have sample-wide zero mean and
unitary standard deviation. Minimum-maximum based features where not included in this
test. Results indicate that:

• With the exception of the entropy derived from curvature (Hκ) and the associated
pressure (Pκ), all the other feature values are greater for the Σ-shape group.

• The rising angle of the RCA (α), branch count (Υ) and offspring mean rising angle
(β) are not associated to the RCA shape.

• Although the mean radius (r̄) is not directly associated to the RCA shape, the
curvature and torsion ratios (Λκ,Λτ ), which combine spatially distributed radii with
curvature and torsion respectively, are different between groups.

• Curvature derived features are strongly associated to the RCA-shape.

• Regarding the thermodynamic descriptors introduced in Chapter 3 (see Section 3.2.2),
it was found that all, except for curvature-derived temperature (Tκ), are associated
to the RCA shape. Particularly, the entropy associated to the number of intersections
between the curve and planes (Hn) obtained the second smallest p-value.

• The number of lesions is not different between groups. Furthermore, association be-
tween lesion presence and RCA shape was tested using the standard χ2 test, resulting
in no significant association (p ' 0.7). The lack of agreement with reported data in
the literature [101] could be related to the small sample size.

The Andrew’s plot [19] is a widespread visualization method in data mining that
allows inspection of multidimensional data in two dimensions. In a nutshell, the technique
transforms each observation to a function A(t) of a dummy variable t ∈ [0, 1]. In this
context, an observation is a RCA defined by a real vector, f ∈ Rn, n = 17, constructed
from the values of the subset of geometric descriptors listed in Figure 5.5. In this work,
we use the following Andrew’s transformation

A(t) =
f(1)√

2
+

bn/2c∑
i=1

f(2i) sin(2iπt) +

dn/2e∑
i=2

f(2i−1) cos(2(i− 1)πt) ∀t ∈ [0, 1]. (5.3.1)

The Andrew’s function of each RCA are presented in Figure 5.6a, and the median
and quantiles enclosing the 50% of each group are presented in Figure 5.6b. From this
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representation the difference among the C and Σ shapes are better appreciated in the
extremes of the mapped function, where the Σ shaped arteries achieve higher values; a
general difference in the phase of the functions can also be visualized.
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Figure 5.5: Sub-set of features with statistically significant (p < 0.05) difference in mean
values for the C and Σ shaped RCA. Features are sorted from left to right in ascending
order of the associated p-value.
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Figure 5.6: Panel (a) presents the Andrew’s plot of the individual 46 analyzed RCAs.
Panel (b) shows the medians and quantiles enclosing the 50% of the samples of each group.

The association between the subset of features in Figure 5.5 and RCA shape indicates
that classification is possible. As a proof of concept, a linear and a kernel density classifiers
were tested. For the linear case, recalling Chapter 4 (see Section 4.3.1) the classification
variable c for each artery is defined as c = w · f , where f ∈ Rn is the features vector
(n = 17), and w ∈ Rn is a weighting vector. In this example, wi = −1 ∀i 6= {Hκ, Pκ}
and wi = 1 otherwise. Recalling Figure 5.5, and considering the given weight vector, it is
expected that Σ-shape RCAs score smaller c values than C-shape arteries. Therefore, given
a threshold value ĉ, the classifier identifies c < t as a Σ-shape artery. Figure 5.7a shows the
classifier score for different values of the cut-off variable t. The percentage of Σ-shape in the
patient sample accordingly to the expert classification is 34.78% (prevalence). Particularly,
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for t = −2, it was found that

• The proportion of correctly identified Σ-shape arteries is 87.50% (sensitivity).

• The proportion of correctly identified C-shape arteries is 96.67% (specificity).

• The proportion of correctly classified RCAs is 93.48% (accuracy).

The receiver operator curve (ROC) of the classifier is presented in Figure 5.7b. The ROC
illustrates the performance of the classifier for different values of the threshold param-
eter (t). A random classification would produce a diagonal line known as the line of
no-discrimination. A perfect classification would produce a line from (0, 1) to (1, 1). To
quantify the ROC, the area under the curve (AUC) is used. In the context of this ex-
ample, the AUC measures the probability that a randomly selected Σ-shape artery scores
a c value lower than a randomly selected C-shape. For the chosen weighting vector, the
AUC=0.9490, which is very close to 1 (the AUC of a perfect classifier).

−30 −20 −10 0 10 20
0

0.2

0.4

0.6

0.8

1

Threshold

Sensitivity

Specificity

Accuracy

Prevalence

(a)

 0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0
 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

1 - Specificity

S
en

si
ti
v
it
y

Receiver operator curve

(b)

Figure 5.7: Panel (a) presents the sensitivity, specificity and accuracy of the binary classifier
for a wide range of cut-off values. Panel (b) shows the associated receiver operator curve.

Regarding multivariate kernel density classification6 (see Chapter 4, Section 4.3.2),
a feature selection problem was solved in order to choose the feature set such that clas-
sification score is maximum. We tested the standards sequential (forward and backward)
feature-selection strategies, also the features sets containing the complete set (25 features),
only geometric (19 features), only thermodynamic (6 features), and the one specified by
the U-Test, Figure 5.5. All of these sets resulted in suboptimal classification scores when
compared with a “brute force” search of a 6-feature set that maximizes the average of the
LOOCV classification scores. We call such feature set FB6 and, for the sake of clarity, we
only present results using such set.

Table 5.3 presents the performance of the classifier using leave-one-out cross-validation.
The brute-force search yields FB6 = {κ̄, ζT ,Λr,Λτ , Tn, Hn}.

This results emphasizes the association between geometric features of the RCA and
the characteristic shape of the artery, demonstrating that automatic classification is possi-
ble. Further analysis on the heritability of the RCA shape between siblings are presented
in Section 5.5.

6Tests using the well-known naive KDC were also performed, but with sub-optimal results when com-
pared to multivariate KDC.
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FB6 (34.8%)
Acc. 0.96
Sen. 0.88
Spe. 1.00
PPV 1.00
NPV 0.94

Table 5.3: Multivariate kernel density classification scores for LOOCV. The prevalence
indicated in parentheses, of the Σ-shape is 34.8%.

5.4 Arterial geometric likelihood in siblings

In this section, we make use of the mathematical framework and similarity indexes
introduced in Chapter 4 (see Section 4.1) to test for relative likelihood of coronary arterial
geometry between siblings. In this section, only the conventional features listed in Table 3.1
were used. Table 5.4 presents the subsets of features that minimize the rSRI for each arterial
selection. Those minimizing subsets were found through a brute force algorithm, except
G3Amin, which is defined as the union of the minimizing subsets for each artery.

SA GA
min

SLAD GLADmin = {χ, r̄, rm, κM , τm, ζ̄, ζm, ζM , ξκ,Υ}
SLCx GLCxmin = {rM , κT , τm, ζm, β}
SRCA GRCAmin = {r̄, κT , ζM ,Λr, %, β}
S3A G3Amin = {GLADmin ∪ GLCxmin ∪ GRCAmin }

Table 5.4: Subsets of features that minimize the SRI for each arterial subset.

In order to show the impact of geometric normalization, we perform some tests
using two population samples, namely Pr and Pn, both containing the entire patient
sample, the former is based on the raw centerlines and the latter contains the normalized
geometries, as explained in Chapter 2 (see Section 2.3.6). The entire set of features for the
main coronary arteries (G3Aall ) is used for each population, which produces the associated
feature spaces F p = F (G3Aall p), where the subscript p = {r, n} stands for the raw or
normalized population. It is worthwhile to mention that the construction process of the
feature space ensures a zero mean and unitary standard deviation in each dimension.
Therefore, measuring dispersion through total variance is not an option, and the generalized
variance is zero, suggesting strong correlation between variables. We make use of the
ranking definition to estimate how much the normalization affects inter-patient distances.
First, we compute the ranking matrices Mp ∈ R|P|×(|P|−1) for each feature space, where
row i contains the ranking list for patient i. Then, we subtract M = Mr −Mn and
count the number of nonzero entries (z). Hence, we can calculate what we call the ranking
dispersion index RDI = z/(|P|× (|P|−1))), which is zero when ranking remains identical
as predicted by both feature spaces (with and without normalization), and has a maximal
unitary value when the pattern of the ranking list of the patients has completely changed,
i.e., all entries have nonzero values. Therefore, a value of RDI close to one indicates that
normalization significantly changes the relative distances between patients. In this test we
obtain RDI = 0.7735, indicating that the 77% of the ranking positions changed after the
geometric normalization, furthermore, it was found that all patients changed position in
some ranking list at least once.

Now, we proceed to show evidence of geometric likelihood between siblings when

54



Chapter 5. Data analysis examples

compared to the rest of the population. This will be assessed using two tests, first we test
if distance d(a,b) is smaller when a and b are siblings, and second we present results of
the relative sibling ranking index (rSRI, see definition in Chapter 4, Section 4.1).

We performed a standard one-tailed Mann-Whitney U-Test, to show that the mean
distance between siblings is smaller than the mean distance between non-sibling patients
in the sample. Figure 5.8 presents box plots of the sibling and non-sibling distances, with
means and the p-values for the test. The test was performed for the G3Aall and G3Amin features
subsets using raw and normalized data. In all tests, the mean distance between siblings is
smaller within the 5% of significance level. Furthermore, the result holds for both feature
spaces, raw and normalized.

Figure 5.9 presents values of the rSRI for different feature sets (with and without nor-
malization), constructed from the LAD, LCx and RCA arteries separately and considering
the three vessels altogether, taking into account all features (GA

all) and feature subsets that
minimize the rSRI for each individual artery (GA

min). The rSRI evaluation agrees with the
U-Test outcomes, in the sense that it also points out the existence of a geometric likelihood
between siblings when compared to the rest of the population.

Figure 5.10a presents the centerlines corresponding to the coronary networks for the
entire raw data set. Centerlines were translated to have the origin in their aortic root,
and rotated to register a reference geometry using the coherent point drift registration
method [243]. Clustering of the main arteries (LAD, LCx and RCA) can be seen in the
corresponding anatomical regions of the myocardium. Figure 5.10b presents a random
patient a ∈ F r (in black), his sibling denoted by sib(a) ∈ F r (in green), the most
similar b ∈ F r such that r(a,b) = 1 (in cyan) and the most different c ∈ F r such that
r(a, c) = |P| − 1 (in red). In this example, r(a, sib(a)) = 3 indicating a strong similarity
between both siblings, which can be qualitatively appreciated by the proximity of the
black and green centerlines of the RCA, LAD and LCx (in that order). Patient c is clearly
different from a, sib(a) and b, for example the LCx and LAD are significantly shorter, and
the RCA is clearly Σ-shaped while in the other patients RCA is C-shaped.
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Figure 5.8: Box plot of the distance distribution between siblings (black-boxes) and char-
acteristic distances among patients (gray-boxes) for different feature sets, using raw data
(r, left) and normalized data (n, right). Mann-Whitney U-Test p-values are presented
between the compared distributions, circle markers stand for the mean values.
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Figure 5.9: rSRI, for different arterial and features subsets, for raw and normalized data.
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Figure 5.10: Panel (a) shows centerlines of the complete coronary networks for the entire
patient sample, from left to right: transverse, coronal and sagital views; Panel (b) shows
the LAD, LCx and RCA arteries of a random patient a (in black), his sibling sib(a) (in
green), the most similar b such that r(a,b) = 1 (in cyan), and the most different c ∈ F r

such that r(a, c) = |P| − 1 (in red).
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5.5 Heritability of individual features

Standard statistical indicators, summarized in Chapter 4 (see Section 4.2.5), are
used to analyze the different arterial descriptors for each one of the major coronary ar-
teries. In the context of this section, geometric feature, variable and phenotype are used
interchangeably. Recalling that statistical indicators for binary and continuous variables
are employed, binary features were tested directly, while continuous features were tested
after being dichotomized, using the mean value of the feature for the patient sample as a
cutoff value (i.e. hereafter, saying that a patient tested positive for a given feature, means
that the feature value is larger than the mean of the sample); therefore, these types of
tests should be interpreted as an association of the feature between siblings relative to the
sample-mean value of the feature.

Association between phenotypes and presence of lesion is assessed by means of stan-
dards two-tailed χ2 and Mann-Whitney (U) tests. Statistical significance is assumed at
95% confident interval.

5.5.1 Geometric features of the LAD in siblings

Table 5.5 presents the quantitative values for all indicators presented in Chapter 4
(see Section 4.2.5), when assessing individual geometric features of the LAD in the patient
sample. From these results, it can be inferred that there is a relationship between geometric
descriptors of the LAD artery between siblings, particularly, it is noteworthy to remark
the following.

• The lesion presence in the LAD, which is a binary phenotype, obtained the highest
values of PBWR, indicating that the probability of a patient having a lesion in the
LAD increases if his sibling has a lesion in the same artery. The SimI test also indi-
cates the chances of both siblings having the same LAD status (healthy or diseased)
is high (70%). It was found that the RR is high (2.22) and statistically significant
(CI=[1.16,4.23]). Furthermore, the OR=5.71 (CI=[1.63, 19.95]) is also significant
and credible (COR=3.62), with a moderate positive association (PHI=0.36), and a
high Pw=0.82. These results agree with the literature reporting that familial history
of CADs is a risk factor [9, 10].

• When dichotomizing continuous variables by the mean in the sample, it was found
that:

– Several geometric features score high PBWR.

– The RR and OR result in statistically significant association, around 2 and 3.9
respectively, for the mean radius (r̄), the mean combined curvature (ζ̄) and
curvature-derived entropy (Hκ) although none of them satisfied the credibility
criterion.

– In turn, SimI> 0.5 for several features indicates that the probability of both
siblings having feature values greater or lower than the mean is high, especially
for the tortuosity (χ) and lesion presence.

• Tests for continuous variables render the following results:

– Pearson’s correlation coefficient (ρ), scores significant values (pρ < 0.05) for
tortuosity (χ), total curvature (κT ) and bending energy (ξκ).

– The ICC presented weak (but significant association) for the total curvature
and torsion (κT , τT ) , the bending energy (ξκ) and for the intersection counting
temperature and entropy (Tn, Hn).
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– The p-UTest is only significant (<0.05) for the curvature-derived entropy (Hκ).
Recalling results of Section 5.4, these findings indicate that standalone features
are not sufficient to show a significant similarity, when similarity is measured
through distance in feature spaces.

– Although the rSRI < 0.5 for several variables, most of the scores were close to
0.5, indicating that the patients tend to be ranked slightly below half of the
sample when comparing distances among the patient sample.

• Association between LAD phenotypes and presence of lesion showed significant levels
for the following set of descriptors {`, κT , ζT , ξκ, %,Υ, β, κ̄d, Tκ, Tn, Hn}. From this
set, only the subset {κT , ζT , ξκ, Tn, Hn} scored some kind of heritability (ICC or ρ)
different from the SimI. Section 5.7 explores in more detail the association of features
and lesion in the LAD, and provides results for classification of healthy/diseased
arteries from feature values.
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Feature PBWR SimI ρ  p-ρ rSRI p-UTest ICC p-ICC RR RR_CI_L RR_CI_U OR OR_CI_L OR_CI_U PHI COR Pw p- Chi^2 p-U-Test

Length 0.552        0.458        0.127        0.556        0.417           0.169            0.147        0.239        0.806        0.515        1.262        0.568        0.169        1.911        NaN NaN 0.143        0.026         0.005         

Tortuosity 0.400        0.750        0.438        0.032        0.427           0.109            0.108        0.301        2.533        0.881        7.284        3.556        0.765        16.528     NaN NaN 0.403        0.067         0.062         

Mean radius 0.636        0.667        0.300        0.154        0.333           0.074            0.312        0.062        2.068        1.072        3.991        3.938        1.182        13.117     0.287        9.096        0.631        0.633         0.448         

Mean curvature 0.375        0.583        0.335        0.109        0.479           0.467            0.305        0.066        1.200        0.531        2.711        1.320        0.375        4.645        NaN NaN 0.066        0.081         0.088         

Total curvature 0.316        0.458        0.474        0.019        0.552            0.476            0.371        0.032        0.704        0.324        1.530        0.568        0.169        1.911        NaN NaN 0.143        0.028         0.014         

Mean torsion 0.571        0.625        0.180        0.401        0.417           0.094            0.187        0.182        1.714        0.895        3.282        2.667        0.821        8.659        NaN NaN 0.375        0.289         0.448         

Total torsion 0.571        0.625        0.355        0.089        0.427           0.288            0.358        0.037        1.714        0.895        3.282        2.667        0.821        8.659        NaN NaN 0.375        0.289         0.357         

Mean Comb. Curv. 0.636        0.667        0.179        0.403        0.406           0.137            0.186        0.183        2.068        1.072        3.991        3.938        1.182        13.117     0.287        9.096        0.631        0.533         0.498         

Total Comb. Curv. 0.480        0.458        0.087        0.686        0.490           0.481            0.102        0.310        0.849        0.493        1.462        0.710        0.228        2.216        NaN NaN 0.085        0.081         0.037         

Aspect ratio 0.571        0.500        0.078        0.719        0.500            0.300            0.098        0.317        0.952        0.589        1.540        0.889        0.277        2.854        NaN NaN 0.039        0.190         0.194         

Curvature ratio 0.429        0.667        0.317        0.132        0.500            0.432            0.303        0.067        1.821        0.774        4.288        2.438        0.650        9.145        NaN NaN 0.276        0.212         0.159         

Torsion ratio 0.222        0.417        0.178        0.405        0.500            0.389            0.193        0.174        0.476        0.185        1.225        0.327        0.087        1.226        NaN NaN 0.387        0.299         0.448         

Bending energy 0.333        0.667        0.725        0.000        0.479           0.428            0.338        0.047        1.500        0.548        4.105        1.750        0.417        7.346        NaN NaN 0.130        0.017         0.008         

Twisting energy 0.476        0.542        0.174        0.417        0.531            0.561            0.194        0.173        1.169        0.617        2.214        1.322        0.419        4.176        NaN NaN 0.069        0.088         0.074         

Fractal dimension 0.522        0.542        0.188        0.379        0.448           0.270            0.183        0.188        1.186        0.657        2.140        1.388        0.445        4.329        NaN NaN 0.081        0.021         0.020         

Branch count 0.609        0.625        0.177        0.409        0.406           0.240            0.182        0.189        1.691        0.912        3.133        2.765        0.859        8.907        NaN NaN 0.403        0.018         0.036         

Rising angle 0.500        0.500        (0.006)      0.980        0.510            0.743            0.013        0.474        1.000        0.568        1.761        1.000        0.323        3.101        NaN NaN 0.025        0.884         0.892         

Mean offspring rise angle 0.545        0.583        0.032        0.882        0.542            0.781            0.052        0.401        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.028         0.060         

Average distal curvature 0.316        0.458        0.057        0.790        0.490           0.615            0.048        0.408        0.704        0.324        1.530        0.568        0.169        1.911        NaN NaN 0.143        0.003         0.002         

Temperature (curvature) 0.417        0.417        (0.234)      0.270        0.573            0.892            (0.227)      0.864        0.714        0.399        1.278        0.510        0.162        1.608        NaN NaN 0.207        0.004         0.006         

Preassure (curvature) 0.667        0.625        0.067        0.756        0.385           0.186            0.077        0.355        1.556        0.887        2.727        2.667        0.821        8.659        NaN NaN 0.375        0.493         0.607         

Entropy (curvature) 0.692        0.667        0.196        0.359        0.240           0.041           0.167        0.209        1.904        1.035        3.501        3.938        1.182        13.117     0.287        9.096        0.631        0.755         0.665         

Temperature (cut points) 0.571        0.625        0.396        0.055        0.427           0.251            0.344        0.044        1.714        0.895        3.282        2.667        0.821        8.659        NaN NaN 0.375        0.034         0.030         

Preassure (cut points) 0.615        0.583        0.180        0.401        0.406           0.337            0.121        0.279        1.354        0.782        2.345        1.920        0.606        6.080        NaN NaN 0.196        0.271         0.291         

Entropy (cut points) 0.609        0.625        0.404        0.050        0.385           0.173            0.363        0.035        1.691        0.912        3.133        2.765        0.859        8.907        NaN NaN 0.403        0.051         0.048         

Lesion Presence 0.741        0.708        NaN NaN 0.385           0.185            NaN NaN 2.222        1.166        4.234        5.714        1.636        19.957     0.365        3.626        0.825        NaN NaN

Table 5.5: Statistical indicators of similarity of individual geometric features for the LAD artery.
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5.5.2 Geometric features of the LCx in siblings

Table 5.6 presents the quantitative values for all indicators presented in Chapter 4
(see Section 4.2.5) when assessing individual geometric features of the LCx in the patient
sample. In agreement with the results presented in Section 5.4, the LCx shows less heri-
tability than the LAD and RCA (see Section 5.5.3). Particularly, we remark the following.

• The lesion presence in the LCx does not present statistically significant values of RR
nor OR. Furthermore the PBWR and Pw are small. Such results indicate that for
any given patient, it would not be appropriate to assume risk of lesion in the LCx,
given that his sibling has a lesion in the same artery.

• When dichotomizing continuous variables by the mean of the sample yields:

– Some geometric features score high PBWR.

– The number of features with statistically significant values of RR and OR is re-
duced to four {κ̄, κT , ζm, Tκ}, and only the last one did not satisfy the credibility
criterion.

– The RR and OR scored significant values for the mean and total curvature
(κ̄, κT ) and Tn. Nevertheless, the credibility criterion was only satisfied by the
κ̄ and κT , both with good Pw, 82.5% and 78.5%.

– In turn, SimI> 0.5 for several features indicates that the probability of both
siblings having feature values larger or lower than the mean is high. Particularly
for κ̄ and κT .

• Test for continuous phenotypes was not statistically significant for any phenotype.

• Although the rSRI < 0.5 for several variables, most of the scores were close to 0.5,
indicating that the patients tend to be ranked slightly below half of the sample when
comparing distances among the patient sample.

• Association between LCx phenotypes and presence of lesions showed significant levels
only for Pn and Λτ , none of which scored any kind of heritability.
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Feature PBWR SimI ρ  p-ρ rSRI p-UTest ICC p-ICC RR RR_CI_L RR_CI_U OR OR_CI_L OR_CI_U PHI COR Pw p- Chi^2 p-U-Test

Length 0.545        0.583        0.055        0.800        0.323           0.076            0.068        0.371        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.094      0.229      

Tortuosity 0.476        0.542        (0.066)      0.758        0.490           0.440            (0.047)      0.587        1.169        0.617        2.214        1.322        0.419        4.176        NaN NaN 0.069        0.240      0.080      

Mean radius 0.526        0.625        (0.069)      0.750        0.271           0.128            (0.058)      0.608        1.696        0.850        3.382        2.469        0.747        8.163        NaN NaN 0.320        0.394      0.439      

Mean curvature 0.667        0.708        0.292        0.166        0.344           0.197            0.307        0.065        2.571        1.270        5.208        5.714        1.636        19.957     0.365        3.626        0.825        0.614      0.748      

Total curvature 0.632        0.708        0.126        0.557        0.365           0.131            0.130        0.265        2.617        1.260        5.435        5.388        1.525        19.029     0.347        4.169        0.785        0.865      0.186      

Mean torsion 0.462        0.417        (0.174)      0.417        0.552            0.808            (0.154)      0.771        0.725        0.430        1.222        0.490        0.153        1.565        NaN NaN 0.223        0.738      0.642      

Total torsion 0.480        0.458        (0.066)      0.761        0.510            0.481            (0.046)      0.585        0.849        0.493        1.462        0.710        0.228        2.216        NaN NaN 0.085        0.868      0.660      

Mean Comb. Curv. 0.545        0.583        0.401        0.052        0.427           0.074            0.404        0.021        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.316      0.300      

Total Comb. Curv. 0.545        0.583        0.133        0.536        0.479           0.343            0.100        0.314        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.094      0.131      

Aspect ratio 0.400        0.375        (0.098)      0.649        0.583            0.680            (0.072)      0.635        0.613        0.348        1.079        0.356        0.110        1.149        NaN NaN 0.413        0.868      0.877      

Curvature ratio 0.250        0.500        (0.095)      0.660        0.552            0.392            (0.067)      0.624        0.667        0.255        1.740        0.556        0.146        2.119        NaN NaN 0.126        0.480      0.398      

Torsion ratio 0.444        0.583        0.057        0.791        0.479           0.377            0.071        0.366        1.333        0.647        2.748        1.600        0.482        5.313        NaN NaN 0.119        0.016      0.020      

Bending energy 0.286        0.583        0.007        0.975        0.375           0.092            0.005        0.490        0.971        0.365        2.584        0.960        0.243        3.794        NaN NaN 0.028        0.714      0.186      

Twisting energy 0.375        0.583        (0.109)      0.613        0.458           0.194            (0.081)      0.650        1.200        0.531        2.711        1.320        0.375        4.645        NaN NaN 0.066        0.480      0.098      

Fractal dimension 0.476        0.542        0.004        0.984        0.479           0.351            0.024        0.452        1.169        0.617        2.214        1.322        0.419        4.176        NaN NaN 0.069        0.065      0.098      

Branch count 0.500        0.583        0.320        0.128        0.375           0.081            0.262        0.100        1.400        0.722        2.716        1.800        0.559        5.792        NaN NaN 0.165        1.000      0.769      

Rising angle 0.522        0.542        0.223        0.294        0.448           0.191            0.218        0.144        1.186        0.657        2.140        1.388        0.445        4.329        NaN NaN 0.081        0.617      0.915      

Mean offspring rise angle 0.500        0.583        0.070        0.746        0.490           0.446            0.077        0.354        1.400        0.722        2.716        1.800        0.559        5.792        NaN NaN 0.165        0.499      0.202      

Average distal curvature 0.375        0.583        0.219        0.304        0.438           0.288            0.235        0.126        1.200        0.531        2.711        1.320        0.375        4.645        NaN NaN 0.066        0.480      0.660      

Temperature (curvature) 0.333        0.333        (0.256)      0.228        0.542            0.645            (0.237)      0.874        0.500        0.266        0.941        0.250        0.075        0.830        0.375        0.125        0.645        0.505      0.766      

Preassure (curvature) 0.667        0.583        0.089        0.680        0.521            0.591            0.106        0.303        1.200        0.739        1.948        1.600        0.482        5.313        NaN NaN 0.119        0.731      0.385      

Entropy (curvature) 0.667        0.583        (0.053)      0.806        0.448           0.296            (0.034)      0.563        1.200        0.739        1.948        1.600        0.482        5.313        NaN NaN 0.119        0.731      0.279      

Temperature (cut points) 0.545        0.583        0.034        0.873        0.510            0.525            0.055        0.394        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.094      0.194      

Preassure (cut points) 0.462        0.417        (0.076)      0.725        0.531            0.612            (0.059)      0.610        0.725        0.430        1.222        0.490        0.153        1.565        NaN NaN 0.223        0.019      0.019      

Entropy (cut points) 0.545        0.583        0.037        0.865        0.521            0.511            0.057        0.391        1.418        0.764        2.631        1.920        0.606        6.080        NaN NaN 0.196        0.094      0.179      

Lesion Presence 0.167        0.583        NaN NaN 0.531            0.581            NaN NaN 0.600        0.152        2.362        0.520        0.097        2.802        NaN NaN 0.095        NaN NaN

Table 5.6: Statistical indicators of similarity of individual geometrical features for the LCx artery.
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5.5.3 Geometric features of the RCA in siblings

Table 5.7 presents the quantitative values for all indicators presented in Chapter 4
(see Section 4.2.5), when assessing individual geometric features of the RCA in the patient
sample. A large amount of statistically significant associations of feature between siblings
was found. These results agree with those reported in Section 5.4, where it was shown that
the RCA presents higher similarities between siblings than when compared to non siblings.
Particularly, we remark the following.

• The lesion presence in the RCA, has moderate values of PBWR and SimI, 52% and
62% respectively. Nevertheless the RR and OR are not statistically significant.

• Dichotomization of continuous variables by the sample mean shows that:

– Several geometric features score high PBWR, above 70%.

– The number of features with significant values of RR and OR is larger than in
the LAD and LCx cases, several of which also satisfied the credibility criterion
and featured high Pw values.

– Furthermore, it was obtained SimI> 0.5 for several features, resulting in larger
values than in the LAD and LCx arteries for the same phenotypes. Particularly,
for the bending energy (ξκ) reached a SimI= 97%, scoring a perfect Pw.

• Test for continuous variables yielded:

– Pearson’s correlation coefficient (ρ) scored significant values (p < 0.05) for fea-
tures in the set: {`, χ, r̄, κ̄, κT , ζT ,Λr,Λκ, ξκ, ξτ , %, κ̄d, Tn, Hn}.

– The ICC also scored statistically significant values for these features and for the
mean offspring rise angle (β).

– The p-UTest is also significant for a large subset of these features, emphasizing
the results presented in Section 5.4.

– It is worth noting that the rSRI < 0.5 for several features, like for the LAD and
LCx; however, for the RCA smaller values are obtained.

• Finally, the RCA has two extra phenotypes, the Σ-shaped (binary variable) and
classifier c variable studied in Section 5.3. The dichotomization of the c continuous
variable was performed according to t = −2. Observe that a high degree of heri-
tability of the arterial shape is indicated by almost all tests, for both phenotypes.
Moreover, using the dichotomized value of the c variable produces better results.
This indicates that, although two sibling patients may have different RCA-shapes
(according to the expert observer), the shape characterized by the geometric features
are similar enough to be classified in the same group by the binary classifier. For
the c variable, it is observed that, the PBWR is high (> 0.65); the SimI indicates
that is highly probable (87% chance) that both siblings have the same shape (C or
Σ); The RR=8.267 (CI=[2.739, 24.954]) and OR= 37.333 (CI=[6.570, 212.132]) are
statistically significant and the OR satisfied the credibility criterion (COR=2.587);
showing a moderate positive association (PHI=0.654), and a high Pw=0.999. These
results strongly indicate that the RCA shape may have a genetic contribution.

• None of the RCA phenotypes presented significant association to presence of lesions.
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Feature PBWR SimI ρ  p-ρ rSRI p-UTest ICC p-ICC RR RR_CI_L RR_CI_U OR OR_CI_L OR_CI_U PHI COR Pw p- Chi^2 p-U-Test

Length 0.696        0.708        0.555        0.005        0.302           0.015           0.539        0.002        2.484        1.253        4.925        5.878        1.692        20.421     0.374        3.427        0.844        0.951      0.899      

Tortuosity 0.636        0.667        0.480        0.018        0.438           0.230            0.489        0.006        2.068        1.072        3.991        3.938        1.182        13.117     0.287        9.096        0.631        0.444      0.950      

Mean radius 0.636        0.667        0.622        0.001        0.281           0.002           0.586        0.001        2.068        1.072        3.991        3.938        1.182        13.117     0.287        9.096        0.631        0.675      0.541      

Mean curvature 0.667        0.792        0.607        0.002        0.417           0.094            0.617        0.000        4.400        1.819        10.641     11.200     2.668        47.015     0.467        2.883        0.955        0.551      0.555      

Total curvature 0.714        0.833        0.823        0.000        0.354           0.007           0.800        0.000        6.071        2.282        16.150     18.750     3.941        89.209     0.546        2.665        0.991        0.317      0.704      

Mean torsion 0.370        0.292        (0.189)      0.375        0.594            0.953            (0.161)      0.781        0.458        0.268        0.780        0.138        0.036        0.529        0.481        0.291        0.892        0.315      0.487      

Total torsion 0.429        0.333        (0.161)      0.453        0.625            0.922            (0.130)      0.733        0.536        0.331        0.866        0.188        0.050        0.707        0.414        0.178        0.753        0.212      0.423      

Mean Comb. Curv. 0.522        0.542        (0.025)      0.909        0.354           0.107            (0.018)      0.533        1.186        0.657        2.140        1.388        0.445        4.329        NaN NaN 0.081        0.514      0.658      

Total Comb. Curv. 0.727        0.750        0.629        0.001        0.344           0.002           0.626        0.000        3.152        1.493        6.652        8.889        2.402        32.900     0.455        2.662        0.955        0.863      0.643      

Aspect ratio 0.571        0.625        0.579        0.003        0.333           0.027           0.563        0.001        1.714        0.895        3.282        2.667        0.821        8.659        NaN NaN 0.375        0.315      1.000      

Curvature ratio 0.750        0.833        0.446        0.029        0.406           0.040           0.417        0.018        6.000        2.299        15.660     21.000     4.493        98.161     0.578        2.474        0.997        0.835      0.720      

Torsion ratio 0.435        0.458        0.063        0.771        0.448           0.407            0.064        0.379        0.836        0.459        1.522        0.710        0.228        2.216        NaN NaN 0.085        0.597      0.264      

Bending energy 0.800        0.917        0.836        0.000        0.354           0.006           0.769        0.000        15.200     3.808        60.665     72.000     8.778        590.536   0.684        3.285        1.000        0.155      0.628      

Twisting energy 0.556        0.667        0.523        0.009        0.406           0.209            0.508        0.004        2.083        1.011        4.293        3.438        1.002        11.790     0.244        >>3.43 0.517        0.939      0.613      

Fractal dimension 0.588        0.708        0.483        0.017        0.375           0.042           0.493        0.005        2.605        1.214        5.590        4.898        1.360        17.639     0.317        5.741        0.714        0.433      0.643      

Branch count 0.667        0.708        0.316        0.133        0.302           0.040           0.284        0.081        2.571        1.270        5.208        5.714        1.636        19.957     0.365        3.626        0.825        0.853      0.983      

Rising angle 0.421        0.542        0.065        0.762        0.458           0.404            0.066        0.375        1.110        0.549        2.243        1.190        0.366        3.872        NaN NaN 0.048        0.372      0.158      

Mean offspring rise angle 0.476        0.542        0.374        0.072        0.344           0.060            0.391        0.025        1.169        0.617        2.214        1.322        0.419        4.176        NaN NaN 0.069        0.683      0.088      

Average distal curvature 0.526        0.625        0.472        0.020        0.375           0.060            0.472        0.008        1.696        0.850        3.382        2.469        0.747        8.163        NaN NaN 0.320        0.135      0.461      

Temperature (curvature) 0.519        0.458        0.117        0.587        0.531            0.753            0.133        0.259        0.838        0.511        1.374        0.663        0.208        2.114        NaN NaN 0.101        0.110      0.332      

Preassure (curvature) 0.538        0.500        0.259        0.222        0.469            0.313            0.264        0.098        0.987        0.586        1.663        0.972        0.311        3.039        NaN NaN 0.028        0.675      0.850      

Entropy (curvature) 0.593        0.542        0.301        0.153        0.542            0.539            0.301        0.069        1.131        0.677        1.891        1.322        0.419        4.176        NaN NaN 0.069        0.853      0.784      

Temperature (cut points) 0.700        0.750        0.519        0.009        0.344           0.092            0.458        0.010        3.267        1.520        7.021        8.556        2.297        31.871     0.443        2.772        0.943        0.960      0.966      

Preassure (cut points) 0.273        0.333        (0.054)      0.804        0.563            0.679            (0.117)      0.711        0.443        0.210        0.935        0.234        0.069        0.799        0.385        0.143        0.671        0.675      0.365      

Entropy (cut points) 0.625        0.750        0.732        0.000        0.427           0.154            0.602        0.001        3.333        1.475        7.531        7.222        1.879        27.755     0.391        3.496        0.866        0.404      0.950      

Lesion Presence 0.526        0.625        NaN NaN 0.448           0.367            NaN NaN 1.696        0.850        3.382        2.469        0.747        8.163        NaN NaN 0.320        NaN NaN

Σ-Shaped 0.625        0.739        NaN NaN 0.326           0.024           NaN NaN 3.125        1.390        7.025        6.667        1.727        25.737     0.377        3.935        0.832        0.702      0.715      

Σ-Shaped (classifier c var.) 0.903        0.870        0.664        0.001        0.402           0.023           0.637        0.000        4.516        1.631        12.507     37.333     6.570        212.132   0.654        2.587        1.000        0.445      0.876      

Table 5.7: Statistical indicators of similarity of individual geometrical features for the RCA artery.
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5.6 Average distal curvature of the LAD

The behavior of the point-wise variables r(s) and κ(s) for each class, diseased (D)
and healthy (H), of the LAD artery, was explored by averaging the variables over each
subsample at each position s, which is discretized in an evenly-spaced scale and linearly
interpolated for each patient. Figure 5.11 shows the point-wise average for radius and
curvature, when normalizing the arc length to the interval [0, 1]. It can be observed that
the average curvature in the distal section and the average radii in the proximal section of
the subsample D are smaller than those of the subsample H. The behavior of the proximal
radii is somehow expected since most of the stenoses of the sample are proximal or mid-
vessel. Obviously, stenotic lesions are essentially related to the lumen area in the vicinity
of the lesion. However, previous evidences have unequivocally documented the diffusive-
ness of the atherosclerotic process, being frequently present even in normal-looking vessel
segments [84]. Therefore, using the vessel radius directly or implicitly to assess the relation
to stenosis presence may be questionable.

In order to quantify the efficiency of the curvature as a risk indicator of stenosis, the
average curvature of each artery κ̄d was calculated over the distal portion of the segment.
The fraction sd that defines the distal length for averaging is taken as the control parameter.
Figure 5.12 presents the area under the receiver-operator characteristic curve (AUC) of a
classifier method based purely on κ̄d for each value of sd. In addition, right tailed Mann-
Whitney U-Tests were also performed to assess statistically significant differences between
healthy and diseased distributions of κ̄d. The results of these tests are also presented in
Figure 5.12. It can be seen that an optimal partition exists when sd = 0.75, that is,
averaging over the distal 25% length of the artery.

(a) (b)

Figure 5.11: Comparison of the point-wise averages (curves) and STD (light-gray band)
of the entire sample, the healthy and diseased subsamples. Artery inner radius (a) and
curvature (b).

5.6.1 Arterial curvature analysis

Figure 5.13a presents a box plot of the distribution of κ̄d for healthy and diseased
LADs. Note that patients in the H group scored higher values (in average) than the
D group (p < 0.01), implying that diseased vessels have, in average, less curved shape.
Figure 5.13b shows statistical measures of the performance of the classifier as a function of
the discriminating threshold of κ̄d. It was found that using a threshold κ̄d = 0.0537mm−1

maximizes the accuracy, sensitivity and specificity of the classifier. The associated receiver
operator curve is displayed in Figure 5.13c. The optimal AUC score is 0.753. Table 5.8

64



Chapter 5. Data analysis examples

Statistical summary

Cut-off value 0.0537 mm−1

Sensitivity 0.7037
Specificity 0.8095
Accuracy 0.75
AUC 0.7531
PPV 0.8261
NPV 0.68
Median H 0.067891 mm−1

Median D 0.048876 mm−1

U 427
p-value 0.0012
Mean H 0.07712 mm−1

Mean D 0.04795 mm−1

Table 5.8: Mann-Whitney U-Test and classifier output associated to sd = 0.75. The
prevalence of the disease in the population is 56.25%.

details the classifier output and the right tailed U-Test used to determine if the mean value
of κ̄d was significantly higher in the H group, all using sd = 0.75.

Figure 5.14 presents the centerlines of healthy and diseased LADs, and illustrates
the difference between them. It can be qualitatively appreciated by visual inspection that
the diseased arteries seem to be more straight than healthy ones.

The patient sample used in the present work is composed of siblings. Therefore,
some standard test for heritability can be performed. When using the sibling condition
(healthy or diseased LAD) as a boolean phenotype, it was found: (i) a high probability
that a patient has a lesion given that his sibling has a lesion, given by the probandwise
ratio [220] (PBWR=74%); (ii) the risk ratio or relative risk (RR) is statistically significant
RR= 2.2 (with CI= [1.2, 4.2]); (iii) the odds ratio (OR) also scored a significant value
OR= 5.7 (with CI= [1.6, 20.0]), satisfying the credibility criterion [216] (with a critical
odds ratio COR= 3.6).

In turn, the average distal curvature (κ̄d), when used as phenotype, yielded no statis-
tically significant outcomes for the Pearson’s correlation coefficient (ρ), nor the interclass
correlation coefficient (ICC). Furthermore, if the cut-off value 0.0537mm−1 is used to
dichotomize the κ̄d into a binary phenotype, none of the aforementioned indexes (PBWR,
RR and OR) scored significant values.

Figure 5.15 presents a scatter plot of κ̄d for each pair of siblings. Healthy and diseased
LADs are represented with empty and filled circles respectively, the classifier cut-off value is
also displayed. The lack of a strong heritability of the mean distal curvature as a standalone
geometric descriptor suggests that this feature may be an independent predictor for CAD.

5.6.2 Association between curvature and lesion

Curvature patterns in LAD arteries have been characterized before by Zhu et al. [372]
using a sample of healthy LADs. In that study, the distal section of the artery is defined
as the fraction of the artery from the second diagonal branch to the arterial end, which
in most cases brackets distal segments longer than the last 25% of the artery length. In
that work, the reported median distal curvature of healthy LADs is 0.057mm−1, which is
within the range of healthy arteries found in the present study, i.e. κ̄d > 0.0537.

Although the statement that LADs with straighter distal segments are more prone
to present stenotic lesion appears counterintuitive at first sight, similar results have been
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Figure 5.12: Area under the receiver-operator curve (AUC) and U-Test p-values for each
partition point sd.

(a) (b)

(c)

Figure 5.13: Panel (a) shows the box plot for κ̄d distribution among healthy (H) and
diseased (D) LADs, patients in the H group scored higher values (in mean) than the D
group (p < 0.01). Panel (b) presents the performance of the classifier for a range of the κ̄d
cut-off value. Panel (c) shows the associated receiver-operator curve. Data correspond to
a partition point sd = 0.75.
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Figure 5.14: Illustration of the entire patient sample data. Healthy LAD centerlines are
on the left, and diseased over the right.

Figure 5.15: Scatter plot of average distal curvature (sd = 0.75) for each pair of siblings.

previously reported for the right coronary artery (RCA). Dvir et al. [101] reported that
C-shaped RCAs are associated with more atherosclerotic disease than Σ-shaped RCAs.
Demirgab et al. [89] showed that C-shape is an independent predictor of significant CAD.
Arbel et al. [23] reported that flow-mediated endothelium-dependent dilation in the brachial
artery is significantly higher in Σ-shaped compared to C-shaped, suggesting a potential
mechanism whereby C-shaped RCA are susceptible to atherosclerosis. In this context, it
can be conjectured the existence of a global anatomical behavior of the coronary arterial
network associated to plaque formation. The results of the present study support this
conjecture. Following this rationale, we have recently shown [53] that curvature derived
features in the main coronary arteries are positively correlated.

On the other hand, considering that the present study included a high-risk popula-
tion, with all patients presenting at least one of the major systemic risk factor (smoker,
hypertension, diabetes and/or dyslipidemia), one might hypothesize that high distal cur-
vatures may represent a potential physiological protective mechanism against plaque for-
mation in LAD arteries.
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It is also possible that straightness of the distal LAD arteries is a consequence, not
a cause, of the atherosclerotic process. In this scenario, the ultimate morphology of a
coronary vessel would be shaped by the disease (as hypothesized in [23] for the RCA), and
accordingly, atherosclerosis would cause arteries to change geometry over time. To the best
of our knowledge, there is no register in the literature which has documented this trend so
far, which indicates that this topic deserves further investigation.
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5.7 Association between lesions and geometric features

Over the years, several risk factors for CAD has been identified, and a rough clas-
sification can be made as next: (i) Systemic factors, which comprise (i.a) modifiable risk
factors (cigarette smoking, diabetes mellitus, hypertension, hypercholesterolemia, etc.),
(i.b) non-traditional atherosclerosis predictors (C-reactive protein, lipoprotein(a), brino-
gen, homocysteine, etc.) [139], (i.c) familial history [314, 167, 148] and genetic contribu-
tion to susceptibility for CAD [253, 132, 104, 285, 287, 221]. (ii) Biomechanical predic-
tors, which are expressed in terms of several indexes, e.g. wall shear stress and oscil-
latory shear index [120], and have been supported by evidence [189, 365, 123, 71, 82].
(iii) geometric risk factors [113], which suggest that the geometric variability of the hu-
man vasculature contributes to the development of atherosclerosis. In the context of
this work, we highlight that several clinical observations back up the geometric hypothe-
sis [153, 114, 371, 100, 101, 89, 23].

The amount of CVD explained by systemic risk factors is still controversial [143,
206, 60, 217], mainly because they do not explain the localization and non-uniformity
of atherosclerosis distribution [141, 69]. These medical observations are the motivation
behind the research developed in topics such as biomechanical and geometric risk factors.

Up to date, the shape of the coronary arteries is not to be a known risk factor for
CAD. However, there is evidence that the shape of the RCA is influential [100, 101, 89, 23].
Remarkably, in our dataset was found no statistical significant association between the
RCA shape and lesion, see Section 5.3. The focus of this section is to explore the association
of geometric features and arterial lesion on the principal coronary arteries.

The patients sample used in this study is described in Section 5.1, consists in 48
patients (24 pairs of siblings), and demographics data are shown in Table 5.1.

5.7.1 Identification of relevant thermodynamic and geometric features

Association between lesion presence and descriptors can be established with a stan-
dard Mann-Whitney U-Test. The LAD artery shows significant association of disease
with descriptors. Figure 5.16 presents box-plots of descriptors with significant (p < 0.05)
difference in the mean value between healthy and diseased LAD according to the U-Test.
Feature values have been normalized to have sample-wide zero mean and unit standard
deviation. The results indicate that:

• The average distal curvature (κ̄d), scores the best results in the U-Test.

• A few conventional features were found to be associated to lesion presence: bend-
ing energy (ξκ), branch count (Υ), fractal dimension (%), arterial length (`), total
curvature (κT ) and offspring mean rising angle (β).

• Some of the thermodynamic descriptors are significantly different in healthy and
diseased vessels. Specifically, the curvature-based temperature (Tκ) and random
plane intersection temperature (Tn).

• All the associated features present smaller mean values for diseased LAD vessels than
for healthy ones.

Regarding the RCA, no statistically significant (95% confident interval) association
was found between lesion presence and thermodynamic/geometric features. On the other
hand, the LCx presented association between disease and two features: intersection count-
ing pressure (Pn) and torsion ratio (Λτ ).

69



Chapter 5. Data analysis examples

N
or
m
al
iz
ed

va
lu
es

-2

0

2

4

κ̄d Tκ ξκ Υ ̺ ℓ κT β Tn

Healthy (n=21) Diseased (n=27)

Figure 5.16: Subset of features with statistically significant (p < 0.05) difference in mean
values for the healthy and diseased LAD arteries. Features are sorted from left to right in
ascending order of the associated p-value.

Following the same rationale used in Section 5.3 to identify the RCA shape, binary
classification can be performed to distinguish healthy and diseased LADs. Linear classifi-
cation (see Chapter 4, Section 4.3.1) was performed, but with suboptimal results compared
to multivariate kernel density classification7. As in Section 5.3, a feature selection problem
was solved in order to choose the feature set such that classification scores are maximized.
Standard sequential (forward and backward) feature-selection strategies were tested along
with the feature sets containing the complete set (25 features), only geometric (19 features),
only thermodynamic (6 features), and the one specified by the U-Tests for each artery. All
of these sets resulted in suboptimal classification scores when compared with a “brute force”
search of a 6-feature set that maximizes the average of the LOOCV classification scores.
Such feature set is called FB6 and, for the sake of clarity, we only present results using
such set.

Table 5.9 presents the performance results of the kernel density classifiers when
using LOOCV. The brute force search for the 6 features maximizing classification output
resulted in: (i) FRCA

B6 = {ζT ,Λκ, ξτ , β,Hκ, Hn}; (ii) FLAD
B6 = {κT , ζ̄,Λr,Λτ , ξκ, β}; (iii)

FLCx
B6 = {`, ζ̄,Λτ ,Υ, Pn, Hn}.

FRCA
B6 (41.3%) FLAD

B6 (56.3%) FLCx
B6 (26.1%)

Acc. 0.78 0.83 0.88
Sen. 0.74 0.89 0.50
Spe. 0.81 0.76 1.00
PPV 0.74 0.83 1.00
NPV 0.81 0.84 0.86

Table 5.9: Multivariate kernel density estimation classification scores for LOOCV. The
prevalence of the disease is indicated in parentheses for each type of artery.

The results of the U-Tests show that healthy LAD arteries have a more complex
geometry than diseased ones. In this context, complexity is understood as an increase
of in the values of descriptors (see Figure 5.16). On the other hand, the LCx artery
showed a weaker association in the U-Test, while the RCA artery showed no statistically
significant difference in the U-Test. Classification performance depends strongly on the

7Tests using the well-known naive KDC were also performed, but with sub-optimal results when com-
pared to multivariate KDC.
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arterial sample, and the following conclusions can be drawn from Table 5.9:

• The LCx artery scored the highest accuracy (88%), although the probability of le-
sion identification was low (i.e. 50% sensitivity). However, the specificity and PPV
reached 100%, which means that all healthy LCx were correctly classified, with no
false positives.

• The LAD artery scored the highest sensitivity (89%), and the overall classification ac-
curacy was 83%. The probability of correct classification of healthy arteries was 76%.
The positive and negative predictive values were high (83% and 84%), indicating low
rates of false positive/negative classifications.

• The RCA showed the worst classification scores. Nevertheless, the accuracy is 78%,
with acceptable diseased/healthy detection rates, i.e. 74% sensitivity and 81% speci-
ficity. The positive and negative predictive values were 74% and 81%, respectively.

It is important to remark that sets of features for LCx and RCA arteries include
thermodynamic descriptors, namely Hκ and Hn for LCx, and Pn and Hn for the RCA.
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5.8 On fractal analysis and power laws

All applications of geometric analysis presented in this work have been performed
using descriptors from Tables 3.1 and 3.2. Although the amount of descriptors presented
here is more comprehensive than previous works available in the current literature, it is
worthwhile to remark that further geometric analysis can be performed. Particularly, tools
and descriptors rooted in fractal theory can be applied to arterial centerlines. Fractality
concepts were used to study and construct models of arterial networks [364, 34, 230, 229,
259].

Although we used a definition for the fractal dimension (%) of the centerline [358],
there are many ways to define fractality. The basic fractal expression is a summarizing
statement describing a recursion. Such expressions are found to define figures which show
“infinite” amounts of detail and have “infinitely” complicated boundaries with “infinite”
lengths [33]. The general ideas of fractal systems have been described by Mandelbrot [208,
209].

The characteristic repetition of the bifurcation process gives arterial trees its first
fractal character but only in the most rudimentary sense. What is meant by “fractal
properties” of an arterial tree depends fundamentally on whether the tree structure is
being described by whole arteries or arterial segments (defined between branches) [364].
For example, the fractal dimension feature (%) used in this work is defined for a whole
artery.

Rossitti [280], summarized how the principle of minimum work (PMW)8 for least
energy cost for blood flow is also compatible with the spatial constraints of arterial networks
according to concepts derived from fractal geometry. The PMW in this context was first
described in [239], and is widely known as the Murray’s law, which relates (i) flow to vessel
diameter and (ii) diameter of vessels sharing a bifurcations through a power law. Power
laws are commonly related to fractal analysis because they are rooted in log-log plots,
which is typically used in the analysis of different scales, which are the basis of fractal
theory.

Zamir [364] studied the fractal properties of a resin cast human RCA tree (diameters
in the range 3.48 to 0.007 mm), and reported that the tree structure was found to have
“pseudo-fractal” properties, in the sense that vessels of different calibers displayed the
same branching pattern but with a range of values of the branching parameters, rather
than constant.

A particular example of the use of fractal geometry is in explaining myocardial flow
distribution via delivery of blood through an asymmetric fractal branching network [34].
Perfusion heterogeneity as a general problem was also found to have fractal properties
when using constrained constructive optimization (CCO) algorithm to construct arterial
networks [174]. Power laws associating flow to arterial diameter in computational models
of coronary circulation of pigs hearts, reconstructed from partial measures using fractal
algorithms [230], were presented in [229].

Several studies of blood flow simulations in computer generated models of fractal
branching networks can be found in the literature [116, 50, 324]. Self-similar networks
can mimic the structure and hierarchy of vessels in the microvascular regime (radii in
the range 500-10 µm), and were used to improve the descriptive capabilities of lumped
boundary conditions for 1D simulations of arterial networks [259].

Fractal analysis can also be found in allometric laws9. For example, quantification
8Also known as the energetic optimum principle, it is a parametric optimization model for the growth

and adaptation of arterial trees.
9Allometry is the study of the relationship between body size and shape. Theoretical developments

are carried out in the field of statistical shape analysis, and practical applications in biology for are very
common, i.e. growth rates of the parts of a living organism.
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of the coronary vessel diameter, length, volume and flow in relation to myocardial mass,
in pigs, was characterized by power laws in [75].

River basins are examples of naturally organized flow architectures whose scaling
properties were noticed long ago in the field of hydrology [317]. In the work of Horton [149,
150], several relations of stream lengths and bifurcation ratios were developed, the so called
Horton’s model for description and construction of river models was proposed. Mittal et.
al. [230] used such model for construction of coronary arterial networks. Maybe, the best
known fractal-like result in hydrology is the so called Hack’s law [138, 277], which relates
the basin area to the longest stream length of a river, in a power fashion.

Here we present an example on how the data obtained through the computational
methodology detailed in Chapter 2 can be used to derive power laws from noninvasive
medical images of human hearts.

Figure 5.17 presents a log-log plot relating the total length (`T , in mm) of the coro-
nary tree models to the surface area of its convex hull (C, in mm2) for each patient in
the sample. Information such as gender, age, presence of lesion and kin pair are pre-
sented through marker type, size and color. A power law of the type C = a`bT , with
a = 1196, b = 0.48 can be inferred from the plot, with a significant (p-value � 0.01) Pear-
son’s correlation of r = 0.7. Although visual inspection of Figure 5.17 does not provide
associations of age, sex or lesion presence with the power law prediction (black line), some
interesting remarks can be made in relation to the patient’s kin. It can be observed a
general tendency to line out patients along the power law prediction, which could be an
indication that similarity of arterial geometry is reflected in the power law by different
values of the a parameter. This hypothesis is also supported by the 67% chance that both
siblings are above or below the power law prediction.

An analogous test linking `T to the surface area of the myocardium resulted in no
significant correlation. Such lack of association could be due to the incompleteness of the
arterial models. Therefore, noninvasive patient-specific models of the coronary tree from
medical images are not enough to derive allometric power laws such as the ones reported
by [75] (in that case for pig heart). Nevertheless, the fractal nature of vasculature, even at
the level of the major arteries, can be recognized by the existence of a power law analogous
to that of the Hack’s law for river basins.

As other morphometric information, allometric laws can be useful for the develop-
ment of computational strategies for the generation of coronary networks.
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Figure 5.17: Scatter plot relating the total arterial length (`T ), which is the sum of the
lengths of all vessels that compose the coronary network, to the surface of the convex hull
of the coronary tree (C) in a log-log fashion. Sibling pairs are matched by color and linked
by a strike line. The size of the markers increase with the age of the patients. Males are
identified with up-pointing triangles when healthy and down-pointing triangles when some
artery have lesion, analogously, healthy females are marked with circles and diseased ones
with squares.
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Chapter 6

Geometric description and
comparison of coronary arteries:
Final comments

“The aim of an argument or discussion should not be victory, but progress.”

Joseph Joubert

Through Chapter 5, a comprehensive analysis of the geometric characteristic of the
coronary arterial tree has been presented. Such studies comprised morphometric analy-
sis of the coronary arteries, similarity metrics based on geometry, heritability of arterial
geometric characteristics and exploration of geometric risk factors for CAD. This section
addresses such results to provide a global perspective of the first Part of this Thesis.

6.1 Non-conventional geometric characterization

A generalization of the theory of thermodynamics of plane curves to curves in 3D
space, as well as an adaptation for using spatially distributed (point-wise) information
attached to the curves was presented in Chapter 3 (see Section 3.2.2). Examples of appli-
cations have been presented through Chapter 5. It was found that some thermodynamic
descriptors have different mean values for healthy/diseased LAD and LCx, as well as for
Σ/C-shaped RCA arteries. Some of the thermodynamic descriptors contributed to the
optimal indicator sets for KDC, see Chapter 5, Sections 5.7, 5.3. It is believed that the
tools proposed here provide a suitable approach to further extend the range of applications
of the thermodynamics of curves.

6.2 Morphometry of the coronary vasculature

Morphometric data of coronary arterial trees is key to understand the potential risk
of geometry in the genesis and progression of stenotic lesions, which is an open problem
in the medical community, as well as for the setting of computational models and defini-
tion of criteria to specify boundary conditions to hemodynamic simulations (see Part II,
Chapter 9).

In Section 5.2, statistical information of several geometric descriptors were presented
for the major coronary arteries and their principal branches. Morphometric data reported
here complements the existing literature with a new set of geometric descriptors (see, Chap-
ter 3, Section 3.2) that goes beyond length, radius and branching angle. It was shown that
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the major arteries present different curvature patterns, lengths and lumen radius. Such
data can be used to guide the generation of vascular models for simulation and to determine
morphometric-based criteria to provide models with physiologically consistent boundary
conditions. Curvature data can also be definitely useful in setting more sophisticated mod-
els of blood flow which require this information as input parameter, see for example [111].
Results indicate that subtrees also present different patterns for features such as α, r̄,
κ̄. Nevertheless, a strong intra-arterial correlation among curvatures and torsion derived
features was found, indicating a global constraint over the morphological aspects of the
entire coronary network.

Different geometrical patterns could help to explain some known clinical facts, i.e.
why the left coronary tree is more prone to develop stenotic lesions than the right [69]; or
the reported association [101], that C-shaped RCAs are more susceptible to atherosclerotic
disease than Σ-shaped RCAs.

The strong correlation between variables reported in Section 5.2, may be an indi-
cation of redundancy. Feature selection techniques and dimensionality reduction methods
such as principal component analysis can be applied to reduce the number of variables,
analogous to results presented in the study of similarity between siblings (see Chapter 5,
Section 5.4) or for shape and arterial lesion classification (see Chapter 5, Sections 5.3
and 5.7).

The analysis of RCA shape presented in Section 5.3 showed remarkable results. The
U-Test identified 17 features with significant difference in the mean value among classes, five
of which are thermodynamic descriptors. Furthermore, the shape of the RCA is intrinsically
defined from arterial geometry, therefore, a good classification performance is expected.
In turn, classification scores show 96% of correctly identified shapes (accuracy), 88% of
correctly classified Σ-shaped RCAs (sensitivity), 100% of correctly identified C-shaped
RCAs (specificity), none incorrectly classified C-shape (100% of PPV), and a low number of
Σ-shape classified as C-shape (94% of NPV). Furthermore, two thermodynamic descriptors
(Tn, Hn) are included in the FB6, which is the set that maximizes the classification scores.
Although in the present patient sample there is no statistically significant association
between shape and disease, such association was reported elsewhere [101]. Interestingly,
there are two descriptors shared between the features sets (FB6) used for KDC of lesions
(see Chapter 5, Section 5.7) and shape of the RCA (see Chapter 5, Section 5.3), namely
Hn and ζT . Further analysis with larger sample sizes are mandatory to reach conclusive
results on the association of the RCA shape and lesions.

6.3 Similarity of geometric features in siblings

This work explored, for the first time, association of coronary artery morphology
among sibling patients. More than 20 geometric descriptors were used to characterize the
RCA, LAD and LCx arteries of 48 patients (24 siblings). In Chapter 5 (see Section 5.4),
it was shown that the proposed geometric normalization (see Chapter 2, Section 2.3.6)
directly impacts the morphology of the underlying feature space, through a direct mod-
ification in the ranking list of all patients. Then, it was shown that the mean distance
between siblings is smaller than the mean distance to non-sibling patients, which holds
true for the raw geometries of the principal coronary arteries as well as for the case in
which normalization by myocardial area was performed. The U-Test clearly shows that
more similar arterial structures are observed between siblings in comparison to the rest of
the sample, when similarity is defined through distance in the feature space. Furthermore,
this likelihood pattern is noticed when all features are used (p < 0.025), and when the rSRI
is minimum for each independent artery (p < 0.01).

From the results on arterial comparisons through the set of features (see Chapter 5,
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Section 5.4) on the rSRI, displayed in Figure 5.9, it can be stated for both, raw and
normalized geometries, that (i) the RCA obtained the best scores for rSRI while LCx the
worst ones, which indicates that possible manifestation of geometric heritability may be
stronger in the RCA, followed by the LAD, than in the LCx; (ii) individual scores of rSRI
are below 0.5 for all cases, indicating that arteries of sibling patients tend to be ranked
below half of the sample; (iii) when studying all three arteries together the RCA and LAD
similarities compensate the LCx likelihood, producing rSRI ∼ 0.1 which indicates that half
of siblings obtained ranking position within the 10% of the sample.

It is widely accepted that familial history of CAD increases cardiovascular risk [314,
167, 148], and previous works have suggested the heritability of stenosis characteristics
such us localization, extent and morphology, as well as risk of coronary events in sib-
lings [106, 107]. The outcomes of data exploration techniques presented here strongly
indicate a geometrical likelihood between siblings that transcends geometric normaliza-
tion. This result suggests that geometric characteristics of the major coronary arteries
could be inheritable, as was hypothesized in [153, 114]. Linking our findings to the theory
of geometric risk factors [113], it is possible that the so-called familial risk factor may be
explained, at least to some extent, by heritable geometric risk factors. It is important
to highlight that the alleged association between atherosclerosis and geometric variables
must be taken as a second type of risk factor, which acts at the arterial level instead of
the systemic level, accounting for the local interaction between hemodynamic forces and
the ultimate target for the atherosclerotic process, which is the vessel wall.

When arterial features where assessed individually for indications of heritability (see
Chapter 5, Section 5.5), it was found that the RCA scored positive for the largest number of
phenotypes, followed by the LAD. The LCx presents the weaker association of morphology
between siblings. The LAD was the only artery showing positive association of stenotic
lesion between siblings. Moreover, few descriptors indicated some kind of correlation be-
tween siblings. Although the lesion presence in the RCA showed no association, the shape
(C/Σ) as well as more than 15 geometric descriptors scored positive association between
siblings. The LAD artery presented association between phenotypes and presence of lesion
in more than 10 phenotypes, while the LCx presented such association only for 2, and the
RCA featured no association. Such differences could be related to the intrinsic differences
in the hemodynamics loads in the arteries. These results are encouraging, and strongly
suggest that morphology of the coronary arterial tree may have genetic mediators.

These studies open the door for a new kind of analysis of coronary artery disease.
Noninvasive visualization of the coronary tree may provide insights on the evaluation of
anatomy, geometry, and functionality. Increasing knowledge of these features in patients
may offer an opportunity to infer similar disease distribution in their family relatives.

6.4 Geometric risk factors

Identification of risk factors for coronary artery diseased is key for medical applica-
tions involving prevention and risk assessment. Estimation of such risks from noninvasive
medical imaging, could have major implications in future medical practice.

There are many known CAD risk factors. Particularly, all patients used in this work
have at least one of the modifiable risk factors, as commented in Section 5.1. Nevertheless,
healthy/diseased classification presented in Section 5.7 is performed in terms of arterial
descriptors alone. Therefore, an incomplete description of patients is used, and there
are many descriptors that are not used, i.e. systemic risk factors (hypertension, hyper-
cholesterolemia, diabetes, smoking, etc.), genetic (familial history) and hemodynamics.
Thus, a very high classification accuracy is unlikely to happen using such reduced sample
quantity. In this context, classification performance of the LAD and LCx arteries using
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only geometry-derived data is satisfactory. Finally, in Chapter 5 (see Section 5.5), it was
verified that lesion presence has an heritable association between siblings.

Regarding classification (see Chapter 5, Section 5.7), it is worth noting that sets of
differential features for LCx and RCA arteries include thermodynamic descriptors, namely
Hκ and Hn for LCx and Pn and Hn for the RCA.

The results presented in Chapter 5 (see Sections 5.7 and 5.6) show that healthy LAD
arteries have a more complex geometry than diseased ones. In this context, complexity is
understood as an increase in the values of descriptors (see Figure 5.16). Particularly, it
was found that the increased distal average curvature of the LAD presents potential role
as a protective geometric feature, analogous to the Σ-shape RCAs. Whether straightness
of distal portion of the LAD is a geometrical risk factor or a consequence of atherosclerosis
proliferation is subject of further investigation. In turn, the LCx artery showed a weaker
association between geometry and disease, while the RCA artery showed no statistical
significance for such associations.

To date, the shape of the coronary arteries is not an acknowledged risk factor for
CAD. Data analysis presented in Chapter 5 (see Sections 5.7 and 5.6), suggest that there
is a correlation between coronary plaques and shape of the LAD.

6.5 Power laws

In Section 5.8 it was shown that coronary network models obtained from noninvasive
medical images can be used to explore descriptive laws of the vasculature, analogous to
those used in the field of hydrology. Clearly, the results presented here are preliminary and
much work is still needed. Nevertheless, a fractal nature in the morphology of the coronary
vasculature can be identified by the power law associating the length of the arterial tree
to the surface of its convex hull in three-dimensional space. The patterns described by
siblings alienation to the power law prediction are also interesting and worth of further
research.

6.6 Limitations

All examples of data analysis presented in Chapter 5 were performed with the same
study sample. Therefore, they share limitations regarding the methodology used to con-
struct arterial models, namely: (a) image artifacts due to calcified plaque, stents or patient
movement can introduce noise into the segmentation and therefore in the centerline model,
and ultimately affect geometrical features; (b) image resolution and quality limits the seg-
mentation of small branches constraining the analysis to what is seen in the medical image.
Such points originate from technological limitations in the image acquisition process, and
can only be addressed by performing cautious segmentation and discarding images with
poor quality. Regarding limitations associated with the data analysis examples, it should
be taken into account that: (c) a relatively modest number of patients was used. In
this regard, in Chapter 5 (see Section 5.2), it was shown a very close agreement with
several population broad statistics of anatomical variables, e.g. circulation dominance and
presence of the RI artery, lengths and radii, indicating that the sample is representative
of the human coronary arterial tree. Although the patient sample is small to perform
definite conclusive statistical analysis, at the same time, it is sufficiently large so as to
serve as proof of concept of the various morphometric, statistical and classification tests.
In future studies with larger samples, dimensionality reduction techniques, like principal
component analysis, are recommended to explore classification in the transformed spaces.
Incorporation of patient descriptors such as systemic risk factors could also help to improve
classification tests. Since all patients were referred to a CCTA study due to high risk of
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coronary artery disease, the sample may be biased towards diseased. Nevertheless, in ob-
taining a sample with asymptomatic patients, would require volunteers. This preliminary,
prospective analysis may serve as a proof of concept towards conducting such study. The
possible bias of the patient sample should be considered when interpreting lesion heritabil-
ity in the LAD, since prior chances of concordance are already latent. In turn, the RCA
and LCx arteries presented no heritability of lesion presence. Overall, this study presented
the first attempt to explore heritability of geometric characteristic of coronary arteries.

6.7 Concluding remarks for Part I

A systematic approach for extraction, processing and analysis of coronary tree ge-
ometries was presented and tested. The coronary arterial tree of a representative sample
of 48 patients (comprising 24 pairs of siblings) was geometrically characterized. One of
the contributions of this work is the development of a complete morphometric analysis of
coronary arteries, not only addressing standard statistical data but exploring correlations
among geometric descriptors. Methods for comparison of arteries using those descriptors
were presented and tested. Non-conventional geometric features were proposed and suc-
cessfully used in several applications. Remarkably, from analyzing the data, it was found
a strong indication that geometric features of the main coronary arteries are more similar
between siblings than among non-relatives, and several indications of geometric heritability
of the principal coronary arteries were found.

More sophisticated data analysis tools deserve to be explored in the present context.
For example, dimensionality reduction and classification techniques (i.e. principal compo-
nent analysis and support vector machine, among others). Nevertheless, the use of such
trained-based algorithms also requires a larger sample size to avoid bias using training and
test samples, which poses challenges from the point of view of the automation of image
segmentation.

Finally, the comprehensive approach for geometric characterization and analysis of
vessels can be generalized to other arterial territories and diseases, e.g. cerebral arteries
and cerebral aneurysms, or aorta artery and aortic aneurysms.
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Chapter 7

Coronary physiology and ischemia

“The heart has its reasons, which reason does not know...”

Blaise Pascal, Pensées

Physiology is the branch of biology that deals with the normal functions of living
organisms and their parts. Ischemia means an inadequate blood supply to an organ or
part of the body. The study of coronary physiology has a long history. The discovery of
coronary flow inhibition during systole due to myocardium contraction in 1695 is usually
considered as a starting point in coronary physiology. Since then, advances in technical
methods marked the understanding of physiology in four phases. According to Spaan [316],
the early phase ended in the 1940s, where much of the basic understanding of the field
was formulated with great difficulty and with crude methods. The second phase endured
up to the 1960s, and was characterized by the development of instruments for high fidelity
registration of coronary flow and pressure. The third phase extended to the 1990s, and
was marked by techniques for measuring regional myocardial blood flow, enabling major
advances in understanding of the physiology and pathophysiology of coronary circulation.
The current phase is not based on new measuring techniques but on (i) the introduction of
information about the micro-circulation and (ii) advances on coronary circulation models.
Furthermore, clinical diagnosis and decision-making process for the treatment of coronary
artery disease can be based on physiological principles.

Computational models and numerical simulation techniques to study blood circula-
tion in the cardiovascular system is an active area of research which has benefited from the
development of sophisticated mathematical and numerical models as well as from the raise
in computational power available. Currently, we are entering a phase where computational
simulations are being tested as new diagnostic tools, with imminent translation to the
operating room, see Chapter 8, Section 8.4. Specifically, it is the concern of this thesis the
use of computational models for the noninvasive estimation of fractional flow reserve to
assess risk of myocardial infarction.

This chapter is intended to provide the reader with the basics concepts on coronary
anatomy, physiology and pathophysiology. It aims to provide complementary data for the
concepts developed in the rest of the thesis, but it cannot be considered an ultimate com-
plete review of the field. The associated literature is extensive, for instance, some remark-
able compilation of anatomical knowledge is presented by von Lüdinghausen [346, 347],
while coronary physiology is explained in detailed by Spaan [316]. An early compilation by
Pijls and De Bruyne [268] focuses on coronary pressure assessment, fractional flow reserve
rationale and related topics.
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7.1 Basic concepts of coronary circulation

The heart propels blood to the entire body through the vascular system. When
the heart fails completely, awareness is gone within seconds and brain death occurs within
minutes. The mechanical work needed for pumping blood is performed by the heart muscle,
also called myocardium. In adult humans, typical heart rate, cardiac output and aortic
mean pressure are 70 beats/min, 5 liters/min and 100 mmHg. An average human heart
will beat 2.6×109 times, and pump 2×1011 liters in a lifetime span. During severe exercise,
cardiac output may increase by a factor of 4 to 6.

As for every other organ, the heart depends on blood, which is supplied by the
coronary arteries. About 5 to 10% of the cardiac output is shunted through these coronary
vessels to make cardiac functioning possible [316]. The coronary system starts within the
region of the aortic valve structure, with two major vessels. These vessels, run over the
surface of the heart, giving rise to branches that penetrate the heart muscle and, in turn,
branch into smaller vessels in order to supply the capillary network of the heart with blood.
The capillary network is very dense, with average inter-capillary distance of 20µm, and a
mean capillary diameter of 5µm through which the red cells flow in a single line.

A brief summary of the coronary arterial tree anatomy is presented in Appendix C.
Basic understanding of coronary anatomy is mandatory for image segmentation, arterial
modeling and simulation. References [346, 108, 31, 204] are recommended for the interested
reader.

Regarding coronary fluid mechanics, a clear distinction between right and left coro-
nary networks is observed. While the right coronary flow signal follows the aortic pressure
signal during systole, the left coronary is low or even retrograde in systole. Such inhibition
of coronary arterial flow during systole originates in the interaction of myocardial muscle
contraction and perfusing arterioles and capillaries during systole.

Regulation mechanisms of coronary flow strongly depend on myocardium oxygen
consumption, basically, increased oxygen demand produces an increase in blood flow. The
coupling between coronary flow and oxygen consumption is often referred to as exercise or
functional hyperemia.

Coronary flow is controlled at the arteriolar level by vessel dilation. Vessels state is
referred to as “tone”, which accounts for the wall tension of these vessels being modulated
by the smooth muscle in their walls and also by transmural pressure. Since wall tension
is impossible to measure, an index is needed to reflect its effect; generally this index is
the concept of vessel resistance and is regarded as equivalent to tone. In general, flow and
pressure in the coronary arteries are the quantities available from which resistance can be
estimated simply by computing the ratio between average pressure and average flow rate.

7.1.1 Collateral circulation

Collateral blood flow has been subject of study in the medical community for a long
time. A complete review on the relevance of coronary collateral circulation can be found
in [175]. Pioneer efforts to characterize collateral vessels go as far as 1956 [32], using a
corrosion method on a set of human hearts (healthy and diseased). Collateral anastomoses
are classified as homo-coronary when they connect branches of one single coronary artery
in contrast to inter-coronary when they connect branches from two coronary vessels. More
than 20 different collateral pathways were identified in [199].

In normal hearts [32], homo-coronary anastomoses present average lengths of 1-
5cm and diameters of 0.02-0.25mm, connecting vessels with diameters in the range of
0.5-1mm, typically in the subepicardial regions. Normal left ventricles present at least
one homo-coronary collateral per arborization with diameter range 0.5-1mm, while right
ventricles present less collaterizations. Inter-coronary anastomoses are found in border

84



Chapter 7. Coronary physiology and ischemia

regions supplied by branches from both coronary vessels. Collateral vessels have an average
length of about 2-3cm and diameters in the range of 0.02-0.35mm. An average of 25
anastomoses were observed per region (septum, anterior and posterior walls).

In pathological hearts [32], collateral circulation is generally more developed. The
longer the history of angina, the larger the number of large-caliber coronary collaterals at
postmortem examination [115]. Collateral vessel diameters in the range of 0.4-2mm can be
found [32]. The process of arteriogenesis leads to the positive remodelling of an arteriole
into an artery up to 12 times its original size [301]. This growth in structural vascular
size goes along with a decreasing number of collateral arteries during CAD development, a
process called pruning. Pathophysiologically, and in the sense of the Poiseuille law, pruning
may be interpreted as a way of effectively reducing vascular resistance to collateral flow,
because a large caliber increase of a few vessels is more efficient for bulk flow augmentation
than a small increase in size of numerous vessels [301].

After rapid coronary occlusion, collateral vessels develop rapidly and are generally
observable within 2 weeks. Therefore, it is possible for patients suffering myocardial infarc-
tion to present collaterals that were not completely developed at the time of the event [299].

Although the functional significance of coronary collateral vessels in patients with
acute myocardial infarction (in-vivo) has been recognized from long time [354], the use of
collateral blood flow into clinical practice is relatively recent. Such methodological delay
is attributed to the fact that collateral blood vessels, if present, do not significantly react
to drugs, and moreover since they are close to ischemic tissue they are already maximally
dilated when a major artery is acutely occluded [296].

7.1.1.1 Quantification of coronary collateral circulation

Assessing the collateral circulation is challenging, and there is currently no technique
to quantify it noninvasively in humans [222]. There are three methods being used which
have demonstrated predictive value in clinical practice. All of them involve balloon occlu-
sion of the compromised artery, if it is not already occluded. (i) Semiquantitative visual
assessment of collateral arteries by coronary angiography [276]. This method has several
limitations: it is not objective, it is influenced by blood pressure and the force of contrast
injection as well as the duration of filming; furthermore, in practice the artery is not always
closed by a balloon. (ii) A boolean evaluation of the electrocardiogram ECG [86]. ST-
segment elevation ≥ 0.1mV during a 1 to 2 minute vessel occlusions are taken as insufficient
collateralization. Although it is the cheapest methods, it is not accurate enough. (iii) The
so called collateral flow index (CFI), is considered the most accurate method to assess the
collateral circulation. The CFI is defined as the ratio between flows during total occlusion,
and after angioplasty (hypothetic normal flow without lesion). Therefore, it represents the
percentage of normal blood flow that can be supplied via collateral circulation during vessel
occlusion. The CFI can be estimated by Doppler velocity measurements or by pressure
sensor, the former is more accurate and more commonly used.

To prevent myocardial ischemia during acute vessel occlusion, a CFI of 0.2-0.25
is considered sufficient to supply myocardial demand at rest. Although, there is still
controversy whether collateral circulation is sufficient to meet myocardial demand during
exercise after coronary occlusion [222].

7.1.1.2 Mechanisms of collateral growth (arteriogenesis)

Vasculogenesis refers to the initial events in vascular growth. The term angiogenesis
was formerly used to describe the formation of new capillaries. Currently, angiogenesis is
considered the subsequent growth, expansion, and remodeling of primitive vessels into a
complex, mature vascular network. Finally, arteriogenesis refers to the transformation of
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preexisting (collateral) arterioles into functional (muscular) collateral arteries, as a thick
muscular coat is added, concomitant with acquisition of viscoelastic and vasomotor prop-
erties [185].

The process of arteriogenesis is mediated mechanically through an increase in shear
stresses. For example, in the event of a hemodynamically relevant stenosis of a main
feeding artery, a pressure gradient is created and collateral arteries are recruited. Because
of the decrease in arterial pressure distal to the stenosis, blood flow is redistributed through
the preexistent arterioles that now connect a high-pressure with a low-pressure area. This
results in an increased flow velocity and therefore increased shear stress in the preexistent
collateral arteries. Subsequently, several morphological changes and vascular remodeling
occur [185].

Collateral flow can be reduced and even reverted if atherosclerosis progresses in the
donor artery, a process called the “collateral steal” [373].

Collaterals often disappear after the recanalization of chronic total occluded arteries.
Although coronary collaterals, once established, are believed to persist and are able to be
re-recruited, such re-recruitment is not immediate. Well-developed collateral vessels close
when the pressure gradient across the collateral network disappears, and the time needed
to reopen such closed collaterals after re-establishment of the pressure gradient seems to
be directly related to the time interval between coronary occlusions [373].

7.1.1.3 Collaterization as a therapeutic treatment

Well-developed coronary collateral function is related to reduced mortality in pa-
tients with CAD. Therapeutic promotion of coronary collateral function is, thus, a promis-
ing concept, and potential arteriogenic approaches are mater of current research in the
field. Many reviews on coronary collaterals explore the therapeutic potential of collateral
circulation [222, 301, 175, 373]

7.1.2 Rest and hyperemia

In humans, coronary blood flow can increase up to 5 times the basal1 flow to meet
increased demand. Such an increase in blood flow is referred to as a hyperemic response,
and in humans is commonly observed in response to ischemia and exercise [343]. It is
an autoregulatory response mediated by arteriolar vasodilation. Thorough reviews on the
autoregulatory mechanisms of the heart can be found in [183, 147, 316].

The coronary vascular system is normally a low-flow/high-resistance circulation at
rest conditions. In turn, during coronary hyperemic conditions, it turns into a high-
flow/low-resistance system [127]. Under such hyperemic conditions, coronary stenoses
(even mild ones) have greater effects on maximum flow supplied to the myocardium. This
is the reason why, as will be presented later, the functional impact of a stenosis on the
circulation is assessed during hyperemia.

7.2 Atherosclerosis

Atherosclerosis is a chronic disease that remains asymptomatic for decades, and it
is the primary etiology of CVD. It is characterized by an arterial wall thickening as a
result of the accumulation of fatty material, called atheromatous plaque, which forms as
a time-dependent response to chronic arterial injury. The atheromatous plaque is divided
into three distinct components: (i) the atheroma, which is the nodular accumulation of
a soft, flaky, yellowish material at the center of large plaques, nearest the lumen of the

1Flow at rest or normal conditions.
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artery; (ii) underlying areas of cholesterol crystals; and (iii) calcification at the outer base
of older/more advanced lesions. Arterial narrowing is also called stenosis.

Despite great efforts from the research community, there is a lack of understanding
of the true pathogenic mechanisms of the disease. That is, known risk factors do not
completely determine the probability of disease, and revascularization merely delays the
inevitable [120, 69, 72, 342].

The extreme complexity of the vascular biomechanical environment includes shear
stresses continuously acting over the endothelium as well as internal arterial wall stresses
which develop in response to the pulsatile nature of blood pressure and flow. It is believed
that such stimuli provides a mechanism by which systemic factors, i.e. diabetes mellitus,
smoking, and dyslipidemia can result in a localized disease such as atherosclerosis [342].

7.2.1 Detection of coronary artery disease

Coronary artery narrowing, induced by atherosclerosis, compromises the blood sup-
ply to the heart. At first, the decreased blood flow may not cause symptoms. As plaque
continues to build up, however, signs and symptoms can be detected, including: chest pain
(angina), shortness of breath, abnormal heart rhythm (arrhythmia) and heart attack.

Over the years, several clinical tests were developed to detect the presence of CAD,
with increase interest in quantifying the functional significance of stenosis. Such proce-
dures can be roughly divided into three categories: (i) exercise test with monitoring of
CAD symptoms or direct observation of coronary flow, i.e. stress test, stress echocardio-
graphy and exercise test with thallium scanning; (ii) invasive and none invasive medical
images, i.e. coronary angiography (AX), quantitative coronary angiography (QCA) and
coronary computed tomography angiography (CCTA); and (iii) functional assessment of
lesion through physiologic response, i.e. absolute/relative coronary flow reserve (CFR)2

and fractional flow reserve (FFR). An overview of these CAD diagnostic procedures is
presented in Appendix D. Since this work focuses on FFR, Chapter (8) is devoted to
overview this technique with an associated Appendix (E).

7.2.1.1 Coronary Flow Reserve (CFR)

Diagnostic tests based on physiological principles try to estimate the impairment of
maximal myocardial blood flow due to stenotic lesions. The capacity of coronary arteries
to increase their blood flow three- to four-fold after transient ischemia was recognized in
1939 [177]. The concept of absolute coronary flow reserve (A-CFR or CFR for short) was
introduced in 1960 [77] to describe the capacity of the coronary circulation to conduct
maximal hyperemic blood flow. Four years later, the physiologic framework of CFR was
established through the notion of coronary autoregulation [238]. CFR provides a method
for describing the capacity of the coronary circulation to conduct maximal hyperemic
blood flow. In most studies, CFR is estimated as the ratio between hyperemic and resting
blood flow, generally estimated from coronary blood flow velocity measurements (CBFV).
However, it was not until 1974, that CFR was proposed as a useful index for prediction of
stenotic lesion functionality, marking a key point in diagnosing CAD through physiologic
data. A comprehensive review on CFR assessment and clinical implications is presented
in [343].

7.2.1.2 Fractional Flow Reserve (FFR)

FFR is a quantitative index to determine the likelihood that an stenosis impedes
oxygen delivery to the associated myocardial bed. It is defined as the quotient between

2Which can be assessed by perfusion magnetic resonance imaging, for example.
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maximal current flow and maximal flow in the absence of disease. Practically, it is esti-
mated from pressure measurements during invasive catheterization. Hence, it is computed
as the ratio between post- and pre-stenosis pressures averaged in time during drug-induced
hyperemia. The procedures yields is a dimensionless value with an unequivocal maximum
value of 1 under normal flow conditions and a minimum positive value known as wedge
pressure. An FFR value of 0.80 means that a given stenosis causes a 20% drop in blood
pressure during hyperemic flow regime, and consequently has an associated impact in the
flow delivery through the diseased vessel. Several clinical trails identified ≤ 0.8 as consid-
ered abnormal, indicating a functionally significant stenosis. An comprehensive review on
FFR technical details, as well as clinical trails demonstrating its potential are presented in
Chapter 8.

7.2.1.3 Computational FFR

FFR-guided percutaneous coronary intervention improves patient outcomes and re-
duces stent procedures and cost; yet, due to several practical and operator related factors,
it is used in < 10% of percutaneous coronary intervention procedures [237]. Such scenario
motivated researchers in the field of applied computational fluid dynamics (CFD) to use
modeling and simulation tools to reach an in-silico estimate of patient-specific FFR. Briefly,
anatomical and physiological information are required. Particularly, (i) arterial geometry
is generated from medical images3; (ii) such arterial models are further processed to create
CFD meshes; (iii) boundary conditions (BC) for the CFD simulations are established using
physiological information; and, finally (iv) simulations are performed, and velocity/pressure
fields are obtained, from which the computational FFR is computed. The correct deter-
mination of BC is crucial for the accuracy of FFR estimation. Ideally, definition of BC
accounts for the measurement of blood velocities at all vessels in the generated geometric
model. However, this is not possible in current practice, and this is why such BC must also
be estimated by taking into account data such as cardiac output, systemic pressure, and
myocardial blood flow demand during hyperemia. Further details regarding computational
assessment of FFR are presented in Chapter 8.

7.3 Considerations for the modeling of hyperemia

In humans, the hyperemic response to ischemia or exercise can increase up to 5
times the basal flow [343]. Medical literature reports drug-induction of cardiac hyperemia
using two techniques, intra-coronary (ICAVD) and intra-venous (IVAVD) administration of
vaso-dilator. Currently, adenosine is the most commonly used agent [194], and the clinical
guidelines from both, the European Society of Cardiology [93] and the American Heart
Association [200] recommend ICAVD over IVAVD, arguing cost-efficiency and fewer side
effects.

7.3.1 Adenosine

It has been demonstrated that the use of adenosine is safe via both the ICAVD and
IVAVD routes and that it could reliably induce near-maximal coronary hyperemia in most
patients, with little effect on systemic blood pressure [355].

Layland et al. [194] present a discussion regarding safety of adenosine use to achieve
coronary hyperemia, and briefly review novel agents used to that goal. Adenosine is a
fundamental component of human biology, with far-reaching effects as an extracellular

3Applications using computed tomography angiography (CCTA), quantitative coronary angiography
(QCA), intra-vascular ultrasound (IVUS) or optical coherent tomography (OCT) have been presented int
the literature, see Chapter 8, Section 8.4.2 for an overview on current approaches.
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signaling molecule, inducing vasodilation in most vascular beds, regulating activity in the
sympathetic nervous system and having anti-thrombotic properties.

Adenosine administration has been widely adopted as the gold-standard method for
diagnosing cardiac ischemia. Practically, the ideal hyperemic agent should have a rapid
onset and short duration of action, low cost with no significant side effects. Particularly,
adenosine is rapidly transported into vascular endothelial cells, and adenosine levels can
rise rapidly in ischemic tissue.

Sato et al. [295] examined the mechanism of adenosine-induced vasodilation in coro-
nary arterioles from patients with heart disease. It was found that vasodilation caused by
adenosine is not influenced by underlying diseases (coronary artery disease, hypertension,
hypercholesterolemia, diabetes mellitus, myocardial infarction, or congestive heart failure),
sex, or age.

Regarding administration procedures, there is still controversy and mixed findings
(see Section 7.3.3). For example, at the lower “standard” doses, 10% of vessels with an
initial FFR value > 0.75 had a subsequent value smaller than this cutoff point with higher
ICAVD doses or IVAVD [63]. In turn, IVAVD results in variable changes in systemic blood
pressure, which can lead to alterations in FFR lesion classification [326]. Measures of
FFR must be performed under stable hyperemia (not peak hyperemia), although the FFR
measure during stable hyperemia may be higher than the one measured at peak hyperemia
[326].

Intra-coronary administration of adenosine has a peak effect in less than 10 sec-
onds after administration, and it has a duration of approximately 20 seconds. On the
other hand, intra-venous administration produces a more stable and prolongated hyper-
emic state (reached after approximately 60 seconds with a duration of approximately 60
seconds) [160]. While both methods produce a slightly drop on mean systemic blood
pressure, IVAVD is associated with a greater increment in heart rate than ICAVD. Side
effects are more common during IVAVD than ICAVD, and may include flushing, dyspnea,
chest pain, gastrointestinal discomfort, headache, atrio-ventricular block, arrhythmias and
bronchospasm.

7.3.2 Vasodilation

It is well established that the coronary micro-circulation is a key regulator of myocar-
dial blood flow. Jayaweera et al. [156] studied the role of capillaries in coronary circulation,
and they found that at rest condition, approximately 60% of resistance is provided by the
arteriolar level, 25% by the capillary level, and the remaining 15% in the venular com-
partment. During hyperemia, total resistance decreases across the coronary circulation
by 70%. In the arteriolar and venular compartments, resistance decreases by 86% and
98%, respectively, resulting in minimal alteration of capillary hydrostatic pressure such
that the capillaries offer the most resistance to coronary blood flow during hyperemia.
The arteriolar and capillary resistances now comprise 25% and 75% of the total resistance,
respectively. Thus, capillaries provide the ceiling for the hyperemic response.

Adenosine exerts its predominant vasodilatory effect at arteriolar level, on coronary
microvessels < 150µm in diameter [194].

In the presence of severe stenoses (greater than 80% luminal reduction), there is
a limited vasodilatory response to adenosine such that basal flow may equal hyperemic
flow [338]. In such conditions, affected downstream microvessels do not respond to adeno-
sine, probably because a maximum vasodilation state was achieve already to counteract
the added resistance provided by upstream stenotic vessels.
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7.3.3 Clinical observations

Effects of both ICAVD and IVAVD of adenosine on global hemodynamic variables, i.e.
mean systemic blood pressure (MSBP) and heart rate (HR), have been reported since the
pioneering work of Wilson et al. [355]. Note that MSBP and HR are important to estimate,
for example, the cardiac output (CO), as well as all other quantities needed for a patient-
specific parametrization of coronary circulation models. Table 7.1 summarizes clinical
literature reporting hemodynamic response (in terms of MSBP and HR) for different ad-
ministration methods and doses of adenosine. It is well established that adenosine-induced
hyperemia, in average, reduces MSBP, for both administration doses, in approximately 4
mmHg. Regarding HR, IVAVD produces higher increase of hyperemic to basal HR (18
beat/min), when compared to ICAVD which, in average, decreases the HR in 1 beat/min.

Discordances in ∆HR4 can be explained by the fact that IVAVD administration
produces a systemic reach of adenosine, therefore not only myocardial tissue increases blood
flow demand, and consequently to accommodate the increased systemic flow demand, the
HR must be incremented. In turn, when ICAVD is used, adenosine reaches myocardial
beds irrigated by the coronary vessels in which the adenosine was administrated, having
thus a more focal vasodilatory impact, and almost null effect on HR.

Several works addressing the computational simulation of FFR model hyperemic con-
ditions by increasing overall myocardial blood flow (see Chapter 8, Section 8.4.2) justifying
this choice by the clinical observations of Wilson et al. [355], which reported changes in
myocardial blood flow and resistance measured in the middle section of arteries. Hyperemic
flow was reported to has a 4.5 fold increase in relation to a basal condition. The paper is
not clear whether the LM and RCA arteries were measured standalone, although it specifies
that ICAVD adenosine was injected in the ostium of such arteries. Therefore, changes in
blood flow of one coronary tree when ICAVD adenosine in the opposite tree is used, are
not documented. Nevertheless, IVAVD adenosine ensures myocardial-wide reaching of the
drug, and similar increments in blood flow were recorded.

Taking into account this finding, computational models can safety assume IVAVD
induced hyperemia. Although two key points are not considered by studies dealing with
computational evaluation of FFR. (i) The spatial heterogeneity of myocardial blood flow
reserve: anterior and lateral regions have similar demands which are greater than demands
from septum and inferior regions [68]. (ii) Arteries with impaired flow feature a reduction
in the increased flow during hyperemia (∼ 3 instead of ∼ 4.5) [355]. Therefore, the
assumption of homogeneous increment of coronary blood flow intrinsically induces error in
the estimation of FFR, since the flow may be overestimated in compromised arteries.

4The difference between rest and hyperemic HR.
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Paper (n of patients, n
of lesioned arteries) Administration ∆HR (beats/min) ∆MSBP (mmHg) ∆SBP (mmHg) ∆DBP (mmHg)

[288] Lesioned (n=50, 56)∗∗ ICA† 0.8±3.4 -3.2±5.1 -3.8±7.9 -3.4±7.0
IVA† 5.0±5.6 -10.0±12.8 -15.6±16.3 -9.6±6.8

[197] Lesioned (n=45, 50) ICA† (600µg) -8.0 -5.0 1.0 -3.0
IVA† (140 µg/kg/min) 5.0 -5.0 -7.0 -4.0

[160] Lesioned (n=52, 60) ICA‡ (24µg) 0.6±3.6 -0.3±5.1 -3.3±8.2 -3.2±6.9
IVA† (140 µg/kg/min) 5.6±6.8 -13.0±10.3 -17.3±14.6 -10.3±6.8

[228] Healthy (n=348)∗ IVA† (140 µg/kg/min) 24.0 -2.0 -1.0 -3.0
[355] Healthy ICA‡ (16 µg, LAD, n=20) 3.0±3.0 -7.0±5.0 N/A N/A

ICA‡ (12 µg, RCA, n=5) 0.0±1.0 -17.0±3.0 N/A N/A
IVA† (140 µg/kg/min, n=25) 24.0±14.0 -6.0±7.0 N/A N/A

[355] Lesioned ICA‡ (16 µg, LAD, n=5) -1.0±2.0 -9.0±5.0 N/A N/A
ICA‡ (12 µg, RCA, n=3) -3±4 -11±6 N/A N/A
IVA† (140 µg/kg/min, n=5) 12.0±10.0 -3.0±6.0 N/A N/A

Average ICA -1.4 -3.8 -2.2 -3.2
IVA 18.5 -4.4 -4.8 -4.6

Table 7.1: Summary of reported effects of adenosine IVAVD and ICAVD on hemodynamic variables. Values are difference (hyperemic minus basal
states). Inter-study averages where computed as weighting average by number of observations.
∗ Healthy patients without evidence of obstructive coronary artery disease were imaged with positron emission tomography.
∗∗ ICAVD consecutive doses of 60, 100 and 120µg were administrated until maximal hyperemic state was reached, hemodynamic variables should be
considered as related to maximum hyperemia, which was obtained with different adenosine dose for each patient. Analogous with IVAVD (140, 160
and 180µg/kg/min).
‡ Infusion administration.
† Bolus administration.
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7.3.4 Estimation of patient-specific resting blood flow

Estimation of patient-specific coronary basal blood flow is key for a correct estimation
of hyperemic flow. The resting coronary blood flow in humans averages 225 ml/min, which
is about 4-5% of the total cardiac output [136, 268]. Wieneke et al. [353] measured and
reported coronary flow in-vivo for a sample of 28 adult humans. Total coronary resting
flow was found to be 197±72 ml/min (range: 59-376 ml/min). In that work, it was also
stated that no specific method can currently be regarded as the “gold standard” for the
assessment of total coronary flow in humans, and no normal values have been established
so far. This poses a clear limitation for any methodology aimed at estimating the resting
total coronary flow. In a recent study, Sakamoto et al. [286] measured coronary blood flow
in 496 patients combining information from AX and IVUS images. They found significant
association of blood flow in the LCx and RCA arteries and circulation dominance, while the
LAD artery presented none. Total coronary resting flow was found to be 270±82 ml/min.

Moreover, patient-specific resting myocardial blood flow can be estimated by the
cardiac output or from myocardial mass, as discussed in detail next.

7.3.4.1 Estimation through systemic hemodynamic variables

Total cardiac output can be estimated from hemodynamic variables. The pressure
at the inlet of the coronary tree is considered to be the pressure at the aortic arch. It
is known that the mean systemic blood pressure (MSBP) is a good approximation of the
mean aortic pressure at rest. It is also known that the coronary blood flow at rest is
approximately 4.5% of the cardiac output (CO). Given the heart rate (HR, in beats/min)
and the stroke volume (SV in ml/beat), the CO (in ml/min) is computed as

CO =
HR× SV

1000
.

The HR can be measured noninvasively, and the stroke volume can be estimated [87] from
patient data as

SV = PP∗ × (0.013×W− 0.007×A− 0.004×HR + 1.307),

PP∗ = 0.49× PP + 0.30×A + 7.11,

where PP is the pulse pressure5 (in mmHg), PP∗ is an adjusted value for PP, A is the age
of the patient (in years) and W is the weight (in Kg). Then, the total flow demanded by
myocardium Q (in ml/min) is estimated as

Q = 0.045× CO. (7.3.1)

7.3.4.2 Estimation through myocardial mass

Myocardial mass blood demand has been reported in the past. Anderson et al. [18]
reported resting flow through the left main artery of 58±15 (range: 27-103) ml/min/100g
of left ventricular mass, using a simplistic estimation formula (originally adjusted for dogs),
which is used in coronary flow models for estimation of FFR [308, 275]. The total coronary
flow at rest is estimated as

Q = (8× (0.0007× (HR× SBP)− 0.4)︸ ︷︷ ︸
Estimate of blood flow, in ml/min/100g.

/100)× 1.5× LVMM︸ ︷︷ ︸
LV is 2/3 of total myo. mass.

, (7.3.2)

5Systolic blood pressure (SBP) minus diastolic blood pressure (DBP).
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where LVMM is the left ventricle mass (in grams), which can be estimated from the
myocardial volume times its density (1.05 g/cm3 [203]).

Perfusion values ranging from 72 to 117 ml/min/100g have been reported with
positron emission tomography [304, 99, 271]. Flow data is rather similar to invasive mea-
surements performed in [353], which reported 91±30 ml/min/100g.

Regarding normal myocardial mass, Lorenz et al. [203] reported values in humans
estimated from magnetic resonance imaging, and validated them to an extensive series of
published works with both autopsy and imaging measurements of myocardial mass. The
RV free wall mass averaged 50±10 g in males and 40±8 g in females. Mean LV total mass
was 178±31 g in males and 125±26 g in females. Yielding total ventricular myocardial
mass averages of 228/165 g for males/females.

Choy et al. [75] presented allometric laws of hemodynamic and anatomical param-
eters as a function of myocardial mass from experimental measurements in pigs. It was
reported that global coronary blood flow (in ml/min) can be estimated as

Q = 0.71×m3/4, (7.3.3)

where m is the myocardial mass, in grams. Taylor et al. [328], implies that uses equa-
tion (7.3.3) for the estimation of patient-specific resting coronary blood flow.

7.3.4.3 Resting myocardial flow estimation in our patient sample

Details of the complete patient population used in this work can be found in Chap-
ter 10, Section 10.1. In order to compare the methods for estimation of resting myocardial
blood flow, a subset of patients (IDs in the range [6, 35]) comprising 20 adult individuals
(3 females and 17 males) with mean age 60± 10[43, 84] years.

Table 7.2 summarizes statistical data of various hemodynamic variables used to es-
timate the resting myocardial flow with equations (7.3.2),(7.3.3) and (7.3.1). Although
total ventricular myocardial mass matches reported data [203], estimations of resting coro-
nary blood flow with equations (7.3.2) and (7.3.3) significantly underestimate normal val-
ues [136, 353, 286]. In turn, using the proposed methodology, which does not make use of
myocardial mass, yields values within the physiological range according to [136, 353, 286].
Therefore, all estimations of patient-specific myocardial blood flow are performed using
the proposed method, Equation (7.3.1).

7.3.5 Estimating hyperemic blood flow.

Chareonthaitawee et al. [68] studied the regional heterogeneity of resting and hy-
peremic myocardial blood flow (MBF) in healthy humans, through positron emission to-
mography. Basal and hyperemic MBF is heterogeneous both, inter and intra-individual.
Furthermore under both blood flow conditions, similar degree of spatial heterogeneity was
found. Anterior and lateral regions have similar demands and greater than septum and
inferior regions. Such variabilities produce myocardial region dependence of the CFR
index, and rise concern about the use of a global CFR threshold for ischemia indicator
in clinical practice. The study also suggests that some regions may be operating near
maximal capacity in the resting state, becoming more susceptible to injury when demand
exceeds supply.

Moreover, myocardial perfusion seems to depend on patient age. Smaller values of
CFR are associated to elders adults [304].

More than twenty studies reporting CFR were summarized in [165]. Weighted av-
erages of mean CFR for lesioned (1.98±0.61) and nonischemic (2.57±0.61) arteries were
reported. It should be noted that values as large as CFR=6 have been recorded in vivo.
The relation between CFR and FFR is studied in [165, 102], both studies support the
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Age W H SBP DBP MBP HR PP
[years] [kg] [cm] [mmHg] [mmHg] [mmHg] [min−1] [mmHg]

AVG 60.37 85.11 172.37 113.89 69.79 84.74 70.21 44.11
STD 10.35 17.10 10.90 13.63 9.57 9.89 8.13 7.28
MIN 43.00 52.00 147.00 80.00 50.00 65.00 58.00 30.00
MAX 84.00 119.00 192.00 139.00 84.00 102.00 88.00 57.00

PP∗ SV CO m Q, Eq.(7.3.2) Q, Eq.(7.3.3) Q, Eq.(7.3.1)
[mmHg] [ml/beat] [l/min] [g] [ml/min] [ml/min] [ml/min]

AVG 46.83 79.33 5.57 217.73 91.36 39.98 250.67
STD 5.68 10.15 0.94 57.53 29.40 8.06 42.43
MIN 38.96 60.37 3.85 113.76 36.24 24.73 173.17
MAX 57.24 94.22 7.35 326.22 140.60 54.50 330.71

Table 7.2: Statistical data of hemodynamic variables in a patient sample of the population,
consisting of 20 patients, 3 females and 17 males.
W: Weight; H: Height; SBP: Systemic systolic blood pressure; DBP: Systemic diastolic
blood pressure; MBP: Systemic mean blood pressure; HR: Heart rate; PP: pulse pressure;
PP∗: Adjusted PP; SV: Stroke volume; CO: Cardiac output; m: Myocardial mass; Q:
Resting myocardial blood flow.

existence of differentiated patterns of ischemic heart disease that combine focal and diffuse
coronary narrowing with variable degrees of micro-circulatory dysfunction.

Taking these findings into account, a comprehensive methodology for estimating
patient-specific CFR should take into account heterogeneous CFR values per artery. Such
behavior should depend on supplied territory, lesion characteristic (focal or diffuse) and,
eventually, microcirculatory dysfunctions. Furthermore, the CFR should also be adjusted
using patient data, e.g. age.

In this thesis, a simplified approach to estimate CFR is considered, see Chapter 9,
Section 9.3 for details.
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Chapter 8

Fractional flow reserve

“Water shapes its course according to the nature of the ground over which it flows; the
soldier works out his victory in relation to the foe whom he is facing.”

Sun Tzu, The art of war.

8.1 Basic concepts

The ideal diagnostic test to assess stenosis functionality and aid the clinical decision-
making process should be expressed in the form of a quantitative index featuring the
following characteristics [268, Chapter 4]: (a) independence of blood pressure, heart rate,
and contractility; (b) definition within in a range of values independent of patient and
coronary artery; (c) ability to identify lesions which are capable of causing ischemia from
those which are not; (d) consideration for the effects of collateral circulation; and finally
(e) easy-to-compute. These desired features discouraged the used of CFR and motivated
the development of the fractional flow reserve (FFR), which was introduced in the early
90’s by Pijls et al. [266].

FFR is defined as the maximally achievable flow in the presence of a stenosis divided
by the maximum flow expected in the absence of the lesion. Figure 8.1 presents a schematic
representation, simplifying heart circulation with a purely resistive electrical model. A
healthy artery (with aortic input pressure Pa and a given flow Qa) that bifurcates into a
stenotic artery (s) and a healthy one (b), with blood flow rate Qs and Qb, respectively.
Both branches reach separate myocardial vascular beds, with myocardial resistance Rm1

and Rm2. After myocardial resistance, pressure drops to venous pressure Pv. Additionally,
an anastomosis at the arteriolar level models a collateral path between the two arterial
branches. Such connection has resistance Rc with an associated collateral flow (Qc) from
the healthy to the stenotic branch. Albeit simple, this electric-analog model allows the
understanding and derivation of FFR and related indexes.

In his seminal work, Pijls et al. [266], presented a collection of three indexes to
estimate the functional severity of a stenosis. Although such indexes conceptually represent
relationships between blood flows, they can be estimated from pressure measurements. To
correctly estimate flow from pressure, resistances Rm1 and Rm2 must remain constant and
minimal, as is the case during maximal vasodilation (myocardial hyperemic state).

All indexes are calculated from pressure measurements in the aorta, transtenotic,
wedge1 and venous/right atrium (as illustrated in Figure 8.1). These pressures are averages

1The wedge pressure is the transtenotic pressure in the scenario of total occlusion, which can be forced
by a balloon at the time of angioplasty.
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along a cardiac cycle. Furthermore, indexes are dimensionless, because they express relative
quantities.

The following notation is used for the introduction of the hemodynamic indexes:

• The supra-index N stands for normal condition, i.e. without stenosis, in such a case,
Qs = Qm1 and no collateral flow is present, i.e. QNc = 0.

• The wedge pressure is the distal (transtenotic) pressure during stenosis total occlu-
sion, i.e. Rs =∞, Qs = 0 and therefore Qc 6= 0.

A detailed derivation of each index is given on Appendix E.

(a) (b)

Figure 8.1: Schematic representation of coronary circulation using a purely resistive
electric-analog model. Panel (a) represents a stenotic condition, while panel (b) stands
for a total occlusion condition.

Coronary fractional flow reserve (FFRcor) This index expresses the relative maxi-
mum flow through the stenosis relative to the maximum flow in the absence of it. Therefore,
it takes values in the range [0, 1], and can be mathematically defined as

FFRcor =
Qs
QNs

=
Pd − Pw
Pa − Pw

. (8.1.1)

In order to calculate FFRcor from pressures, a total occlusion of the stenotic artery is
needed, therefore in clinical practice the FFRcor can only be measured during angioplasty
(balloon inflation).

Myocardium fractional flow reserve (FFRmyo) Also known simply as FFR, it ex-
presses the myocardium maximal achievable flow in the presence of a stenosis in relation
to the maximum flow expected in the absence of the stenosis. It takes values in the range
[0, 1], and is defined as

FFRmyo =
Qm1

QNm1

=
Pd − Pv
Pa − Pv

. (8.1.2)

By definition, FFRmyo only makes use of transtenotic (Pd) aortic (Pa) and venous
(Pv) pressures, therefore, it can be calculated without total occlusion of the lesioned artery,
meaning that no angioplasty is needed to estimate FFRmyo.

Collateral flow reserve (FFRcol) Also named collateral flow index (CFI), it represents
the contribution of collateral flow to myocardial flow in presence of stenosis relative to the
normal myocardial flow. It is calculated as

96



Chapter 8. Fractional flow reserve

FFRcol =
Qc

QNm1

= FFRmyo − FFRcor =
Pw − Pv
Pa − Pv

. (8.1.3)

By definition, FFRcol needs pressure measurements during total occlusion (FFRcor),
therefore its clinical applications are limited.

Practical considerations Since FFR is clinical obtained from coronary pressure mea-
surements, some prerequisites associated to the interpretation of coronary pressure mea-
surement are pertinent [268]:

1. Reliable intra-coronary pressure recording needs the used of ultra thin pressure-
monitoring guide wires [85].

2. Pressure measurements are only meaningful at maximum coronary hyperemia. Fur-
thermore, it is sufficient to study blood flow only in the arteries affected by the
stenotic lesion.

3. It is not the gradient, but the remaining distal coronary pressure which determines
myocardial perfusion.

Independence of FFR of hemodynamic loading conditions Reproducibility is a
crucial characteristic of any diagnostic test. A measurement which is either difficult to
obtain, of little clinical relevance, or highly variable, has no clinical value. Chapter 9
of [268] compiles several studies demonstrating the independence of FFR from changes
in heart rate, blood pressure, and contractility. Nonetheless, questions remain regarding
FFR repeatability and stability during intravenous infusion (IVAVD) because of systemic
effects that can alter driving pressure and heart rate [326]. A recent study [163] showed
that IVAVD produced 3 general patterns of Pd/Pa response, with associated variability in
aortic and coronary pressure and heart rate during the hyperemic period. Nevertheless,
FFR – when chosen appropriately – proved to be a highly reproducible value. Therefore,
operators can confidently select the “smart minimum” FFR for patient care.

8.2 The roadmap of FFR

The three hemodynamic indexes were first presented in [266], and were validated
to direct flow measures in dogs. The results indicated that, under maximal vasodilation,
estimation of flow by pressure measurements were precise, encouraging later investigations.
In a posterior study [83], the estimation of FFR from pressure measurements was validated
in humans.

The capability of pressure-estimated FFRcol to predict ischemic events was first
studied by Pijls et al. [264]. It was confirmed that during acute stenosis or even total
occlusion, collateral flow must be considerable or at least sufficient to meet the metabolic
demands of the myocardium at rest. The study was conducted in patients with stable
angina and positive exercise test, ensuring well developed collateral flow and suitability
for angioplasty. It was detected that ischemia during occlusion was manifested in patients
with FFRcol < 0.25, while patients exceeding this threshold did not suffer ischemic events.
A relation between visible collateral flow with the quantitative value of FFRcol could not
be established. Furthermore, the study discarded wedge pressure (Pw) alone as a good
index for collateral flow capability. It was concluded that the major limitation of FFRcol
is that it can only be measured during angioplasty and not as a diagnostic procedure
because Pw must be recorded during coronary artery occlusion. Validation of FFRcol
against myocardial perfusion images was later performed by Matsuo et al. [215].
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Pijls et al. [267] stated that FFR can be used to reliably discriminate coronary
stenosis functional severity, i.e. whether it is associated with inducible ischemia or not.
The study consisted in FFR measurements before and after angioplasty on a group of
patients with positive stress test. A week after the procedure, the stress test was repeated.
Normal outcomes of this second test indicate that the pre-angioplasty value of FFR was
associated with inducible ischemia and the post value not. The study clearly found that
FFR values < 0.75 are associated to myocardial ischemia. More evidence supporting the
clinical value of the FFR, and the 0.75 threshold, was presented by comparing it to other
diagnostic tests 2 frequently employed to detect myocardial ischemia [270].

The first long-term study of the implications of angioplasty decision-making driven by
FFR was presented in [35] and continued in [269], and it is known as the DEFER (deferral of
percutaneous coronary intervention) study (with two and five years of patients follow up).
The study was performed in 12 hospitals in Europe and 2 hospitals in Asia between June
1997 and December 1998. Patients undergoing the study had 1) more than 50% diameter
stenosis in a native coronary artery3; and 2) no evidence of reversible ischemia had been
documented by noninvasive testing within the last 2 month. The results reinforced the
validity of FFR ≥ 0.75 as an index to deferral angioplasty, stating that when percutaneous
coronary intervention (PCI) was performed when FFR ≥ 0.75, the patients probability of
having any cardiac event or death was not improved, and neither the chance of suffering
chest pain.

The second multi-center clinical trail, known as FAME (Fractional Flow Reserve
Versus Angiography in Multivessel Evaluation) [332], took place in 20 medical centers in
the United States and Europe from January 2006 until September 2007. It was conducted
in patients with multiple stenoses with at least one with 50% occlusion (determined by
visual inspection). All patients were randomly assigned into two groups, one underwent
PCI guided by angiography in all stenotic vessels (PCI group), and the other only received
angioplasty in arteries with FFR < 0.8 (FFR group). Results showed that, although the
average time per procedure was the same for both groups, almost a double of stents per
patient were placed in the PCI group, and around 10% more contrast agent was used in the
PCI group. In average, the number of dead, infarction, need for repeated revascularization
was smaller in the FFR group. After one year follow up, several statistics, e.g. suffering
from angina or any cardiac event, still favored the FFR group. In addition, the average
cost of the procedure was U$D 700 lower and the mean length of stay in the hospital was
also reduced.

A posterior study [333] using a subsample of data from the original FAME trail,
concluded that: patients with multi-vessel CAD, visual inspection and stenosis percent-
age reduction based on coronary angiography results in an inappropriate tool to identify
ischemia-producing stenosis as detected by the FFR. This discrepancy between angio-
graphic and functional stenosis severity is present in stenosis featuring between 50% to
90% of lumen diameter reduction. The study reinforced the need for functional analysis of
stenosis, over pure geometrical (visual inspection) methods. Recently, results of a 5-year
follow up of the original FAME patients were published [341]. Authors claim the long-term
safety of FFR-guided PCI in patients with multivessel disease.

Such clinical evidence has turned FFR into the new gold standard for myocardial
ischemia risk assessment. Nevertheless, for various reasons, it is used in less than 10% of
the patients [237]. Either way, there is an increasing interest from the medical community
in predicting FFR threshold from geometric characteristics of arterial lesions imaged from
coronary angiography (AX), intra-vascular ultrasound (IVUS), optical coherent tomog-
raphy (OCT) or coronary computed tomography angiography (CCTA). Several studies

2Exercise test and thallium scanning, Stress echocardiography, quantitative coronary angiography.
3The term native, refers to arteries that were not surgically implanted, e.g. bypass grafts.
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focused on the FFR prediction capabilities of several geometric variables, e.g. lumen area,
percentage of stenosis, lesion length, plaque burden, and so on [348, 126, 205].

Given large impact on the practice of cardiology and the increasing used of FFR
as the guidance tool for revascularization, controversy naturally arises. A critical review
of the evidence for the concept of FFR-guided revascularization is presented by Arbab-
Zadeh in 2014 [22]. Mainly, he argues that: (a) the limitations of the FAME studies are
sufficiently significant to cast doubt on the validity of the FFR-guided PCI concept; (b)
neither FAME studies provided conclusive evidence that FFR guidance of PCI reduces
myocardial infarction or death other than by lowering the number of PCIs and does not
provide proof that FFR guidance does so better than chance alone. Nevertheless, it is
irrefutable that FFR can identify coronary stenoses that trigger angina, avoiding PCI
in lesions that would not result in symptomatic relief. Furthermore, the DEFER and
FAME studies did demonstrate the absence of merit in performing PCI in coronary artery
stenoses without hemodynamic significance, which has led to decreasing numbers of stent
procedures overall. This represents a major achievement of the FFR paradigm and an
important step in the direction of incorporating functionality to medical images in order
to improve diagnosis and therapeutic strategies.

8.3 Limitations of FFR

Pijls et al. [265] summarize the potential pitfalls of invasive coronary pressure mea-
surements and the impact on FFR estimation. Although most of such are associated to
the procedure, e.g. drug administration, recording synchronization, catheter positioning,
etc; there are some known pathophysiologic conditions limiting the use of pressure mea-
surements, e.g. coronary steal and microvascular disease.

Coronary steal occurs when one critically narrowed or occluded coronary artery,
receives collaterals from another vessel which is stenotic itself (but not critically stenotic).
To correctly assess FFR in such condition, the drug induced hiperemia should be enforced
in both vessels, i.e. intravenous administration of vasodilator [268].

The most important conceptual limitation of FFR is the presence of microvascular
disease distal to place were Pd is measured. This can be manifested in the presence of
diabetes, but may also play a role after myocardial infarction and in diffuse coronary
atherosclerosis. Under such conditions, the hypothesis for normal flow estimation, see Sec-
tion 8.1, does not hold. Nonetheless, even under these conditions, the FFR still expresses
the extent to which the flow supply will be improved by a revascularization procedure.
This consideration is a key difference between FFR and CFR, since the later may indicate
epicardial disease, microvascular disease, or both. However, it cannot separately distin-
guish between these entities. Associations between FFR and CFR were initially presented
in [83]. More recently, in [165], a linear relation between CFR and FFR was found. The
relative contributions of focal and diffuse disease define the slope and values along the
linear CFR and FFR relation. Discordant CFR and FFR values reflect divergent extremes
of focal and diffuse disease, not failure of either tool. A posterior study [102], supported
the existence of differentiated patterns of ischemic heart disease that combine focal and
diffuse coronary narrowings with variable degrees of micro-circulatory dysfunction.

Also, there is increasing interest in novel indexes that are able to account for a more
comprehensive assessment of coronary physiology [162, 340], in which flow is measured
directly and not estimated from pressure. In such paradigm, the CFR and the hyperemic
flow are combined to quantify and stratify ischemia risk.

The interested reader will find updated reviews about the different aspects of the
FFR index in [339, 171, 161].
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8.4 Computational assessment of FFR

Despite the controversy and limitations surrounding the FFR, a large part of the
community supports the concept of coronary revascularization guided by FFR. Such state-
ment is sustained by the fact that several international guidelines emphasize ICA with the
measurement of FFR as the standard of reference for determining the functional signifi-
cance of individual coronary artery stenoses [258, 27]. However, these invasive procedures
carry the risk of serious complications such as bleeding, stroke, coronary artery dissection,
allergic reaction to dye or medication, kidney damage and myocardial infarction, among
others [249]. Furthermore, the short-term cost of the procedure is increased in relation
to the traditional angiography alone because of the need for pressure wire and hyperemic
drugs. Also, the FFR is used in less than 10% of suitable scenarios [88, 237] even in the
United States and the Europe Union, where the rates of use of FFR are among the highest.

At the same time, thanks to advances in scanner technology [323, 67], CCTA became
a popular noninvasive method for direct visualization of CAD. However, there is a weak
association between severe stenosis detected by CCTA and ischemia [227]. Therefore,
although useful to rule out stenotic vessels, CCTA alone is not enough to guide revas-
cularization. As a consequence, other diagnostic noninvasive tests are usually performed
following CCTA to help with the physiological assessment of CAD and, at the same time,
avoid invasive procedures. It is in this context in which the idea of using tools from compu-
tational fluid dynamics (CFD) to estimate the FFR noninvasively from CCTA image was
conceived, yielding the foundation of the medical software start-up known as HeartFlow [3].
In recent years other research groups and health-care equipment manufacturers around the
world are actively working to develop methods and techniques to estimate the FFR from
medical images, without the use of the pressure wire. This section aims (a) to state the
key steps needed to estimate FFR using CFD simulation tools and (b) to summarize the
most relevant contributions to the field. This prepares the groundwork for the proposed
strategy to estimate FFR from medical image, as will be discussed in Chapter 9.

8.4.1 Requirements

Since the conceptual determination of FFR amounts to characterize the resistive
features of stenotic lesions (recall the FFR paradigm is based on an purely resistive electric-
analog circuit), targeting the computation of FFR, it is standard to assume that vessels do
not deform during the cardiac cycle. In such context, a complete model for the coronary
arterial circulation should take into account several aspects of the physical phenomenons
taking part, mainly:

• The governing equations of fluid dynamics are the well known Navier-Stokes equa-
tions (8.4.1), which characterize the velocity (v) and pressure (p) of a fluid in each
spatial position (x) of a given three-dimensional (3D) domain (Ω) at each time instant
(t) during the cardiac cycle. These equations read

ρ
∂v

∂t
+ ρ(∇v)v − µ4v +∇p = 0 in Ω,

divv = 0 in Ω,

v = 0 on Γw,

+ Appropriate BC (see Chapter 9) on Γp and ∪Noi=1 Γi

(8.4.1)

In the equations above, the actual physical properties of blood, fluid density (ρ) and
viscosity (µ), are assumed known and constant (flow is incompressible, and fluid
is assume to be Newtonian), which are standard hypotheses for large vessels such
as the coronaries arteries. The domain Ω is constant in time, with boundary Γw
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representing the arterial wall, Γp the proximal boundary (the inlet at the aortic root)
and Γi, i = 1, . . . , No, the No outlet boundaries, and n the normal vector. Although
equation (8.4.1) models flow in a 3D domain, dimensional reductions (for example
1D models) targeting blood flow were proposed in the past [28, 151, 319], and are
currently being used to simulate blood flow in extremely large arterial networks
comprising the entire arterial vasculature [42, 43]. In such simplified models, part of
the physical phenomena is neglected by the model, e.g. transversal flow circulation.
Finally, BC stand for boundary conditions, which will be discussed next.

• The fluid domain (Ω) represents the arterial lumen. A comprehensive model of the
arterial wall mechanics and the fluid structure interactions, which cause deformation
of the lumen, is a challenging and expensive task [24]. Furthermore, during the
heart beat, the spatial location of the arteries changes due to the movement imposed
by the heart [255, 170]. The effects in the pressure field of such lumen variations
were studied in [90], and it was shown that modeling such phenomena does not
substantially contribute to the average pressure required by the calculation of the
FFR. Therefore, as said in this work, the arterial domain Ω is considered fixed in
time (arteries are considered rigid).

• The coronary arterial circulation is not an isolated system, it is coupled to the rest
of the cardiovascular system at both, the inlet and outlet. A comprehensive review
of physiological aspects of coronary circulation can be found in [316]. Basically, the
pressure at the inlet of the coronary arterial tree is given by the aortic root pressure,
while the flow signatures are shaped by myocardial microcirculatory compression pat-
terns due to cardiac contractions along the heart beating [81]. Therefore, an isolated
model of the coronary arterial circulation, needs of the imposition of appropriate
hemodynamic conditions at the domain boundaries, the so called boundary condi-
tions (BC). Over the arterial wall no-slip BC are assumed, meaning that the blood
adheres to the wall, that is blood velocity is zero. There are different approaches to
impose hemodynamic conditions at the inlets and outlets, e.g. traction (pressure),
flow, resistance and so on (see Chapter 9). Note that modeling resting or hyperemic
blood flow requires the appropriate setting of such BC, because they fully determine
the blood demand from the downstream myocardial tissue. In such context, using
time-dependent BC results in time-dependent flow, and thus in the need for transient
simulations, where the cardiac cycle is simulated. However, since the FFR relies on
average pressure values over the cardiac cycle it is also possible to perform steady
state simulations, achieved by setting BC which are constant in time.

• The use of numerical methods for solving fluid dynamic problems is the definition
of the so called Computational Fluid Dynamic (CFD) field of research. With more
than 50 years of existence, the impact of CFD in a broad range of applications is
invaluable. The first applications of 3D CFD for simulating blood flow in arterial
domains where performed in the early 90’s [260] as an alternative to study wall
shear stress in an in-silico manner. Maybe the most used numerical method to solve
the Navier-Stokes equations are Finite Element Methods (FEM), as well as Finite
Volume Methods (FVM), Finite Difference Methods (FDM) and Lattice-Boltzmann
Methods (LBM). Accuracy and computational cost of numerical methods depend on
the so call refinement of the computational domain4, also known as computing mesh.
Furthermore, the dimensionality of the model, e.g. 3D or 1D, directly impact on the
computational cost required to perform the simulation.

4The computational domain is the discrete counterpart of the continuum domain Ω, achieved after
partitioning Ω into basic units usually referred to as elements, or cells.
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A comprehensive review of different aspects regarding computational models for coro-
nary circulation, focusing in myocardial-vessel interaction due to left ventricle contractility
is presented by Kassab et al. [176]. Moreover, solving the Navier-Stokes equations in
a patient-specific fashion needs the specification of the arterial domain Ω and, equally
fundamental, the definition of BC matching the patient hemodynamic features, namely:

• Computational domains of the coronary arteries are obtained using image processing
techniques from medical images. Several imaging modalities can be used, e.g. coro-
nary computed tomography angiography (CCTA), intra-vascular ultrasound (IVUS),
optical computed tomography (OCT), coronary angiography (AX) and rotational
coronary angiography (ROC). Each modality presents different challenges as for the
image processing techniques to be used, and also have advantages and disadvantages
regarding the quality and spatial definition of the resulting geometric model. In this
work, special detail has been given to the processing of CCTA images in Chapter 2
to produce geometrical models for the Part I of this Thesis. From such geometric
models, computational meshes for CFD can be constructed by standard mesh oper-
ations, as can be seen in Appendix A. The accuracy of the computational domain
has an obvious direct effect on the results delivered by CFD simulations.

• Depending on the type of BC to be used, appropriate patient data needs to be mea-
sured or estimated. Arterial pressure, flow rates, cardiac frequency and peripheral
resistances are examples of relevant hemodynamic parameters that can be used to
prescribe patient-specific BC. Note that such parameters vary depending on hemo-
dynamic load conditions, e.g. rest and hyperemia.

• Finally, once the domain and BC are prepared, the Navier-Stokes equations must
be solved, and the simulation results must be processed to extract the pressure field
(average over the cardiac cycle) to obtain an scalar field representation of the FFR in
the arterial domain. Assuming the image was accurately processed, it is then evident
that BC directly impact the result of CFD simulations, and therefore, the correctness
of the computational assessment of FFR is directly, and mostly in our experience,
related to the BC, as will be seen in Chapter 10.

8.4.2 Critical literature review

Since 2011, several computational methodologies to estimate FFR using CFD meth-
ods have been proposed. Some of these approaches gained recognition in the medical
community (moreover, some are boosted up by private health care companies) and pro-
duced clinical trials with relatively large patient samples, and many others are still in the
phase of preliminary tests. A comprehensive bibliographic review about the computational
assessment of FFR is presented in this section. First, in Table 8.1, current approaches are
reviewed from a methodological point of view. Then, in Table 8.2, the results in terms
of comparisons against invasive FFR measurements are summarized. Note that references
are grouped by research teams to provide a global perspective about the different method-
ologies. The interested reader is referred to [237, 337], for reviews on current approaches
on CFD-derived FFR.
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DISCOVER-
FLOW [186],[360],[146]
(2011, 2012, 2013)

• Presentation of the FFRCT index, the first noninvasive (computational) estimation of the FFR.

• The first medical trial assessing the accuracy of a computational approach to estimate the
FFR [186]. Prospective, multicenter blinded study.

• Lesions of any degree were used.

• It Compares cdiagnostic capabilities of CT (%stenosis≥50%) against FFRCT and invasive FFR.

• A subgroup of patients was used to compare diagnostic capabilities against Trans-luminal At-
tenuation Gradient (TAG, see Appendix D) [360].

• Another subgroup of patients was used to make economic cost projections following hipothetic
clinical decision scenarios guided by different diagnostic strategies, including FFRCT [146]. It
was reported that a strategy of using FFRCT to guide the selection of patients for ICA and PCI
might reduce costs and improve clinical outcomes in patients with suspected coronary artery
disease.

• Overall, noninvasive FFRCT provides better diagnostic performance for lesion-specific ischemia
compared to CCTA %stenosis and TAG, taking as gold standard invasive FFR.

• It is reported that simulation runtime is 5 hs/exam.

CCTA, (≥64-detector row CT
scanners). It is not stated if
the geometrical models consist
of all arteries or the subtree af-
fected by the disease.

• Collaterization not used, not mentioned.

• Model dimension 3D.

• According to references cited within the stud-
ies [182, 180, 181], boundary conditions are mod-
eled with lumped windkessel elements; simulations
compute transient regimes (the number of car-
diac cycles is not reported); coupled with sys-
temic circulation through a closed loop (with heart
and pulmonary circulation models), although ref-
erence [182] is based on an open loop system; it
is not specified whether the model accounts for
compliant arterial walls or rigid, although refer-
ences [180, 181], use compliant models.

• It is not specified how hyperemic conditions are
simulated, although the work [355] is cited, men-
tioning that microcirculation reacts predictably to
maximal hyperemic conditions.

DeFACTO [225],[226],[247]
(2011, 2012, 2013)

• Rationale [225] and results [226, 247] of a prospective, multicenter blinded study to evaluate
the diagnostic performance of FFRCT.

• Stenosis (in the range of 30% to 90% obstruction) were included in [226], while only intermediate
stenosis (in the range of 30% to 70% obstruction) where used in [247].

• It is reported that simulation runtime is 6 hs/exam.

NXT [119, 251,
250] (2013, 2014,
2015)

• Rationale [119] and results [251] of the prospective, multicenter blinded NXT trial.

• The main purposes are: (i) test the influence of improvements in HeartFlow software on the
diagnostic accuracy of FFRCT, (ii) investigate prospectively the FFRCT accuracy in patients
with non-critical coronary artery lesions, and (iii) test the methodology in a real-world scenario
by using site coronary CTA reads rather than core laboratory reads.

• Criterion for patient exclusions are %stenosis>90% or %stenosis<30%, previous cardiac inter-
ventions, and poor image qualities.

• Using a subgroup of patients [250], the impact of calcium scores in the FFRCT index was
assessed. In a subsample of arteries with higher calcium score, comparisons between invasive
FFR and FFRCT results in smaller correlation and larger dispersion.

• It is reported that simulation runtime is 1-4 hs/exam.

The following methodological points differ from pre-
vious studies (DISCOVER-FLOW and DeFACTO):

• The methodological references now are [180, 181,
328].

• The new reference [328] suggests that an open loop
model of the circulatory system is used.

• It is not clear whether compliant or rigid arterial
wall models are used, reference [328] suggests rigid
while [180, 181] suggest compliant.

• The methodology for simulating hyperemia is still
not well documented, although reference [328],
suggests that microcirculatory resistance of all ar-
terial terminals is reduced by a factor of ∼ 0.25
according to [355].

PLATFORM [96,
145] (2015)

• This medical trial uses the FFRCT methodology in a real-world scenario, where diagnostics
were performed either by usual care or FFRCT.

• It was reported that FFRCT was a feasible and safe alternative to invasive coronary angiography
(ICA) and was associated with a significantly lower rate of invasive angiography showing no
obstructive CAD [96].

• Furthermore, an evaluation strategy based on FFRCT was found to be associated with less
resource usage and lower costs within 90 days than evaluation with ICA. Also, it was associated
with greater improvement in quality of life than evaluation with usual noninvasive testing.

• Methodological details associated to the computa-
tion of FFRCT are not presented, citations to [328]
are provided instead, which is not informative.
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[155, 308] (2012)

• Two methodological papers, make use of only a single patient-specific model.

• First attempt to use 1D models for the FFR computational estimation [155].

• Adds a parameter estimation strategy for the peripheral resistances of the lumped parameter
model [308].

• It is reported that simulation runtime is 1 min [308].

CCTA. No details nor ref-
erences regarding the image
segmentation and geometric
model construction are given.

• Collaterization not used, not mentioned.

• Model dimension 1D. The proposed model is com-
posed of axisymmetric 1D elements. Stenosis re-
gions are modeled using the pressure drops known
as the Young model [362].

• Boundary conditions are modeled with lumped
windkessel elements of the coronary and systemic
circulation, coupled with a heart model to in-
clude the effects of the myocardial contraction on
the coronary flow (and provide the inflow), in an
open loop fashion; simulations compute transient
regimes (the number of cardiac cycles is not re-
ported); to distribute the total resistance to the
various lumped models at the outlets, the Murray’s
law is used; the 1D model implicitly accounts for
the compliance of arterial walls.

• For simulating drug-induced intracoronary hyper-
emia, only the lumped parameters of the artery of
interest are adapted by a scale factor [155] which is
then adjusted by a control strategy to fit pressure
data. [308].

[275, 76] (2014)

• Two independent trials, introducing the Siemens Healthcare approach to estimate FFR from
noninvasive images (cFFR), using a software (version 1.4) not commercially available at the
moment of publications, installed on a regular workstation.

• Retrospective, single center blinded studies.

• The cFFR was compared against invasive FFR and to CCTA (%stenosis≥50%). It was found
that cFFR outperforms CCTA for the detection of hemodynamically significant stenosis.

• Including data set processing and flow simulation, reported runtime is 37.5±13.8 minutes [275].
According to [76], image processing/mesh generation takes 20-120 minutes depending on image
quality, while solving the 1D model takes 5-10 minutes.

CCTA. A quality index is used
in order to decide whether im-
ages are to be processed or not.

Modeling details are not well documented, instead,
citations to [155, 308] are provided.

[334] (2016)

• The first trial from Siemens Healthcare introducing the so called FFRangio, an estimation of
FFR from angiogram images.

• Retrospective, single center blinded studies.

• Low inter-observer variability.

• It is reported that simulation runtime is 40 seconds.

AX, acquired at rest from 2
views at angulations at least
30° apart. 3D model of the
coronary lesion is contructed
using a commercially available
software (syngo IZ3D; Siemens
AG, Healthcare, Forchheim,
Germany). The main vascular
branch and, if appropriate, one
side branch could be included
in the model. The centerline to
create the 1D model is then ex-
tracted.

Modeling details are not well documented, instead,
citations to [155] are provided. Particularly, it is not
clear how the inflow is determined, since input data
is different from the one used in [155].
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[184] (2016)

• First trial, introducing CT-FFR, the Toshiba Medical Systems Corp. approach for estimation
of FFR from noninvasive images. Using proprietary software installed in regular workstations.

• It is reported that total processing time per patient averages 24.07±7.54 min.

• Single-center study with a small sample of subjects and vessels.

• The CT-FFR was compared against CCTA, QCA and visual ICA (%stenosis≥50%). It was
found that CT-FFR outperforms all three methods for the detection of hemodynamically sig-
nificant stenoses, taken invasive FFR as gold standard.

• Boundary conditions are determined with nonstandard method, accounting for the structural
deformation changes in the coronary lumen and adjacent aorta across the entire diastolic phase
of the cardiac cycle.

• It is not clear if hyperemic or resting conditions are simulated, the iFR concept is mentioned,
and there are no comments on adapting the BC for hyperemia.

• Performed in a blinded fashion, with intra- and inter-observer variability, −0.02 ± 0.05 and
0.03± 0.06, respectively.

CCTA. Pre-processing is
performed using FC03 recon-
struction kernel (SurePlaque,
Toshiba Medical Systems
Corp.). Vessel centerline
and luminal contours were
automatically processed.
Manual adjustments were
performed as required. Four
CT images were reconstructed
(at 70%, 80%, 90%, and
99% of R-R interval). Each
millimeter of the coronary tree
from the vessel inlet to outlet
(up to 1.8 mm in diameter)
was registered and permitted
calculation of structural data
including the cross-sectional
luminal deformation, volume
variation in the vessels and
aortic root.

• Collaterization not used, not mentioned.

• Model dimension 1D. Blood was modelled as a
non-Newtonian fluid using the Herschel-Bulkley
fluid constitutive model.

• Fluid dynamics solved with FEM using dedicated
software.

• The paper lacks methodological and modeling de-
tails, instead a citation to [144] is presented.
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VIRTU-1 [236]
(2013)

• First trial using AX images, introducing the so called vFFR index.

• Only lesions with %stenosis>50% detected in angiograms are used.

• It is reported that simulation runtime is ∼ 24 hs/exam.

AX. 3D model is constructed
from two projections at 90° an-
gulation. Image quality is an
excluding factor. Image pro-
cessing performed in a Philips
3D workstation. Geometric
models were meshed into ∼ 1
M internal tetrahedral.

• Collaterization not used, although it is mentioned
in discussions.

• Model dimension 3D. Computational domains
only take into account the artery of interest with-
out branches.

• Fluid dynamics solved with the FVM using com-
mercial software [14].

• Boundary conditions are modeled with lumped
windkessel at the outlet and pressure curve at the
inlet, in an open loop fashion. Generic windkessel
parameters were used for all patients, such param-
eters were obtained by averaging the values over
the same patients, initially calculated to fit data
acquired from pressure measurements. The inlet
pressure waveform was also averaged from all pa-
tients.

• The flow is determined by the generic windkessel,
therefore all patients are simulated with the same
blood flow, disregarding the artery and patient-
specific physiology.

• Simulations compute transient regimes (the num-
ber of cardiac cycles is not reported)

• Although not specified, it is suggested that rigid
walls are used.
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[336] (2014)

• First work introducing FFRQCA, another computational estimation of FFR.

• Flow boundary conditions are obtained from the AX using image processing techniques.

• Low inter- and intra- observer variability was reported.

• Only arteries with diameter stenosis within 40-70% according to visual inspection of angiograms
were used. Bifurcation lesions were discarded.

• Simulation run time ∼ 5 min/exam.

AX. 3D model is constructed
from two projections at 25° an-
gulation. Only large branches
are included. It is reported
that CFD meshes of ∼ 780000
element are constructed in 2
minutes.

• Collaterization not used. The justification is that
collateral flow development would be rather infre-
quent in the case of intermediate lesions. Further-
more, disagreement to invasive FFR is attributed
to abnormal microcirculatory resistance or down-
stream collateral circulation.

• Model dimension 3D.

• No details on the numerical method used to solve
the CFD problem, although the FLUENT (version
1.4, ANSYS Inc [15]) software is used.

• Blood density and viscosity are patient-specific
measurements.

• Steady state simulations are performed; patient-
specific boundary conditions are used, mean pres-
sure and flow at the inlet and flow at the outlet.
All flows are estimated using the TIMI (Thrombo-
sis in myocardial infarction) technique and frame
count.

• Although not specified, it is suggested that arterial
walls are assumed to be rigid.
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[256] (2014)

• Introduction of the virtual functional assessment index (vFAI), defined as the area under the
curve relating pressure ratio (Pd/Pa) to flow rate (Q). Which is estimated from the relation
∆P = fvQ+ fsQ

2, where the coefficient for pressure lost due to viscous and separation effects
are obtained from pressures resulting from CFD simulations at fixed flow rates Q = {1, 3}
[ml/s].

• Only arteries with diameter stenosis within 30-70% according to visual inspection of angiograms
were used.

• It is reported that the complete pipeline (processing and simulation) takes < 15 min/exam.
Segmentation time 5 min. Mesh generation time 3 min

AX. 3D model is constructed
from two projections 30° apart.
Side branches are not included.

• Collaterization not used, not mentioned.

• Model dimension 3D. Computational domains
only take into account the artery of interest with-
out branches.

• No details on the numerical method used to solve
the CFD problem.

• Steady state simulations are performed with
boundary conditions of 100 mmHg at the inlet,
and flow was imposed at the outlet (1 and 3 ml/s).

• Although not specified, it is suggested that arterial
walls are rigid.
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• First study using OCT image derived computational models, introducing the so called FFROCT
index.

• The use of OCT allows the most accurate lumen model of the main artery under study.

• Only LAD arteries with diameter stenosis within 40-70% according to visual inspection of
angiograms were used.

• It is reported that the complete pipeline (processing and simulation) takes < 10 min/exam.

OCT.

• Collaterization not used, not mentioned.

• Model dimension 3D. Computational domains
only take into account a small region near the
stenosis disregarding branches, in a rectified man-
ner (no spatial orientation is performed).

• Commercial software (ADINA v 9.0.7 [13]) is used
to solve the CFD problem with FEM and rigid wall
models.

• Steady state simulations are performed, and a
generic, simplified one-size-fits-all approach to
boundary conditions is used [236]. Patient-wide
averages of pressure and flow at the outlet and in-
let were used. Flow is estimated by using TIMI
from angiogram at rest conditions, and hyperemia
is not simulated.
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Huo et al. [152]
(2012)

• Analytical model for pressure drop across stenosis.

• Good agreement with in-vivo and in-vitro measurements.

• Flow pulsatility and stenosis shape (e.g. eccentricity, exit angle divergence, etc.) had a neg-
ligible effect on FFR. The pressure drop across a stenosis remained relatively unchanged (less
than 5%), between pulsatile and steady-state flow in in-vitro experiments.

• Entrance effect in a coronary stenosis was found to contribute significantly to the pressure drop.

Lack of use of medical images
from human patients. Exper-
imental measurements of in-
vitro arterial models and in-
vivo (swines) are used.

• Collaterization not used. It is mentioned as a
source of disagreement in significant stenosis be-
tween the model and patient measurements.

• Analytical equation.

• Needs the specification of the inflow.
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[368] (2016)

• First trial, introducing FFRSS, an approach for estimation of FFR from noninvasive images.

• It is reported that total processing time per patient between 0.5 and 2 hs.

• Single-center study with a small sample of subjects and vessels.

• The FFRSS was compared and outperformed area and diameter of stenosis, taken invasive FFR
as gold standard.

• The analytical approach proposed by Huo et al. [152], now named FFRAM was also evalu-
ated, and obtained similar results than FFRSS compared to invasive FFR. Although a direct
comparison between both (FFRSS,FFRAM) was not presented.

• Boundary conditions are determined with nonstandard method, using a generalized Murray’s
law [370, 367] .

CCTA. Details on the im-
age segmentation technique are
provided. Computational mesh
of ∼ 0.8 tetrahedral are con-
structed with commercial soft-
ware ANSYS workbench.

• Collaterization not used, not mentioned.

• Model dimension 3D. Blood was modeled as a
Newtonian fluid, the Navier-Stokes equations were
solved using commercial software, FLUENTTM.

• Boundary conditions of pressure at the inlet and
pure resistive at the outlets where used, to simulate
steady state flow. Resistances are estimated using
a generalized Murray’s law [370], and an iterative
strategy to adjust resistance values is employed,
see [367].

• Hyperemia was modeled by multyplying the resis-
tances by a factor of 0.21, based on [355].

Table 8.1: Summary of publications addressing the computational estimation of FFR.

Research group Study (year) #Patients/
#Arteries

Prediction value [%] Corr. Difference
Prev AUC Acc Sen Spe PPV NPV r mBA ± SDBA

HeartFlow

DISCOVER-FLOW [186] (2011) 103 / 159 36.5 90.0 84.0 87.9 82.2 73.9 92.2 0.68 0.022 ± 0.116
Yoon et al. [360] (2012) 65 / 82 39.0 94.0 89.0 81.3 94.0 89.7 88.7 0.70 -

DeFACTO [226] (2012) 252 / 406 54.4 81.0 73.0 90.0 54.0 67.0 84.0 0.63 0.058 ± -
Nakazato et al. [247] (2013) 82 / 150 23.3 79.0 69.0 74.0 67.0 41.0 90.0 0.50 0.050 ± 0.200

NXT [251] (2014) 235 / 484 20.7 90.0 81.0 86.0 79.0 65.0 93.0 0.93 0.020 ± 0.074

Siemens
Renker et al. [275] (2014) 53 / 67 29.8 92.0 - 85.0 85.0 71.0 93.0 0.66 -
Coenen et al. [76] (2014) 106 / 189 42.3 83.0 74.6 87.5 65.1 64.8 87.7 0.59 -0.040 ±0.130
Tröbs et al. [334] (2016) 73 / 100 29.0 93.0 90.0 79.0 94.0 85.0 92.0 0.85 0.008 ± 0.063

Toshiba Ko et al. [184] (2016) 30 / 56 33.9 83.9 88.0 77.8 86.8 73.7 89.2 0.57 0.065 ± 0.137
Univ. of Sheffield, UK VIRTU-1 [236] (2013) 19 / 35 20.0 - 97.0 86.0 100. 100. 97.0 0.84 0.020 ± 0.080
Lediden, Netherlands Tu et al. [336] (2014) 68 / 77 29.9 93.0 88.0 78.0 93.0 82.0 91.0 0.81 0.000 ± 0.060
Univ. from Greece and UK Papafaklis et al. [256] (2014) 120 / 139 37.4 92.0 86.0 79.0 90.0 82.0 88.0 0.78 -0.004 ± 0.085
Univ. of Yonsei, Korea Ha et al. [137] (2016) 92 / 92 26.1 93.0 88.0 68.7 95.6 84.2 89.0 0.72 -0.030 ± 0.080
Univ. from Singapore, USA, China Zhang et al. [368] (2016) 21 / 32 31.2 95.5 90.6 80.0 95.5 88.9 91.3 0.84 0.026 ± 0.050

Table 8.2: Summary of results available in the literature comparing invasive FFR and computational estimations. All listed publications used a
threshold value of 0.8 to diagnose risk of ischemia in both invasive and computational FFR indexes. Correlation, prediction and differences indexes
computed in a per-artery basis.
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Chapter 8. Fractional flow reserve

From the bibliographic review, it is clear that the FFRCT index from HeartFlow is
leading the race for the computational assessment of FFR. This statement is based on the
evolution of clinical trials, i.e. DISCOVER-FLOW [186], DeFACTO [247], NXT [251] and
PLATFORM [96]. Through these trials, (i) the FFRCT was compared to other diagnostic
techniques, and outperformed them for detecting ischemia when invasive FFR was taken
as gold standard; (ii) FFRCT as a measure alone was used in the decision making progress;
(iii) The economics and quality-of-life impact in the use of FFRCT compared to other
clinical tests was analyzed. In turn, the rest of the approaches summarized in Table 8.1
are in stage (i) and with smaller patient samples.

Nonetheless, a close review of the publications behind FFRCT reveals some points
that are worth discussing, and motivates further research in the area. It is noteworthy
that all publications of HeartFlow’s FFRCT were made in medical journals, which is proper
when reporting trials results. Then, since such publications lack of methodological details,
citations to more “technical” papers are to be expected. Particularly, until the year 2013,
such technical references were [182, 180, 181], in which incremental complexity in the
modeling of hemodynamics is presented, including FSI, closed loop circulatory system and
regulatory mechanisms among others. After the year 2013, HeartFlow published three
methodological papers [366, 133, 328] which are referenced in subsequent trials publica-
tions. But all three of them were published in medical, instead of bioengineering journals,
and therefore the level of detail regarding each step for patient-specific hemodynamic is not
rigorously documented, and moreover, the same technical papers, i.e. [182, 180, 181], are
cited within such apparently “methodological reports”. The lack of a critical review, from
the appropriate community, on the methodology behind FFRCT detracts reproducibility
of the index. A clear example can be found in [119], where it is mentioned that HeartFlow
software version 1.4 will be used in the NXT trial, instead of version 1.2 (which was used
in previous trials). The implications on the modeling and numerical methodologies of such
software version change are not known.

Since the methodology is not properly reported, from [366, 133, 328], although not
explicitly said, one can infer that peripheral resistances are estimated with a Murray-
law relation, the coronary flow is estimated with an allometric law based on [75], and
hyperemia is obtained reducing peripheral resistances by a factor of ∼ 0.25 according
to [355]. It is reported that version 1.4 of the HeartFlow software computes the FFR in 4
hs per exam. From the practical point of view, it should also be taken into account that
approximatly 13% of CCTA studies are discarded for not reaching the minimum image
quality requirements so that it can be used in the calculation of FFRCT [251].

From the big health care companies, Siemens seems to be taking the lead in terms
of a framework to computationally estimate the FFR. Currently with two approaches
(cFFR and FFRangio), they aimed to estimate the FFR from CCTA or AX images. Both
techniques use 1D models of the coronaries. These models allow fast estimations of FFR.
According to the methodological description, both approaches are based on [155, 308], i.e.
on a special stenosis model (based on Young et al. [363]), on a flow distribution based
on Murray’s law, and with boundary conditions which are implemented with windkessel
elements in an open loop model, while the coronary flow is estimated from myocardial
mass. It is not clear, however, how the coronary flow is estimated when using AX images.
Hyperemic conditions are obtained by reducing resistance terminals with an optimization
problem [308]. Although cFFR is noninvasive, the use of FFRangio requires catheterization
(AX image modality) but does not need of drug-induced hyperemia. Both approaches
provide the FFR estimation within 1 hs including image processing and mesh prepara-
tion. In turn, Toshiba Medical Systems Corp. recently joined the race with the so called
CT-FFR [184] with a clinical-like publication with a relative small patient sample. Their
methodology used 1D models of patient-specific coronary trees constructed from 4D-CCTA
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images. The mathematical and numerical methodology to impose boundary conditions is
not clear, but they cite a more methodological work from the same group [144].

Computational assessment of FFR from AX images was first introduce in the VIRTU-
1 trial [236], by researchers from the University of Sheffield, United Kingdom. The method-
ology is called vFFR, the 3D computational domain does not include side branches. The
most notorious feature that differs from the other approaches is that the boundary condi-
tions used for all patients are the same, pressure at inlet and flow at the outlet, which were
estimated as the mean of best-fits for each patient. It was reported that simulations are
performed in ∼ 24 hs. Furthermore, the methodology requires catheterization (AX image
modality) but does not need of drug-induced hyperemia.

The first work using artery specific flow derived from AX images to impose bound-
ary conditions was presented in [336], by a group from the Leiden University, Leiden,
the Netherlands. The approach is called FFRQCA, since the 3D computational model is
constructed from AX images and includes large branches. The blood density and viscosity
are obtain from patient-specific measurements. This is the first approach in which steady
state simulations are performed. The computational times reported for mesh preparation
and simulation are within 10 minutes, which would allow in-site computation of FFRQCA.
The reported methodology requires catheterization (AX image modality) and drug-induced
hyperemia.

A different approach was proposed in [256], by researchers from University of Ioan-
nina, Greece and various other centers in Europe and the Unite States. They proposed
the so called virtual functional assessment index (vFAI), based on CFD simulations. The
index correlates well with invasive measurements of FFR. Simulations are performed in
3D domains of the lesioned artery, without branches, which is obtained from AX images.
Steady state simulations are performed with the same boundary conditions for all patients.
Reported computational times are within 15 minutes, accounting for image processing and
mesh generation, which would allow for in-place utilization of vFAI. Nevertheless, the use
of AX images requires catheterization, but does not need drug-induced hyperemia.

The use of OCT images to estimate functional significance of stenoses was first
presented in [134]. Researchers from such study declared associations to Boston Scientific.
The study introduces the so called vascular resistance ratio (VVR) index, derived from a
lumped resistance model based on OCT arterial diameters. This is the only work in which
the influence of considering branches in flow distribution is assessed. In turn, the use of
3D computational models derived from OCT image modalities was first presented in [137],
by researchers of the Yonsei University, Seoul, Korea. They named the index FFROCT,
and compared it to invasive measurements of FFR. Although the methodology is detailed,
it is suggested that boundary conditions correspond to patient-wide (retrospective group)
measurements of flow (using TIMI frame count) and pressure at rest. In that case, the
FFROCT is not obtained simulating the hyperemic conditions associated to the invasive
FFR.

Other approaches for the computational assessment of FFR have been reported, such
efforts are still in pilot studies stages, and therefore were not included in Tables 8.1 nor 8.2.

A group from the University of Ioannina, Greece, presented the first attempt to
computationally estimate the FFR from IVUS+AX medical images [313] in the year 2013.
The pilot study consisted of 7 arteries from 6 patients, with invasive FFR > 0.9 for all of
them. 3D models did not include side branches, and CFD meshes had a density of ∼ 3000
tetrahedral/mm3, determined after a mesh sensitivity analysis. Steady state flow regime
with rigid walls were assumed. Neither details on the numerical methods used for solving
the CFD problem nor the computational times were reported. Furthermore, this approach
does not simulate an hyperemic state. In contrast, it is based on the iFR paradigm (see
Appendix D). Boundary conditions are patient-specific average pressure at the inlet and
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average coronary blood flow under resting condition at the outlet (averages are computed
during the diastolic wave-free period). At a later pilot study (year 2015) from the same
research group [312], 5 arteries were used (all with invasive FFR> 0.9). The study used the
methodology detailed in [256] to compute the vFAI, i.e. boundary condition of 100 mmHg
at inlet and flow (1 and 3 ml/seg) at the outlet. Steady-state with rigid walls simulations
were assumed. They compared the results using 3D meshes reconstructed purely from
AX (as in [256]) and reconstructions using IVUS+AX. Such differences were below the
3%, although differences in the volume of the meshes were ∼ 20% (with greater volumes
achieved using IVUS+AX).

A group from the University Hospital La Paz, Madrid, Spain presented in 2014 [62]
the methodology to estimate the FFR from steady-state CFD simulations with rigid walls
from IVUS+AX images. The study consisted in 1 patient with pre- and post-stent data.
They report that the CFD mesh are created in ∼ 180 min and simulations is done in ∼ 130
min using ANSYS Release 14.5 software [15]. The boundary conditions were constant 100
mmHg pressure at the inlet and image-derived flow at the outlet.

Recently, in the year 2015, two independent groups presented approaches to com-
putationally estimate the FFR using compliant 1D models. Boileau and Nithiarasu [49],
presented an open-loop model using an average description of the human coronary geom-
etry. The work has no novel contribution in terms of modeling or numerical methods.
No special stenosis elements were employed, and the parameters associated to the stenosis
were manually tuned to match pressure measurements. A pressure curve was imposed at
the inlet and windkessel elements accounting the intra-myocardial pressure at the outlets.
In turn, Gamilov et al. [117] presented a methodology based on CCTA image data. No
special stenosis elements were employed, although a Poiseuille pressure drop is considered
at the junctions and an autoregulatory mechanism is incorporated in the model.

The work by Huo et al. [152] is also relevant as an alternative to enrich stenosis
elements in reduced order modeling (1D). In that work, good correlation (r = 0.99 and
r = 0.75) and agreement (bias of −0.59 ± 2.61 and −1.01 ± 3.6 mmHg) were obtained
against in-vitro and in-vivo measurements of pressure drops. See Chapter 9, Section 9.2.2
for more detail on stenosis models for 1D models. In a joint effort between researchers from
Singapore, USA and China [368], the so called FFRSS was presented and, for the first time,
the analytic model of Huo et al. [152] now named FFRAM, was tested with human data.
The results showed, in a modest patient sample, that FFRAM and FFRSS obtain similar and
good agreement against invasive measurements of FFR. The methodology behind FFRSS,
requires steady state 3D simulation patient-specific models constructed from CCTA. It uses
a generalization of the Murray’s law to obtain resistive values for BC, the methodology is
detailed in [367].

Finally, recent publications from HeartFlow [292, 293, 294] and Siemens [154], in-
dicate that both groups are exploring the use of machine learning techniques to perform
fast calculation and prediction of FFR values based on large databases of studies. More-
over, it is noteworthy that some researchers are patenting the methodology employed
for estimating the FFR using computer simulations, e.g. HeartFlow [327, 330, 110] and
Siemens [309, 310, 311].
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Modeling methodology

“Essentially, all models are wrong, but some are useful.”

George E. P. Box, Empirical Model-Building and Response Surfaces.

Patient-specific hemodynamic simulations rely on two fundamental issues: (i) com-
putational domains and (ii) boundary conditions. Vascular geometries are obtained using
imaging methods: coronary computed tomography angiography (CCTA) [73, 278, 328]
or angiograms (AX), which can be utilized alone [59, 237], or in combination with ei-
ther intra vascular ultrasound (IVUS) [70, 187, 320, 313] or optical coherence tomography
(OCT) [103, 137]. In turn, definition of boundary condition requires knowledge of global
and local hemodynamic information, i.e. systemic pressure, heart rate and blood flow
distribution.

In this work, CCTA and IVUS image modalities are used to obtain patient-specific
models of the coronary vasculature, and modeling methodologies to simulate patient-
specific hemodynamics are proposed. This Chapter outlines the complete methodology:
First, the pipeline used to construct arterial domains from medical images, is presented in
Section 9.1. The numerical methods used to solve the fluid dynamic governing equations
are detailed in Section 9.2. Finally, the methodology proposed to estimate hemodynamic
parameters from patient-specific data is presented in Section 9.3.

9.1 Vascular models from patient-specific data

This section presents the most relevant aspects of the image processing techniques
used for CCTA and IVUS image modalities. Further details can be found in Chapter 2 for
CCTA and in [214] for IVUS.

9.1.1 CCTA image processing

CCTA images were acquired following standard procedures using ECG-triggered
imaging at 75% of the cardiac cycle (late diastole) and ensuring patient heart rate lower
than 65 bpm. The slice thickness was set to 0.3 mm with in-plane square pixel resolution
of 0.415±0.049 mm, depending on the equipment.

Segmentation of CCTA images is achieved using the methodology detailed in Chap-
ter 2, Section 2.2.3. Briefly, the pipeline starts with the extraction of a region of interest on
top of which curvature anisotropic filtering [352] is applied for noisy images. Segmentation
is performed using a level-set method, initialized using a colliding front algorithm [21]. The
segmented lumen is defined using a marching cubes method [202]. This procedure results

111



Chapter 9. Modeling methodology

in a triangulated raw surface of the coronary tree. Such coarse mesh is further processed
to obtain the computational mesh suitable for the CFD simulations.

Surface mesh processing steps include: (a) smoothing, using a Laplacian algorithm
with no shrinking restriction (a relaxation factor of 0.63 and 30 iterations are used) [192];
(b) incorporation of tube extensions at inlet/outlets (at boundaries near bifurcations or
in boundaries with non-convex enclosing curves) to reduce boundary effects in the simula-
tion [124], such extensions have circular cross-section with the same area of the boundaries
that are extending in the direction of the outward normal; (c) adaptive refinement, which
is a function of vessel radius. Finally, a tetrahedral volume mesh is constructed for the
CFD simulations.

All image processing stages, as well as meshing and centerline processing, are per-
formed using vmtk [11], ImageLab [4] and HeMoLab [192, 4] softwares. Both, surface
and volume meshes were generated using vmtk [11]. Appendix A presents an expanded
explanation of the mesh processing pipelines used to obtained the CFD meshes.

9.1.2 IVUS image processing

IVUS images were acquired with the AtlantisTM SR Pro Imaging Catheter 40 MHz
synchronized with an ECG signal and connected to an iLabTM Ultrasound Imaging System
(Boston Scientific Corporation, Natick, MA, USA). The acquisition was performed with a
frame rate of 30 FPS during an automated constant velocity pullback at 0.5 mm/s. The
IVUS frames of 512 × 512 pixels in cartesian coordinates yield a resolution of 17.5µm ×
17.5µm per pixel. In addition, gating of IVUS images is performed to retrieve a specific
cardiac phase from the IVUS dataset [213]. Specifically, the diastolic phase was employed.
The vessel geometry is defined in a system of intrinsic transducer coordinates which de-
mands integration with angiographic images to register and place the transducer in 3D
space.

Two orthogonal AX films were acquired synchronized with the ECG signal when
the IVUS sensor was at the initial pullback position. The views were taken along the
cranial-caudal plane to minimize dye overlapping between the different coronary vessels.
The films span over 8 heartbeats to ensure the acquisition along the whole respiratory
period. Finally, a specialist selected images from the films at the same respiratory phase
(full exhalation) and at the end-diastolic cardiac phase, to perform a time-space consistent
reconstruction of the vessel.

An in-house software developed in Matlab was used to retrieve the end-diastolic
cardiac phase from the ECG-gated IVUS images. Luminal area (from all end-diastolic
IVUS frames) was manually segmented by a specialist using cubic splines. The length of
the segmented pull-backs was 153.81 ± 45.76 gated frames, which corresponds to 67.19 ±
17.89 mm of vessel length. Then, the transducer path was segmented from the orthogonal
AX images using a biplane snakes method [233]. The segmented cross-sectional areas
were positioned in the transversal plane of the recovered transducer path, using an inter-
frame spacing dictated by the acquisition time of the frame and by the pullback velocity.
Segmentation of side branches from IVUS images was also manually performed, creating
a mesh in intrinsic transducer coordinates for each branch. These branches were spatially
positioned in the transversal plane already determined for the parent vessel.

To account for catheter rotations, we rotate all contours around the axis described
by the transducer path. The rotation angle of each frame is the one that minimizes the
mismatch between the projected luminal area from IVUS and the contrast in the same
part of the vessel which is observed in the AX. After this process, a specialist verifies and,
if necessary, corrects the rotation angle by matching the branches and main artery with
the projection resulting in the AX.

At this point, IVUS processed data consist in several disconnected tiangulations,
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one for the parent vessel and one for each branch. Each mesh is improved following the
thee steps described in Section 9.1.1. Then, all surfaces are merged using union surface
operations described in [272]. Finally, a tetrahedral volume mesh is constructed for the
CFD simulations using also vmtk.

9.1.2.1 Vessel rectification due to catheter deployment

It should be notice that CCTA and IVUS models of the same patient could differ in
several aspects: (i) lumen radii can be underestimated in CCTA due to image resolution and
artifacts produce by calcifications, while IVUS provides a more reliable radii information;
(ii) side branches, while IVUS models retain more side branches, the rising angle and lumen
of such branches can be distorted when compared to CCTA; (iii) the 3D path of the IVUS
models may differ from CCTA models in terms of geometric descriptors, e.g. curvature and
torsion. Although not presented in this Thesis, preliminary results of the quantification
of geometric differences between CCTA and IVUS models were presented in [40], and is
a current research topic. All these kinds of differences will produce discrepancies in the
outcome of blood flow simulations, see Chapter 10, Section 10.5.

The (iii) source of differences between IVUS and CCTA models is the less intuitive,
and we have found no documentation on the subject. Therefore, some empirical evidence
is presented here. Due to the insertion of intravascular instrumentation, it is observed a
rectification of the vessel under IVUS inspection. In Figure 9.1, the LCx and LAD arteries
feature larger curvature when the transducer is not deployed yet (e.g. sites marked by the
arrows). Particularly, a more pronounced rectification is seen in the LCx comparing to the
LAD. Note that in this analysis we assume that the catheter matches the centerline of the
artery.

(a) (b)

Figure 9.1: Rectification of the vessel due to catheterization: (a) LAD transducer deploy-
ment; (b) LCx transducer deployment.

9.1.3 1D mesh generation

Meshes for 1D simulations are built on top of centerline models of the coronary
arterial trees, which are generated following procedures explained in Chapter 2. Such
centerlines are discretized with a point spacing of 0.05 cm, and contain the radii of the
maximum circumscribed sphere at each point, we call this variable rs[cm]. Note that the
cross-sectional area at each point can be retrieved by slicing the 3D mesh at each centerline
point, the radius of the circle with equivalent area is denoted as ra[cm]. Note that ra is
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not well defined in junction regions, see Figure 9.2, and in arterial regions with circular
cross sections (such as inlet-outlet extensions), rs = ra.

As described in Section 9.2.2, junctions and stenosis regions can be treated with
special mathematical models. Therefore, two masks are added to the centerline to mark
regions inside junctions and delimiting stenotic lesions. The process to generate both masks
is fully automatic to ensure reproducibility.

Figure 9.2: Example of cross-sectional lumen areas in arterial segments and junction regions
(red indicates in the centerline) of a CCTA 3D model, patient ID 6.

The junction mask is zero at each centerline point outside a junction region, and is
greater than zero for each point pi satisfying

||x(pi)− x(pj)|| ≤ rs(pi) + rs(pj), (9.1.1)

where x(p) is the spatial coordinate of centerline point p, and pj is any point of the
centerline not belonging to the parent of the artery containing pi. Additionally, a correction
is performed to ensure that the ratio (in terms of ra) between the last point of a junction
mask and the first of the associated segment is less than 3/4, which is done expanding the
junction mask if necessary. This is performed to avoid numerical errors in the simulation,
due to artificial discontinuities in the cross-sectional area. Bifurcation vectors are computed
using the points with zero junction mask.

The stenosis mask assumes non-zero value in regions of focal lesions and zero values
elsewhere. It is generated after the junction mask, and therefore points outside junctions
are used, i.e. there are no intersection between masks. We implement a modified version of
the algorithm proposed in [305] to detect stenosis regions. Briefly, for each arterial segment,
containing n points, the true lumen radius at each point i is defined as ri = ra(pi). Then,
the “healthy” radius (r̂) of the arterial lumen is defined by applying a robust weighted
Gaussian kernel regression to the true lumen r.

r̂i =

n∑
j=1

N(j|i, σi)wjrj
n∑
j=1

N(j|i, σi)wj
∀i ∈ [1, n], (9.1.2)

where w is a weighting function and N a Gaussian kernel, such that
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wi = M(ri|rMAX
i , σr), (9.1.3)

rMAX
i =

n∑
j=1

N(j|i, σmax)rj

n∑
j=1

N(j|i, σmax)

, (9.1.4)

N(j|i, σ) =
1

σ
√

2π
e
−

(j − i)2

2σ2 , (9.1.5)

M(ri|rMAX
i , σr) =

{
N(ri|rMAX

i , σr) if j ≤ i,
a otherwise (9.1.6)

Here, M is a modified kernel used to weight the radius function when its value is smaller
than an approximation of the maximum radius at the location rMAX

i . In the original
algorithm [305], M = N , the modification was introduced because the original version
attenuated radius values greater than the estimation of rMAX

i . Also, when the algorithm
was presented in [305], it was not clear the scale in which radius and vessel length were
taken, which is crucial for the definition of the parameters. Therefore, in this work, previous
the estimation of r̂, the 1D functions representing the true lumen radius r and the arterial
intrinsic length are re-sampled in 100 points and normalized in the range [0, 1]. Then,
the healthy radius is computed r̂, note that an abuse of notation is used when calling
the Gaussian Kernel function in the arterial length space N(i|j, ·), i and j represent the
length from the arterial ostium to the points with index i and j. After computing r̂, a
postprocessing is performed to interpolate r̂ in the original points of the centerline and in
the correct range of radii, i.e. a de-normalization. The following parameters were chosen
in a trial and error basis, σi = 0.08, σr = 0.1, σMAX = 1, a = 10.

The percentage area of stenosis is defined as

Θi = 1−
(
ri
r̂i

)2

, (9.1.7)

and stenosis regions are detected using two threshold parameters, Θ1, Θ2. A stenosis is
defined between two point pi, pj satisfying:

• Θi >= Θ1 and Θj >= Θ1,

• Θi−1 < Θ1 and Θj+1 < Θ1,

• ∀ k ∈ [i, j],Θk >= Θ1.

• ∃ k ∈ [i, j],Θk >= Θ2.

The following parameters were chosen in a trial and error basis, Θ1 = 0.1 and Θ2 = 0.4.
The final 1D mesh is constructed using the centerline, by truncating all points with

junction mask different from zero. If stenosis elements are employed, see Section 9.2.2,
points with stenosis masks are truncated and the arterial segment is divided in two compu-
tational domains (pre- and post-lesion), connected by a lumped parameter node modeling
the stenosis. Each arterial segment represents a one-dimensional domain, discretized using
a regular mesh, i.e. constant ∆x. A nodal basis defined by second order Lagrange poly-
nomia interpolating Gauss-Lobatto quadrature nodes is used for the spatial discretization
within each computational cell. The arterial radius is interpolated at each node of the ba-
sis function. The mismatch between computational nodes and centerline nodes requires a
post-processing of the simulation result, in which the solution is quadratically interpolated
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into the centerline nodes. For centerline points that are masked as stenosis points, and
therefore not considered as one-dimensional domains, the pressure is linearly interpolated
between upstream and downstream results.

9.2 Fluid dynamics

This section presents the mathematical and numerical models used for 3D and 1D
simulations.

9.2.1 3D Model

Blood flow was modeled using the Navier-Stokes equations for rigid domains, i.e.
arterial compliance was neglected. Let Ω be the arterial domain, with boundary Γ =
Γw ∪ Γp ∪ Γ1 · · · ∪ ΓNo , where Γw is the boundary corresponding to the arterial wall, Γp
is the inlet boundary at the proximal location, and Γi, i = {1, . . . , No} are the No outlet
boundaries. All boundaries have unit outward normal vector denoted by n. Let v and
p be the velocity and pressure of the fluid, which are in proper function spaces called V
and P, respectively. Then, given the initial condition v(x, t = 0) and given the resistances
Ri(t), i = {1, . . . , No}, the time-dependent problem consists in finding (v, p) ∈ V × P for
each t ∈ [0, T ], such that∫

Ω

[
ρ
∂v

∂t
· v̂ + ρ(∇v)v · v̂ + 2µ(∇v)s · (∇v̂)s − p̂ divv − p div v̂

]
dΩ =

−
∫

Γp

Ppn · v̂ dΓ−
No∑
i=1

∫
Γi

[
Ri(t)

(∫
Γi

v · n dΓ

)
+ Pref

]
n · v̂ dΓ

∀(v̂, p̂) ∈ V × P, (9.2.1)

where ρ and µ are the fluid density and viscosity, respectively, Pp is the normal traction at
the inlet boundary (i.e. aortic pressure), Pref is a reference value for the normal traction at
terminal outlets (i.e. venous pressure), and (E)s denotes the symmetric part of the second
order tensor E. The approach presenting here assumes that Pp and Pref are constant over
time, but the method to impose boundary conditions is general enough to be used with
time dependent data. Since the flow model assumes rigid walls, Pp is kept constant in time,
because the results are insensitive to this consideration. In the present study the function
spaces are defined as

V = {[H1(Ω)]3; v|Γw = 0}, (9.2.2)

P = L2(Ω). (9.2.3)

Note that in variational formulation (9.2.1) a resistance boundary condition is being applied
at each outlet Γi, i = {1, . . . , No}. In fact, we can introduce the variable Pi defined as

Pi(t) = Ri(t)
(∫

Γi

v · n dΓ

)
+ Pref, (9.2.4)

which stands for the total normal traction at Γi (i.e. the pressure at each outlet). Then,
since the flow rate is Qi(t) =

∫
Γi
v · n dΓ, we have

Qi(t) =
Pi(t)− Pref
Ri(t)

, (9.2.5)

116



Chapter 9. Modeling methodology

Resistance Ri(t) is computed as follows. Consider the resistances given by the Mur-
ray’s law, denoted by R̄∗i , estimated from the mean inflow (Q̄T , which is a datum) as

Q̄T =

No∑
i=1

Q̄∗i , (9.2.6)

Q̄∗i = βrγi , (9.2.7)

R̄∗i =
(Pp − Pref)

Q̄∗i
=

(Pp − Pref)
Q̄T

1

rγi

No∑
j=1

rγj , (9.2.8)

where β = Q̄T /(
∑No

i=1 r
γ
i ) is the proportionality constant, γ is the Murray’s exponent and

ri is the radius of outlet Γi.
Consider now a flow signature Q(t) with mean value Q̄ = 1 ml/s, and with a pre-

scribed physiological value for the pulsatility index (PI) which is defined as

PI =
Qmax −Qmin

Q̄
, (9.2.9)

where Qmax and Qmin are the maximum and minimum values of the curve over a cardiac
cycle. Figure 9.3 shows the flow signature used in the present work for the left and right
coronary trees, with PI values of 1.0 and 0.75 respectively [140].
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Figure 9.3: Coronary flow signature for the left (a) and right (b) coronary trees. The
mean flow is Q̄ = 1 ml/s for both signatures, and the PI is 1.0 and 0.75 for (a) and (b),
respectively. Estimated from a velocity profile in [140].

Then, a time dependent Murray’s resistance is computed for each outlet i

R∗i (t) =
Q̄

Q(t)
R̄∗i . (9.2.10)

Then, the terminal resistance Ri(t) is obtained as follows

Ri(t) = α(t)R∗i (t), (9.2.11)

where α(t) is such that the total flow at the inlet
∑No

i=1Qi(t) matches the prescribed total
coronary flow

QT (t) =
Q̄T
Q̄
Q(t). (9.2.12)
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The computation of α(t) in the approximate problem is performed at each time-
instant (tn). The value of α(tn) = αn, is found along the Picard iterations performed to
converge the nonlinearities already present in the Navier-Stokes equations, that is

QT (tn)αn,k −
No∑
i=1

Pn,ki

αn,k−1R∗i (t
n)

= −
No∑
i=1

Pref
αn,k−1R∗i (t

n)
, (9.2.13)

where QT (tn) and R∗i (t
n) are the data for flow and resistance at time instant tn, αn,k is the

value of α(tn) at the current iteration k and αn,k−1 is the value of α(tn) at the previous
iteration k − 1.

This way, terminal resistance (9.2.11) is computed from the value of α at the previous
iteration, that is

Rn,k−1
i = αn,k−1R∗i (t

n), (9.2.14)

where Rn,k−1
i is the value of the terminal resistance that used in problem (9.2.1), linearized

by Picard iterations, at the current iteration k at the current time time tn.
Therefore, after discretizing in time by backward Euler, and linearizing using Picard

iterations, we arrive at the following discrete-in-time linearized variational problem∫
Ω

[
ρ
vn,k

∆t
· v̂ + ρ(∇vn,k)vk−1 · v̂ + 2µ(∇vn,k)s · (∇v̂)s − p̂ divvn,k − pn,k div v̂

]
dΩ

+

No∑
i=1

∫
Γi

Rn,k−1
i

(∫
Γi

vn,k ·ndΓ

)
n ·v̂dΓ =

∫
Ω
ρ
vn−1

∆t
dΩ−

∫
Γp

Ppn ·v̂dΓ−
No∑
i=1

∫
Γi

Prefn ·v̂dΓ

∀(v̂, p̂) ∈ V × P, (9.2.15)

where vn,k and pn,k are the fluid velocity and pressure at time tn and at the current iteration
k, vn−1 is the velocity at the previous time step tn−1 and Rn,k−1

i is given by (9.2.14). The
semi-discrete variational problem (9.2.15) is then discretized in space using finite element
with equal order interpolation and bubble enrichment for the velocity field (i.e. the mini
element).

Steady-state simulations are run by replacing R∗i (t) by R̄∗i in (9.2.11).
Statistical results regarding the values adopted by the α parameter are presented in

Chapter 10, Section 10.5.
In this work, the implementation of the novel BC was done in the context of an

in-house general purpose parallel solver, based on the finite element method, which is
under continuous development by the HeMoLab research group [4].

9.2.2 1D Model

The computational domain Ω for the 3D model, is condensed in a so called 1D
computational domain denoted as Ω̄, as explained in Section 9.1.3, which consists of arterial
segments, or vessels, connected through a set of junctions. The spatial coordinate in such
vessels is denoted by x. The inlet boundary Γp is now simply denoted by the inlet point
I, and the outlet boundaries Γi are denoted by Oi, k = 1, . . . , No.

Given a generic domain Ω̄ consisting of: Nv arterial segments of size Lk, k = 1, . . . , Nv;
NJ junctions, in this work we use only bifurcations, junction points are denoted as Bj , j =
1, . . . , NJ ; an inlet point I and No outlet points Oi, i = 1, . . . , No. The governing 1D
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equations are the following

∂A

∂t
+
∂Q

∂x
= 0 in each vessel, x ∈ [0, Lk], k = 1, . . . , Nv,

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+
A

ρ

∂P

∂x
+
$πµU

ρ
= 0 in each vessel, x ∈ [0, Lk], k = 1, . . . , Nv,

P = P0 + β

(√
A

A0
− 1

)
in each vessel, x ∈ [0, Lk], k = 1, . . . , Nv,

P = Pp at inlet I,

Q = Qiout at each outlet Oi, k = 1, . . . , No,

Mass conservation and continuity of
Ptot = P + 1

2ρU
2 at each bifurcation Bj , j = 1 . . . NJ ,

(9.2.16)
where Q is the flow rate, A is the lumen area, P is the average pressure in the lumen
cross section, U = Q/A is the mean velocity, $ is a parameter that characterizes the
assumed velocity profile in the 1D model, β is an effective stiffness which characterizes
the compliance of the arterial wall through a linear elastic relation, being P0 a reference
external pressure for which the lumen area is A0. Since the present study is only concerned
with pressure loses predicted by 1D models β is set at a high value to simulate 1D flow in
a quasi-rigid domain (therefore A ≈ A0). Furthermore, the velocity profile is assumed to
be parabolic, therefore $ = 22 [49, 244].

In order to properly approximate mechanical and geometrical variations along vessels,
system (9.2.16) is reformulated to obtain a non-conservative hyperbolic system of partial
differential equations [234, 245] and discretized using a third-order one-step Discontinuous
- Galerkin scheme [97] with a local time-stepping strategy and path-conservative numerical
fluctuations [244, 246].

For this work, the above mentioned numerical schemes are implemented in a different
solver with respect to the one used for 3D simulations. The 1D solver is also an in-
house parallel software, based on the finite volume and Galerkin methods, which is under
continuous development by the HeMoLab research group [4].

9.2.2.1 Stenosis modeling

The pressure drop produced by sudden area variations, i.e. stenosis, can not be
accurately captured by the 1D model presented in Eq. (9.2.16). To our knowledge, the so
called Young model for stenoses, initially proposed in [362, 363] for steady and transient
flow conditions, is the most widespread model to estimate pressure drops across this kind
of geometric singularities. To be precise, stenoses are modeled using the lumped parameter
approach proposed in [363]. That is, the pressure drop across a constriction is

∆P = Kv
µ

D
U +Kt

ρ

2

[
A

As
− 1

]2

|U |U +KuρLs
dU

dt
, (9.2.17)

where U and A (D the diameter) are the velocity and lumen area in the unobstructed
part of the vessel, Ls is the stenosis length, As is the minimum stenosis area, and Kv,
Kt and Ku are model parameters characterizing viscous, turbulent and inertial effects,

119



Chapter 9. Modeling methodology

respectively. Geometric parameters (Ls, As) are obtained from the centerline model in
the region delimited by the stenosis mask, see Section 9.1.3. In turn, Kv is the constant
that accounts for viscous pressure losses and is strongly dependent on geometry; the Kt

constant accounts for turbulence effects and weakly depends on geometry; finally, the
coefficient Ku accounts for pressure drag due to accelerations plus any correction to the
viscous-turbulence terms that are proportional to dU

dt .
The Young model was initially validated with in-vitro experiments in [362, 363],

where the constant parameters were adjusted to match experimental data. In a later
study, the model was validated in-vivo, inducing stenosis in femoral arteries of dogs [361].
The reported results supported the applicability of the model to predict pressure drops on
arterial stenoses. Up to that point, model parameters known to depend on geometry were
determined by curve fitting. In [300], analytical forms for the model parameters based
on geometrical characteristics, and in-vitro steady flow experiments have been presented.
In that work, the applicability of the model for consecutive stenoses was also studied.
The results suggested that in order to increase pressure drop prediction accuracy, the
parameters should take the form

Ku = 1.0,

Kt = 1.52,

Kv = 32
La
D

[(
A

As

)
a

]2

,

La = 0.83Ls + 1.64Ds,(
A

As

)
a

= 0.75

(
A

As

)
+ 0.25.

(9.2.18)

To our knowledge, the incremental work of Gould [128, 127, 129] in the 80’s, was the
first to make use of the Young model to predict pressure drops in human coronary arteries.
More recently, the Young model was used in several computational models [350, 318].

9.2.2.2 Junctions modeling

Pressure losses at junctions are modeled using the lumped parameter approach pro-
posed in [242]. In such model, at any junction point Bj , the continuity of total mechanical
energy between the inlet and any outlet is expressed as{

P1 + ρ
2U

2
1 = Pk + ρ

2U
2
k + Ploss,k k = 2, . . . , Nj ,

Ploss = K1,k
ρ
2U

2
1 ,

(9.2.19)

where Nj is the number of converging segments at the junction, in this work Nj = 3,
the pressure loss Ploss,k models energy dissipation through coefficient K1,k which depends
on geometrical parameters of the branches, i.e. angulation between branches, see [242]
for details. Although the original approach proposed in [242] is for planar bifurcations,
patient-specific arterial networks rarely present such bifurcation pattern. Nonetheless, in
this work, bifurcation angles are computed between branch pairs in the plane formed by
the corresponding bifurcation vectors.

9.2.2.3 Parameter estimation using Kalman filter

The process by which the state of a numerical model is updated through the incorpo-
ration of observations of the actual system being modeled is called data assimilation. The
Kalman filter [173, 168, 232] is a widely used tool for data assimilation applications, by
estimating values of unknown parameters to improve results of computational simulations
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using available measurements on a given system. Such filter is based on a sequential ap-
proach, in which the error between the available measurement and the current simulation
result is used to correct the model parameters at each time step of the simulation.

The 1D solver used in this work provides an out of the box parameter estimation
method based on Kalman filter [58]. Specifically, the reduced-order unscented Kalman
filter (ROUKF) [231] is used, which employs an efficient sampling of the parameter space
to improve performance. Regarding applications of ROUFK for blood flow simulations,
estimation of the mechanical properties of the aorta was presented in [37], and tunning
of boundary conditions parameters (0D models) for 3D simulations using patient-specific
data were presented in [254].

In this work, we use the ROUKF only in the context of the Young stenosis model,
to estimate the Kv parameter, in order to match the pressure drop, denoted by ∆P 3D,
observed in the 3D simulation, at each stenosis location.

Details on the formulation and implementation of the ROUKF in the context of the
1D blood flow model used here, can be found in [58]. Briefly, from a general point of view,
writing the 1D model in the form of a dynamical system{

Xn+1 = F(Xn, θ),

X0 = Y + ξX ,
(9.2.20)

where Xn contains, for the time step tn, the state variables (i.e. flow, pressure and cross-
sectional area) at each computational node along the arterial network and the state vari-
ables of the parameters to be estimated (i.e. Kv) at each stenosis node; F is an operator
involving the numerical solution of equations (9.2.16) and (9.2.17); θ contains the parame-
ters to be estimated, i.e. Kv; finally, Y stands for the initial condition, and ξX is a random
variable that takes into account the uncertainty of the initial state.

Given a measurement vector Zn ∈ RM , i.e. the ∆P 3D for M estenoses, at each time
step tn, the method assumes that the model can reproduce such state, this is

Zn = H(Xn) + ξZ , (9.2.21)

where H is an observation operator, which retrieves compatible measurements from the
model. i.e. the ∆P 1D for the M stenoses; and ξ is an intrinsic noise1 of the measurement
Zn, assumed independent at all times and Gaussian with zero-mean.

Assuming that parameters do not change over time, the idea behind the Kalman
filter is to apply a prediction-correction scheme to an augmented state (Xn, θn). Namely,
a prediction is obtained via a forward propagation{

X−n+1 = F(X+
n , θn),

θ−n+1 = θn.
(9.2.22)

In turn, the correction takes into account the differences between the observations and
measurements {

X+
n+1 = X−n+1 +KX

(
Zn −H(X−n+1)

)
,

θ+
n+1 = θ−n+1 +Kθ

(
Zn −H(X−n+1)

)
.

(9.2.23)

The Kalman matrices KX and Kθ are defined in order to minimize the distance between
observations and measurements in a proper norm, which depends on the confidences in
both the measures and the model.

The interested reader will find more details on the implementation and performance
1In a clinical setting, the main contribution to the observation noise is given by error statistics of

measurement devices.
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of the ROUKF in [58].

9.3 Patient-specific hemodynamic parameters

For all the 3D simulations performed in this work, whose results are summarized
in Chapter 10, the following set of parameters was used: ρ = 1.05 g/cm3, µ = 0.04 cP,
Pref = 10 mmHg. The Murray’s exponent was set to γ = 2.66 motivated by allometric
laws relating flow to volume of tissue [45, 351].

Patient data included resting heart rate (HR) and mean arterial pressure (MAP, used
as the aortic pressure Pp in Section 9.2). The coronary blood flow (CBF) is estimated from
patient data as detailed in Chapter 7, Section 7.3.4.1. The inflow Q̄T used in Section 9.2
can be estimated from the CBF following different approaches, details are given later in
this section.

Maximum myocardial hyperemia was modeled changing these parameters according
to bibliographic data presented in Table 7.1. Specifically, for intra-coronary or intra-venous
administration of adenosine, HRH = HR − 1.4 bpm and MAPH = MAP − 3.8 mmHg or
HRH = HR + 18.5 bpm and MAPH = MAP − 4.4 mmHg respectively, here superscript
H indicates hyperemic condition and absence of superscript corresponds to rest condition.
Regarding the coronary flow reserve (CFR), see Chapter 7, Section 7.3.5, we assume two
simple but slightly different strategies, see Sections 9.3.1 and 9.3.2.

Once the value of the CBF is known, a flow distribution among all outlets of the
computational model is defined. This distribution is manifested in the mathematical mod-
els through the outlet boundary conditions. Since the radii of the terminal arteries is
known, the most common approach to define flow distribution is the Murray’s law [239].
Other criteria can be used by means of perfusion data, as explored in [297]. In this work,
four approaches to define flow distribution were explored in closed relation to the image
modality. In our approaches, flow distribution is determined for rest conditions, therefore
in order to simulate hyperemic conditions, the CFR needs to be defined. These approaches
are detailed next.

9.3.1 Flow distribution in CCTA

CCTA images provide geometric information, i.e. lumen radii, of the left and right
coronary trees. We tested two methods to estimate flow distribution from such information:

Distal Murray Distribution (DMD): The flow at the inlet boundaries of the
major vessels, as stated by the Murray’s law, is determined by the terminal vessel radii
located downstream to these vessels, e.g. the flow into the LM is defined by the vessel radii
of all related terminals (diagonals, septals, obtuse marginals, etc). Revisiting Section 9.2.1,
the strategy to define terminal resistances R∗i , is employed for CCTA models in a straight
forward manner using all outlets and the total CBF to estimate Murray’s resistances.

Proximal Murray Distribution (PMD): This method was designed to account
for tapering in long segments lacking side branches. Such situation may be a problem
in models constructed from CCTA images with low-quality. Murray’s law assumes that
arterial segments (defined as the portion of artery between two branches) in a network
have no tapering, and therefore wall shear forces are homogeneously distributed, satisfying
a principal of minimum work. Moreover, Murray’s law does not account for the viscous
dissipation of major vessels. In such cases this hypothesis is not valid. In such an ideal
and complete network, with a known inflow, estimating flow distribution from all outlets
using Murray’s law would be equivalent to applying Murray’s law at each bifurcation
traveling downstream from the root. In practice, proximal radii of arterial segments are
more reliable than terminal radii, because of technical limitations such as image resolution
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and noise. Moreover, the absence of small side branches and associated sub-trees in long
arterial segments produce artificial tapering, directly impacting the flow distribution, if
calculated using all outlet radii only. In turn, if Murray’s law is recurrently used at each
branching point, a more realistic flow at the inlet of large-proximal branches for trun-
cated networks should be expected. Since the PMD strategy requires to travels through
a coronary network from the root (the Ao for CCTA models), it can be easily adapted
to account for physiological flow distributions in specific branches. We take advantage
of such property, and introduce some physiological restrictions regarding the Ao-RCA-LM
and LM-LAD-LCx branching points. Basically, the PMD algorithm detects such branching
points in the labeled network and checks if the local Murray’s distribution satisfies average
flow distributions reported in the literature [286]. If not, the flow distribution is modified
as little as possible to match mean±STD physiological values. More details can be found
in Appendix F.

Generalizations and adaptations of the Murray’s law to take into account stenoses in
branches and downstream characteristics of the vasculature had been explored in [370, 135].

Regardless the flow distribution strategy (DMD or PMD), in this work all simulations
performed with CCTA models adopt the same definition for the hyperemic flow (Q̄HT ). It
is assumed that all branches have the same CFR, and therefore Q̄HT = CFR× Q̄T .

9.3.2 Flow distribution in IVUS

Two approaches were adopted for defining the flow distribution in IVUS models,
which comprise a section of the artery of interest, e.g. LAD, LCx or RI starting at the
LM ostium, and include more side branches than CCTA models. Both strategies rely on
Murray’s law (DMD) to determine the flow distribution inside the artery of interest. The
difference between both strategies is how the inflow to such artery is determined.

CCTA - Simulation Result Distribution (CSRD): This strategy was developed
to perform adequate comparisons between CCTA and IVUS derived computational models,
see Chapter 10, Section 10.5, and is aware of the flow distribution obtained from a CCTA
simulation. Figure 9.4 illustrates a typical IVUS model starting at the LM artery, the
most proximal side branch is the LCX and the rest of the arterial domain corresponds to
the LAD artery and its side branches, the associated CCTA model is also shown. The
CSRD strategy utilizes the result of the CFD simulation of the associated CCTA model
to determine the inflows to the LCx and LAD branches. Then Murray’s law is used to
determine the resistances of all the outlets associated to each one of the major vessels,
in Figure 9.4 this is one resistance for the LCx and nine resistances for the LAD outlets.
In practice, each of these inlets is associated to an α variable coupling the corresponding
outlet resistances, such that the simulation total inflow is the same to that in the CCTA
model.

Therefore, the anatomical data extracted from the IVUS model is used to determine
only the relative flow distribution in these models according to the same Murray’s law.
In turn, the total flow into the artery of interest in the IVUS model (LAD, LCx or RI)
is forced to be equal to that obtained from the corresponding CCTA simulations, making
both CCTA and IVUS simulations comparable. Such flow given by the CCTA simulation
is not exactly the one dictated by Murray’s law, because of the resistance of major vessels.
This is the reason why IVUS simulations are performed just once the corresponding CCTA
simulation is finalized, so exactly the same inflow can be prescribed, at the inlet of the
major arteries of interest.

Note that, since the CSRD strategy is lined to a CCTA simulation, the CFR is
intrinsically defined, since that simulation was performed for a hyperemic state.

Physiological Distribution (PD): In turn, the second strategy can be used when
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the geometry of the coronary arterial tree is partially known2, and includes statistical
information about flow distribution among the major arteries from the literature. The
work of Sakamoto et al. [286] was taken to set the criterion called PDC, and based on it, a
variation was performed based on clinical observations pointed out by a team of specialized
cardiologists, such method is identified as PDP. Table 9.1 presents the percentage of the
CBF for each one of the major arteries depending on the circulation dominance for both
distribution criteria, PDC and PDP.

Criterion Circ. Dominance RCA LAD LCx

PDC
Right 40 35 25
Left 30 36 34
Co 20 35 45

PDP
Right 35 45 20
Left 20 45 35
Co 30 45 25

Table 9.1: Percentage of the CBF per artery depending on circulation dominance and
distribution criterion (PDC or PDP). If a RI artery is present, only the LCx percentage
is modified, such that it gives 15% of the CBF to the RI for te PDC criterion and 10% in
the PDP criterion.

Since the PD strategy estimates flow distributions for a resting scenario, the CFR
must be defined in order to perform simulation of an hyperemic state. The same strategy
used for CCTA simulations can be used, i.e. assume that all branches have the same CFR
and therefore Q̄HT = CFR×Q̄T . Another alternative is to assume that the CFR is a function
of patient-specific data and the artery of interest. Particularly, a team of specialized
physicians defined a criterion to determine the CFR based on clinical observations [172,
196, 178, 26, 25, 190, 207]. Briefly, estimation of CFR is performed taking into account
patient data such as: age, clinical condition and the coronary territory analyzed (LAD,
LCx or RCA). The CFR would be higher on young, healthy patients and in LAD territories.
Although, it would be smaller on elderly, with comorbidities and in non-LAD territories.
So the following strategy has been designed

CFR = 2.3 +X + Y + Z +W

X =


0.6 for the LAD,
0.2 for the LCx,
0.4 for the RCA,

Y =

{
0.3 if age < 65[y],
0.1 otherwise,

Z = −0.1×DM− 0.1×HAS,
W = −0.1× LVEF + 0.2× LVMI + 0.1× CD.

(9.3.1)

A base value of CFR= 2.3 is modified by a series of terms accounting for: (X) myocardial
territory, the LAD usually irrigates a larger portion of the myocardial muscle3 than the
LCx and the RCA; (Y ) age of the patient, elders have reduced CFR; (Z) clinical con-
dition, boolean variables (with value 0, 1) for patient testing positive for diabetes (DM)
and hypertension (HAS) decrease the CFR; (W ) heart related status, boolean variables

2Which is the case of patients subjected to IVUS but not to CCTA studies.
3This term does not include information of the circulation dominance of the patient, this could be an

improvement for future versions of the CFR estimation function.
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for cardiopathies may increase the CFR, i.e. left ventricular hypertrophy (LVMI> 70%)
and if the artery under examination provides collateral circulation to any other territory
(CD), or decrease it, i.e. presence of left ventricular dysfunction (LVEF< 40%).

However, it may be very complicated and also empirical to consider CFR values based
on clinical conditions, age or coronary territory. Despite this, we believe it is interesting
to individualize according to the clinical characteristics.

(a) (b)

Figure 9.4: Illustration of IVUS (a) and CCTA models (b) for patient ID 25. The LM,
LAD and LCx branches are indicated in each model.

9.4 Simulations post-processing

In the case of 3D models, after the simulation is performed, solutions for the ve-
locity (v) and pressure (p) fields are available for each time step (in the case of transient
simulations) or at a single time (steady-state simulations). Estimation of FFR field needs
a proximal pressure Pa, which is calculated as the spatial average at the inlet region of
approximately 2 mm length. Such region is manually defined using points of the centerline,
which are used to clip the tetrahedral mesh. Then, the time dependent FFR is calculated
as

FFR(t,x) =
p(t,x)− pv(t)
Pa(t)− pv(t)

, (9.4.1)

where pv is the venous pressure, which is equal to zero in this work, as it is assumed in
general clinical practice. The field of time-averaged FFR(x), is estimated by computing
the average of FFR(t,x) over the last cardiac cycle. Then, the final FFR value is estimated
as the average of the FFR(x) at a distal region of approximately 2 mm length, manually
defined (analogously to the proximal region used in the estimation of Pa). Such region
is identified as ΩFFR, and its definition is guided by AX images showing the location of
the invasive pressure wire during the clinical FFR procedure. We define such a value as
Computational Estimation of the Fractional Flow Reserve (FFRCE).

Two other hemodynamic quantities of interest need post-processing, i.e. wall shear
stress (WSS) and the oscillatory shear index (OSI). Both are defined over the boundary
that corresponds to the lateral lumen boundary, and are computed from the so called wall
shear rate vector (τ(t,x)), defined as the derivative of the tangential flow velocity (vt) in
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the normal direction (n) at each surface point x,

τ(t,x) =
∂vt
∂n

,

WSS(t,x) = −2µτ(t,x),

AWSS(x) =
1

T

∫ T

0
||WSS(t,x)|| dt,

OSI(x) =
1

2

1−

∣∣∣∣∣∣∣∣∫ T

0
WSS(t,x) dt

∣∣∣∣∣∣∣∣∫ T

0
||WSS(t,x)|| dt

 .

(9.4.2)

Note that AWSS and OSI are time-averaged indexes, typically over a cardiac cycle. For
steady simulations just WSS is computed. In this work, the τ(t,x) field is calculated using
the vmtk [11].

In the case of 1D models, solutions provide fields of flow (Q), pressure (P ) and area
(A) over time. The only field that is post-processed is the FFR, which is estimated using
the same method as for 3D models. The only difference is that the spatial regions for
average calculation are now 1D centerline segments.
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Chapter 10

Simulations results

“You may never know what results come of your actions, but if you do nothing, there
will be no results.”

Mahatma Gandhi.

This chapter presents the results of the second Part of the Thesis, and its layout as
follows: Section 10.1 presents demographics and individual information of the patient pop-
ulation. Section 10.2 briefly details the computational infrastructure used to perform the
simulations. Section 10.3 presents mesh independence tests for the quantities of interest.
Comparisons of steady state and transient simulations are presented in Section 10.4. The
impact of image modality on several hemodynamic variables is shown in Section 10.5. In
Section 10.6, a comparison between 3D and 1D models is presented, focusing the estimation
of FFR. Finally, Section 10.7 compares the FFRCE to the invasive measure, distinguishing
between different methods to estimate the flow distribution in models constructed from
CCTA and IVUS.

10.1 Patient population

Through this chapter, several studies are presented involving computational simula-
tions targeting the estimation of FFR. The characteristics of such studies involved different
patient samples from the same population. The complete set of patients is presented in
this section, and a unique patient identification number (ID) is assigned for future refer-
ence. Patients with clinical suspicion of atherosclerotic coronary disease, who underwent
multimodal evaluation with CCTA and IVUS at least, but also FFR, at the Radiology De-
partment at the Heart Institute (InCor) and Hospital Sirio-Libanês, were selected. Image
data were acquired using standardized acquisition protocols. Data processing and analysis
were performed retrospectively following methodologies explained in Chapter 9. The study
protocol was approved by the local ethics committees of the medical centers.

Table 10.1 presents demographic information relevant for the definition of hemo-
dynamic simulations parameters. A total of 3 female and 21 male, all adults aging
61± 10[43, 84] years. Circulation dominance distribution is closed to reported percentage
in the literature [108], with 92% right-, 4% left- and 4% co-dominant circulation. When
performing the invasive measurement of FFR, adenosine was administrated intra-coronary
in all but one patient. Although a CCTA study is present for each patient, at the moment
of writing this document, patients with IDs {36 − 39} have not been processed yet, and
computational models were only available for patients with IDs {6−25}, totaling 11 CCTA
computational models. Regarding the IVUS studies, some patients were subjected to 2 or
even 3 IVUS studies in major arteries, therefore a total of 33 computational models are
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available. Estimated hemodynamics parameters are in the range of physiological values
reported in the literature, e.g., the myocardial mass averaging 218± 56[114, 326] matches
data reported in [203] and the resting CBF averaging 251± 40[173, 331] agrees with values
reported in [136, 353, 286].

10.2 Computational resources

All CFD simulations were performed in heterogeneous clusters available at the Lab-
oratório Nacional de Computação Científica (LNCC, Petrópolis, Brazil):

• The INCT-MACC1 cluster consisting of 100 nodes with 2 x Intel Xeon X5670
2.93GHz (6 cores), 36GB of RAM and 54 nodes with 2 x Intel Xeon E5-2660
2.20GHz (8 cores), 64GB of RAM interconnected through Infiniband QDR.

• The Santos Dumont2 cluster consisting of 504 nodes with 2 x CPU Intel Xeon
E5-2695v2 2.4GHZ (12 cores), 64GB of RAM interconnected through Infiniband
FDR.

The number of computational tasks used to perform simulations was adapted to
mesh size, in an empirical fashion, and to computational resources availability. In following
sections, performance information will be provided, when relevant, in terms of: (a) the total
wall clock run time (RT) from the simulation, and (b) the so-called normalized run time
defined as

NRT =
(RT)(#Tasks)

#Tasks
, (10.2.1)

where #Tasks is the mean number of tasks used for the specific set of simulations under
consideration.

1http://comcidis.lncc.br/tecnologias.php
2http://sdumont.lncc.br
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Patient CD G Age W H SBP DBP MBP HR PP PP∗ SV CO AA m CBF IM
ID [years] [kg] [cm] [mmHg] [mmHg] [mmHg] [min−1] [mmHg] [mmHg] [ml/beat] [l/min] [g] [ml/min]

6 R M 66 109 181 120 80 93 70 40 46.51 92.18 6.45 ICA 252.64 290.38 1
10 R M 68 80 166 117 69 85 88 48 51.03 77.51 6.82 ICA 221.26 306.96 1
11 R M 49 104 176 106 71 83 78 35 38.96 78.08 6.09 ICA 326.22 274.05 2
12 C M 50 78 171 120 70 87 77 50 46.61 77.51 5.97 ICA 200.43 268.58 1
17 R M 59 97 170 120 80 93 66 40 44.41 83.98 5.54 ICA 308.41 249.42 1
18 R M 51 78 180 116 76 89 60 40 42.01 72.43 4.35 ICA 235.04 195.55 2
19 R M 48 78 180 116 78 91 70 38 40.13 68.42 4.79 ICA 283.23 215.53 2
20 R M 59 91 181 139 84 102 69 55 51.76 93.22 6.43 ICA 220.55 289.45 1
23 R M 43 83 172 120 80 93 72 40 39.61 71.18 5.12 ICA 231.12 230.62 2
24 R F 71 52 151 130 80 97 58 50 52.91 66.35 3.85 ICA 150.52 173.17 2
25 R M 84 68 165 119 69 86 83 50 56.81 72.21 5.99 ICA 168.33 269.69 1
26 R M 52 101 181 108 63 78 71 45 44.76 88.27 6.27 ICA 260.50 282.01 1
28 R M 58 119 192 100 60 73 78 40 44.11 94.22 7.35 ICA 252.25 330.71 1
29 R M 74 80 184 124 67 86 66 57 57.24 89.58 5.91 IVA 213.85 266.05 1
30 R F 61 59 147 125 70 88 62 55 52.36 73.25 4.54 ICA 113.76 204.37 1
31 R M 69 84 171 95 54 68 64 41 47.9 79.51 5.09 ICA 148.91 229.00 1
32 R F 59 70 165 80 50 65 69 30 39.51 60.37 4.17 ICA 130.77 187.45 2
33 L M 67 101 172 110 66 81 59 44 48.77 93.39 5.51 ICA 204.76 247.96 1
34 R M 59 85 170 99 59 72 74 40 44.41 75.63 5.60 ICA 214.38 251.85 1
35 R M 62 88 172 120 78 92 75 42 46.29 79.48 5.96 ICA 217.44 268.24 3
36 R M 55 81 175 100 50 68 68 50 48.11 81.93 5.57 ICA 250.71 1
37 R M 71 84 178 125 71 89 76 54 54.87 87.68 6.66 ICA 299.87 2
38 R M 61 85 182 94 51 65 58 43 46.48 81.48 4.73 ICA 212.66 1
39 R M 59 87 190 108 68 81 69 40 44.41 77.67 5.36 ICA 241.17 1

AVG nR =22 nM =21 60.63 85.08 173.83 112.96 68.50 83.54 70.00 44.46 47.08 79.81 5.59 nIC =23 217.72 251.48 n =33
STD nC = 1 nF = 3 9.50 15.17 10.49 13.36 10.27 10.39 7.80 6.93 5.33 9.17 0.89 nIV = 1 56.00 39.92
MIN nL = 1 43.00 52.00 147.00 80.00 50.00 65.00 58.00 30.00 38.96 60.37 3.85 113.76 173.17
MAX 84.00 119.00 192.00 139.00 84.00 102.00 88.00 57.00 57.24 94.22 7.35 326.22 330.71

Table 10.1: Patient population demographics, statistical data of hemodynamic variables in the patient sample.
CD: Coronary circulation dominance, left (L), right (R) or co-dominant (C); G: Gender, female (F) or male (M); W: Weight; H: Height; SBP:
Systemic systolic blood pressure; DBP: Systemic diastolic blood pressure; MBP: Systemic mean blood pressure; HR: Heart rate; PP: pulse pressure;
PP∗: corrected PP, see Chapter 7, Section 7.3.4.1; SV: Stroke volume; CO: Cardiac output; AA: Adenosine administration technique used during
invasive FFR measurement, intra-coronary (IC) or intra-venous (IV); m: Myocardial mass; CBF: Resting coronary blood flow, estimated using
Eq.(7.3.1); IM: Number of IVUS models associated to the patient.
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10.3 Mesh independence

The goal of this section is to show that the mesh discretization level used in forth-
coming sections ensures that the fluid-dynamics phenomena in the coronary arteries are
accurately captured. To this purpose, a representative set of 4 CCTA models was selected,
featuring different stenotic lesions, tapering and branching patterns. Such patients are
identified by the IDs 10, 12, 18 and 25, see Section 10.1 for patient-specific data. Fig-
ure 10.1 illustrates the geometric domains for patients 12 and 25. Four mesh discretization
levels were used for each arterial model. A radius-dependent heterogeneous discretization
strategy is used to generate de CFD meshes using vmtk [11]. This means that element size
is a function of the local arterial radius. In practice, vmtk offers a parameter to control
the element size, called edgelengthfactor (ν ∈ (0, 1]), see Appendix A for a detailed de-
scription of the mesh generation pipeline. As ν value decreases, the element size decreases
proportionally. Smaller elements result in meshes with more degrees of freedom3 (dof) and
(expectedly) a more accurate solution.

Hemodynamics parameters were set to simulate patient-specific hyperemic conditions
following the strategy presented in Section 9.3.1. A constant pressure is imposed at the
model inlet through a traction vector, resistive BC are used with a coupling equation that
ensures a fixed blood inflow, see Section 9.2.1 for details on the mathematical modeling and
numerical models. All simulations were ran with homogeneous initial conditions. Steady
state simulations were configured with a ∆t = 5 × 10−3 s for patients 12 and 18 and
∆t = 5 × 10−4 s for patients 10 and 25. Constant BC during a time span of T = 0.25 s
were used, such that the steady state was safely reached. All comparisons are performed
for the final steady state.

Mesh independence is assessed for several fields, i.e. pressure (p), FFR, velocity
(v) and wall shear stress (WSS). Given two CFD simulation outcomes (S{1,2}), with
discretization levels ν{1,2} for the same arterial model, comparison is performed in two
steps: (i) a linear interpolation of the coarser mesh (S2) into the refined mesh (S1) is
performed for each variable, resulting into the mesh Ŝ2; (ii) the error (ε·) for each variable
is estimated from the difference as defined by equations (10.3.1-10.3.4),

εp =
mean(|p(S1)− p(Ŝ2)|)

∆p(S1)
, (10.3.1)

where ∆p(·) is a reference pressure drop defined as the average pressure difference between
the inlet and all outlets of the model. Once the FFR field is computed at every node in
the mesh, since it is a normalized variable, the error is defined as

εFFR = mean(|FFR(S1)− FFR(Ŝ2)|). (10.3.2)

For the velocity field, the difference in normalized by a reference velocity v = Qin/Ain,
where Qin is the flow at the inlet with area Ain, then

εv =
mean(‖v(S1)− v(Ŝ2)‖)

v
. (10.3.3)

Regarding the WSS field, the difference is normalized by the average WSS in the finner
mesh, this is

εWSS =
mean(‖WSS(S1)−WSS(Ŝ2)‖)

mean(WSS(S1))
. (10.3.4)

3Note that each computational node of a mesh has 4 degrees of freedom, i.e. pressure (p) and velocity
(v = (vx, vy, vz)).
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(a)

(b)

Figure 10.1: Example of mesh discretization for patients 12 (a) and 25 (b).

Table 10.2 presents details of the mesh models in terms of the number of dof and
reference element size (RES)4. Also, the computational costs are presented in terms of the
number of tasks used to solve the simulation, the wall clock run time (RT) and normalized
run time (NRT). Details on the computer infrastructure used to solve the simulations are
presented in Section 10.2. Note that patients 10 and 25 feature longer RT due to the

4It is computed as RES =

√
3

4π
V̄ , where V̄ is mean tetrahedral volume estimated from the total volume

of the arterial model over the number of tetrahedral elements.
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increased ∆t values, which are ten times smaller than the one used for patients 12 and 18.
A clear association between the ν values and the resulting mesh parameters (dof and RES)
is evident for all the patient models. The number of dof almost triplicate and the RES
reduces approximate a 45% between the meshes constructed with ν = 0.22 and ν = 0.16.
Note that the #Tasks was kept constant for each patient model, and the NRT is increased
by a factor of [5.7, 7.5] between the extremal values of ν.

Table 10.3 presents the relative errors between different refinement meshes for each
patient model. Such errors are presented in terms of sequential values of ν against a fixed
reference mesh (the most refined mesh, with ν = 0.16) and between subsequent ν values.
Therefore, the differences can be interpreted as convergence errors. Figure 10.2 plots the
error presented in Table 10.3 as a function of the number of dof. From a quantitative point
of view, the differences in the pressure and FFR fields are the lowest, below 1% and 0.1%.
In turn, the velocity field features differences below 5%, which are propagated to the WSS,
which features the largest differences, approximately 10%. From a qualitative perspective,
Figures 10.3-10.4 display the fields across the mesh refinements levels for patient 12. This
allows to visualized the small differences in p, FFR and v. Furthermore, Figure 10.4b,
shows that despite the quantitative differences in the WSS, such discrepancies are not
originated from different patterns in the field distribution but from local differences near
regions of high gradients in the WSS field.

The main goal of these mesh independence tests is to aid in the definition of a default
ν value to be used for all arterial model in future simulations. It should be reminded that
the ultimate goal is to estimate the FFR field. In such scenario, the results indicate that
the coarser meshes (ν = 0.22) could safely be used, since the differences in the p and FFR
fields are small compared to more refined meshes. Nonetheless, in order to obtain accurate
solutions for the v and WSS without increasing the computational cost of simulations, the
value of ν = 0.2 was chosen as default for all future simulations of CCTA models.

Regarding simulations using IVUS models, the incorporation of small branches in
the geometries forced the use of smaller ν values in some models. Taking this restriction
into consideration, and the fact that the arterial volume of IVUS models is smaller than
CCTA models, a different value of ν = 0.16 was used for all IVUS models.
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Patient ID ν dof RES [cm] #Tasks RT [hs] NRT [hs]

10

0.16 4648928 (2.9) 0.0039 (1.46) 168 38.8 (7.2) 56.7
0.18 2838160 (1.8) 0.0047 (1.23) 168 9.5 (1.9) 14.2
0.20 2211452 (1.4) 0.0051 (1.12) 168 9.0 (1.8) 13.5
0.22 1588180 (1.0) 0.0057 (1.00) 168 4.9 (1.0) 7.8

12

0.16 1348592 (2.9) 0.0037 (1.45) 64 1.9 (6.6) 1.2
0.18 824700 (1.8) 0.0044 (1.22) 64 0.8 (2.6) 0.5
0.20 595044 (1.3) 0.0049 (1.09) 64 0.5 (1.7) 0.3
0.22 463704 (1.0) 0.0054 (1.00) 64 0.3 (1.0) 0.2

18

0.16 4825872 (2.9) 0.0031 (1.46) 96 5.2 (7.5) 4.7
0.18 2914164 (1.8) 0.0037 (1.22) 96 2.1 (3.0) 1.9
0.20 2127224 (1.3) 0.0041 (1.10) 96 1.7 (2.5) 1.6
0.22 1642064 (1.0) 0.0045 (1.00) 96 0.7 (1.0) 0.6

25

0.16 3448552 (2.9) 0.0037 (1.43) 96 26.9 (5.7) 24.4
0.18 2088656 (1.8) 0.0044 (1.20) 96 11.1 (2.4) 10.1
0.20 1522596 (1.3) 0.0049 (1.08) 96 6.7 (1.4) 6.1
0.22 1169144 (1.0) 0.0053 (1.00) 96 4.7 (1.0) 4.3

Table 10.2: Mesh and runtime information for each refinement level (ν) of each patient
model. The number of dof is presented, as well as the mean tetrahedral size (RES), the
number of computational threads (#Tasks), the wall clock run time (RT) and normalized
run time (NRT). When present, values enclosed in parentheses represent normalized values
using the values corresponding to the coarser mesh for each patient.
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Patient ID Field Relative error
S0.20 − S0.22 S0.18 − S0.20 S0.16 − S0.18 S0.16 − S0.22 S0.16 − S0.20 S0.16 − S0.18

10

p 0.0040±0.0052 0.0028±0.0042 0.0024±0.0038 0.0049±0.0062 0.0043±0.0041 0.0024±0.0038
FFR 0.0009±0.0011 0.0005±0.0009 0.0004±0.0008 0.0013±0.0014 0.0006±0.0010 0.0004±0.0008
v 0.0243±0.0310 0.0197±0.0265 0.0223±0.0293 0.0357±0.0484 0.0278±0.0451 0.0223±0.0293
WSS 0.0817±0.1397 0.0660±0.0916 0.0785±0.1096 0.1123±0.1600 0.0920±0.1298 0.0785±0.1096

12

p 0.0016±0.0028 0.0032±0.0025 0.0039±0.0024 0.0074±0.0038 0.0066±0.0034 0.0039±0.0024
FFR 0.0002±0.0003 0.0003±0.0002 0.0004±0.0003 0.0008±0.0005 0.0007±0.0004 0.0004±0.0003
v 0.0313±0.0333 0.0274±0.0296 0.0257±0.0280 0.0471±0.0505 0.0349±0.0373 0.0257±0.0280
WSS 0.0910±0.0912 0.0860±0.0846 0.0844±0.0855 0.1226±0.1221 0.1022±0.1011 0.0844±0.0855

18

p 0.0026±0.0023 0.0017±0.0018 0.0027±0.0022 0.0055±0.0049 0.0033±0.0034 0.0027±0.0022
FFR 0.0001±0.0001 0.0001±0.0001 0.0001±0.0001 0.0002±0.0002 0.0001±0.0001 0.0001±0.0001
v 0.0112±0.0116 0.0097±0.0102 0.0079±0.0088 0.0128±0.0139 0.0102±0.0112 0.0079±0.0088
WSS 0.0569±0.0649 0.0540±0.0591 0.0526±0.0609 0.0641±0.0908 0.0581±0.0656 0.0526±0.0609

25

p 0.0071±0.0037 0.0089±0.0030 0.0051±0.0026 0.0206±0.0072 0.0137±0.0043 0.0051±0.0026
FFR 0.0012±0.0006 0.0014±0.0005 0.0008±0.0004 0.0039±0.0016 0.0022±0.0007 0.0008±0.0004
v 0.0423±0.0440 0.0363±0.0400 0.0363±0.0413 0.0642±0.0667 0.0480±0.0519 0.0363±0.0413
WSS 0.0902±0.0840 0.0862±0.0835 0.0868±0.0867 0.1182±0.1165 0.1001±0.0991 0.0868±0.0867

Table 10.3: Mean and SD of relative errors (ε·) for the pressure, FFR, velocity and WSS fields for each patient. The first three error columns feature
differences between meshes constructed with subsequent values of the ν parameter (Sνi−1 − Sνi). The last three error columns present the difference
of each mesh against the corresponding finer model (Sν=0.16 − Sνi).
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Figure 10.2: Convergence plots for all quantities of interest in each patient model. Panels
(a,b) display errors in the pressure field (εp); panels (c,d) presents errors in the FFR field
(εFFR); panels (e-f) shows the errors in the velocity field (εv); and panels (g-h) display the
error for the wall shear stress field (εWSS). Left column groups the relative errors between
meshes created with subsequent refinement parameter ν, i.e. ε(Sνi , Sνi−1). In turn, right
column groups the relative errors between meshes created with each ν against a reference
mesh constructed with ν = 0.16.
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(a)

(b)

Figure 10.3: Qualitative assessment of all quantities in the arterial model of patient 12,
for different values parameter ν. Panel (a) displays the pressure (p) and fractional flow
reserve (FFR) is presented in panel (b).
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(a)

(b)

Figure 10.4: Qualitative assessment of all quantities in the arterial model of patient 12,
for different values parameter ν. Panel (a) displays a clip of the volume mesh through the
stenosis region to show the internal state of the blood velocity magnitude (||v||). Panel
(b) features the wall shear stress (WSS) in the arterial surface.
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10.4 Transient versus steady simulations

This section focuses on the comparison between steady state and transient5 simu-
lations. Comparisons are performed using the same set of indexes εp, εFFR, εv and εWSS
introduced in Section 10.3.

A total of 60, 11 CCTA and 49 IVUS, simulations where compared. Such simula-
tions were performed in the context of the studies presented in Sections 10.5 and 10.6.
Simulations are grouped into three sets: (A) 11 CCTA simulations which are used in
Sections 10.5 and 10.6; (B) 16 IVUS simulations, which are used in Section 10.5; and (C)
33 IVUS simulations used in Section 10.6. Hemodynamics parameters were set to simulate
patient-specific hyperemic conditions, see Sections 10.5 and 10.6. A constant pressure is
imposed at the model inlet through a traction vector, resistive BC are used with a coupling
equation that ensures a fixed mean inflow, see Section 9.2.1 for details on the mathematical
and numerical models. All simulations were ran with homogeneous initial conditions.

Steady state simulations were configured with ∆t = 5 × 10−3 s or ∆t = 5 × 10−4

s. Constant BC during a time span of T = 0.25 s were used to safely reach the steady
state. In turn, transient simulations were ran with ∆t = 5 · 10−4 s, and time dependent
BC at the outlets. Three cardiac cycles were simulated, which yielded a mean total time
of T = 2.635±0.319 s. The same mesh was used for both simulation, i.e. the dof remained
constant between runs.

Table 10.4 presents a quantitative comparison between the steady and transient
simulations in terms of the errors between the hemodynamics variables and wall clock run
times. The difference in RT and NRT is greater in set A than in the other two sets, which
is explained by the larger meshes of set A. Regarding the errors in each field, there was
not statistical significant differences6 between the mean values of the three sets. It was
found that, in mean, the differences in p,v and WSS are less than 4%, and the FFR field
features smallest differences (< 0.5%).

Considering that the RT for all steady state simulations averages 3±4 hs, against 71±
57 hs for transient simulations, and the small differences in the hemodynamics variables, the
results presented here support the decision of using steady state simulations to estimate the
FFR. Furthermore, the average wall shear stress over a cardiac cycle can also be estimated
with good accuracy from the steady state simulation, which results in the same gross
distribution of WSS over the arterial wall.

Index Simulation set All (n = 60)A (n = 11) B (n = 16) C (n = 33)

εp 0.030± 0.015 0.039± 0.017 0.037± 0.015 0.036± 0.016
εFFR 0.006± 0.007 0.003± 0.003 0.003± 0.005 0.004± 0.005
εv 0.031± 0.026 0.036± 0.046 0.022± 0.012 0.027± 0.029
εWSS 0.032± 0.014 0.035± 0.011 0.034± 0.012 0.034± 0.012
∆ RT [hs] 106± 80 65± 37 58± 46 69± 54
∆ NRT [hs] 87± 85 55± 24 58± 36 62± 47
dof [Million] 2.05± 1.18 1.51± 0.41 1.58± 0.51 1.65± 0.68

Table 10.4: Quantitative comparison between steady state and transient simulations for all
groups. For the computation of the NRT, the total mean of computational tasks was used
(#Tasks = 137). Since the meshes are the same for steady state and transient simulations,
the dof values do not represent a difference.

5The time-average quantities over the third cardiac cycle of the transient simulation are used for com-
parison.

6According to a two-tailed U-Test with 95% confidence interval.
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10.5 Impact of image modality on hemodynamic variables

Coronary blood flow simulations have played a major role in the understanding of
hemodynamic mechanisms involved in the onset and progression of atherosclerotic dis-
ease [69, 70, 79, 187, 320], characterization of plaque location [278], plaque erosion [59] and
plaque rupture [73]. Moreover, as presented in Chapter 8, there is an increasing interest
from the medical community in the use of such computational tools to aid decision making
process due to feasible estimation of FFR without invasive pressure measurements.

Patient-specific vascular geometries are obtained using a variety of imaging methods:
coronary computed tomography angiography (CCTA) [73, 278, 328] or angiograms (AX),
which can be utilized alone [59, 236], or in combination with either intra vascular ultrasound
(IVUS) [70, 187, 320] or optical coherence tomography (OCT) [103].

Among them, CCTA and IVUS are the most common7. Although there have been
studies addressing the consistency between these two image modalities concerning the over-
all decision-making process [105], it has been largely acknowledged that these modalities
feature several differences ranging from the economic cost and patient risk to the resulting
anatomical definition [188, 195].

Previous works merged IVUS data into CCTA models [124, 283], and recently, the
differences of FFR estimated by CCTA and by quantitative coronary angiography were
studied in [201]. A comparison between CCTA and IVUS in terms of hemodynamic vari-
ables predicted by computational fluid dynamic models could help to better understand
the implications of modeling choices, and gain insight about the sensitivity to imaging
modality. Therefore, the goal of the study presented in this section is to compare the
hemodynamic variables in coronary vessels when the geometric models are constructed
from CCTA and from IVUS image modalities.

10.5.1 Materials and methods

The study sample consisted of patients with ID= [6, 25] from Section 10.1, a total
11 patients and 16 arteries, all of them are left coronary networks. The time span between
both medical studies was 3.4±4.9 days, and the CCTA was always performed first. Patients
demographics are presented in Table 10.5.

Men, n(%) 10 (91%)
Age (years) 59±12
Weight (kg) 83±16
Resting mean systemic pressure (mmHg) 91±6
Resting heart rate (bpm) 72±9
Arteries, n(%)
Left anterior descending (LAD) 10 (62%)
Left circumflex (LCx) 5 (31%)
Ramus intermedius (RI) 1 (7%)
Circulation dominance, n(%)
Right 10 (91%)
Co 1 (9%)

Table 10.5: Baseline characteristics of the study sample (11 patients and 16 arteries). Data
are represented as mean±SD, or as number and percentages of patients.

Geometric models constructed from CCTA and IVUS are shown in Figure 10.5.
Image and mesh processing were performed as detailed in Chapter 9, Section 9.1. Finite

7Although computational models constructed from OCT are gaining popularity.
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element meshes for models of CCTA and IVUS contained, respectively, 2.05± 1.18 M and
1.52 ± 0.43 M degrees of freedom. Fully 3D fluid dynamics simulations were performed
following the methodology explained in Chapter 9, Section 9.2.1. Steady state and transient
(over three patient-specific cardiac cycles) simulations were performed. Patient-specific
hemodynamics parameters were defined following the methodology detailed in Chapter 9,
Section 9.3. For the study sample, the estimated resting CBF is 251 ± 42 ml/min, which
agrees with physiological ranges (270 ± 82 ml/min) reported in [286]. Regarding flow
distributions, see Chapter 9, Section 9.3.1, the resistance parameter in the CCTA models
were estimated using the DMD approach. For the present sample, the average resting
flow at the inlet of the LM coronary, resulted 142± 38 ml/min, in agreement with values
reported elsewhere (156± 40 ml/min) [286], furthermore, the CFR was set to 2.6, which is
a mean value for nonischemic human coronary arteries [165]. For the IVUS models, flow
distributions was performed using the CSRD approach.

Post-processing and data analysis of the simulations results for comparisons was
performed as following. For each geometric model, the centerline (resolution of 0.5 mm
between points) was computed and was used to clip the model at the ostium of the artery of
interest. From the CCTA model, a region of the centerline was chosen such that it matches
the length of the IVUS centerline (see solid surfaces in Figure 10.5). Side branches were
removed for comparison purposes. Cross-sectional slices, denoted Γs, with contour ∂Γs,
were extracted at each point over the centerline (see Figure 10.6).

Quantities defined in the bulk of the domain were averaged at each section Γs, while
quantities defined over the surface of the domain were averaged over ∂Γs. We simply refer
to these as Γs-averaged quantities, and are denoted by (̄·).

Comparisons along the region of interest focused on the magnitude of velocity v̄ =
‖v‖ and pressure p̄, lumen area A (D the diameter), Reynolds number Re = ρv̄D

µ , time
average wall shear stress AWSS, oscillatory shear index OSI, flow rate Q̄ and fractional flow
reserve (FFR = p̄/PHp ). Time-dependent quantities were averaged over the last cardiac
cycle. Also, the branch count in the regions of interest, and the fraction of flow at the
outlet relative to the total flow rate coming into the coronary tree, denoted FFOI, were
compared.

Point-wise comparison between Γs-averaged quantities was performed. Paired non-
parametric Mann-Whitney U-Test (two tailed) and Bland-Altman (BA) analysis of differ-
ences were used to show statistical discrepancies between variables from CCTA and IVUS
simulations. All centerlines were scaled down to a normalized centerline with paramet-
ric arc-length coordinate s ∈ [0, 1], and re-sampled to 200 points for each centerline for
comparison purposes.

Invasive measurements of FFR were available for each vessel of the set, see Sec-
tion 10.7 for comparison results.

10.5.2 Results

The absolute relative error of the FFR field (in the complete domain) between pul-
satile and steady simulations was 0.9%±1.2% (CCTA) and 0.3%±0.4% (IVUS). Moreover,
the absolute relative error in the AWSS was 3.7%±1.6% (CCTA) and 4.0%±1.3% (IVUS).
Such errors are computed using relative error at each point in the mesh. The mean ab-
solute relative difference across all outlet flows between pulsatile and steady simulations
was 1.5%±1.6% (CCTA) and 0.5%±0.7% (IVUS). More comparisons between steady and
transient simulations are presented in Section 10.4.

Regarding the α variable, see Chapter 9, Section 9.2.1, which adjusts the terminal
resistances to satisfy myocardial demand, steady-state simulations lead to α = 0.78± 0.16
for CCTA and α = 0.89 ± 0.16 for IVUS. In turn, pulsatile simulations result in time-
dependent α as shown in Figure 10.7 (cardiac period normalized to 1 s). Such time-
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CCTA IVUS

Figure 10.5: Geometric models of the 11 patients (16 arteries) included in the study sample.
Blood flow domains for computational simulations are shown with transparency. Regions
for comparison are highlighted with solid colors, blue for CCTA and red for IVUS.
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Figure 10.6: Complete processing pipeline from medical images to geometric models. The
CCTA procedure is presented in the left column and the IVUS procedure is shown in the
right column.

dependent α has mean value 0.89±0.22 for CCTA and 1.06±0.12 for IVUS. Furthermore,
the absolute difference between the steady-state α and the pulsatile values for each model
was 0.13± 0.09 for CCTA and 0.17± 0.08 for IVUS.

The remainder of the results presented here are based on the transient simulations,
averaged over the last cardiac cycle.

Because a novel strategy to set up boundary conditions was developed in this work,
see Chapter 9, Section 9.2.1, it is important to analyze the discrepancies in the flow dis-
tribution with respect to the distribution dictated by Murray’s law. Particularly, for our
patient sample, the absolute relative difference across all outlets between Murray’s out-
flow and the actual outflow in the simulations is, in average over all the outlets of all
patients, 12.4%± 14.4% for CCTA and 6.1%± 15.2% for IVUS, recalling that these values
correspond to hyperemic conditions. These differences characterize the coronary steal
phenomenon taking place in the coronary tree because of the non-negligible resistance of
major coronary vessels.
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Figure 10.7: Time dependent α(t) for all pulsatile simulations. Panel (a) shows α for CCTA
models and panel (b) shows α for IVUS models. Line color matches patient between CCTA
and IVUS models.

The statistical analysis for the entire sample is presented in Table 10.6. It was found
that A, p̄ and OSI are larger in IVUS than CCTA, while v̄,Re and AWSS are smaller. Such
results are confirmed through the U-test with statistical significance of p-value� 0.01. The
BA analysis (CCTA − IVUS) shows that all variables have significant (p-value � 0.01)
correlation with moderate to high values of the Spearman’s correlation coefficient (ρ). The
bias and limits of agreement (LA) of BA analysis were normalized by the average between
CCTA and IVUS means. Figure 10.8 displays the sample mean±SD of the quantities over
the normalized centerline.

CCTA IVUS ρ Rel. Bias Rel. LA

A [mm2] 6.07±2.92 7.55±2.77 0.51 -0.22±0.39 [-0.98, 0.55]
p̄ [mmHg] 79±13 84±5 0.92 -0.05±0.12 [-0.29, 0.18]
Re 257±125 238±184 0.74 0.08±0.34 [-0.60, 0.75]
v̄ [cm2/s] 38±23 31±14 0.54 0.23±0.58 [-0.91, 1.37]
AWSS [dyn/cm2] 79±92 49±38 0.41 0.47±1.39 [-2.25, 3.19]
OSI 0.009±0.017 0.010±0.015 0.38 -0.15±2.15 [-4.36, 4.05]
FFR 0.93±0.12 0.97±0.03 0.60 -0.04±0.11 [-0.27, 0.18]
Q [ml/s] 1.99±1.06 2.15±1.00 0.80 -0.08±0.30 [-0.66, 0.51]

Branch count 2.5±1.21 5.69±2.33 0.61 -0.75±0.44 [-1.19,-0.31]

FFOI 0.17±0.09∗ 0.21±0.08∗ 0.20∗ -0.11±0.37 [-0.48, 0.26]

Table 10.6: Statistical analysis of all Γs-averaged quantities. Mean ± standard deviation
are shown for each model and for the relative bias. The bias (CCTA-IVUS) and the limits
of agreements (mean±SD) for the Bland-Altman analysis were normalized by the average
between CCTA and IVUS means. Only for the fraction of flow between outlet and total
inflow (FFOI), the U-test and ρ were not statistically significant (p-value > 0.05), which
is indicated by the marker ∗. For all other variables, the Spearman’s correlation coefficient
ρ and the U-Test are significant (p-value� 0.01).

The smallest relative biases were featured by the FFR (-4%), p̄ (-5%), Q (-8%) and Re
(+8%). Large biases are seen in AWSS (47%) and OSI (-15%). However, OSI is relatively
small in all cases. The SD of the bias analysis indicates that p̄ and FFR are the less affected
by imaging modality (SD 12%), in contrast to AWSS and OSI, with SD reaching 140% and
215% respectively. As expected, the area A was larger in IVUS, whereas v̄ was larger in
CCTA models. However, this is not a direct consequence. Main artery flow rate Q at distal
locations can vary because IVUS models feature, in average, 3 more side branches than
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CCTA

CCTA IVUS

Figure 10.8: Mean (solid lines) and standard deviation (light areas) along the normalized
arc length of the centerline for each quantity of interest. Blue represents CCTA and red
stands for IVUS.

CCTA models, promoting the deviation of blood through proximal branches. Despite this,
Q continues to be larger in IVUS, which implies that the flow deviation is actually more
pronounced in the CCTA model. This can also be appreciated in the lack of correlation
for FFOI.

Visual inspection of Figure 10.8 shows how the different variables differ in the prox-
imal, mid and distal thirds of the arterial models. Particularly, focusing on the FFR and
AWSS, differences in the three portions of the arterial segments are reported in Table 10.7.
For both variables, correlation decreases towards the distal section. While the FFR relative
bias and dispersion increases from proximal to distal thirds, the AWSS results in larger
bias in the last two-thirds. Furthermore, arterial tapering is far from linear, and differ-
ences in the area between models impact directly in the discrepancies of hemodynamic
variables between models. To illustrate such behavior, Figure 10.9 presents scatter plots
of discrepancies (CCTA minus IVUS) in FFR and AWSS as a function of the discrepancy
in the lumen area (CCTA minus IVUS). As expected, larger differences in the area result
in larger deviation in the AWSS. In turn, deviations in the FFR depend not only of local
difference in lumen area, but also on the cumulative pressure drop caused by discrepancies
in the lumen area at proximal locations. For instance, discrepancies in the second third of
the vessels are caused by lumen area differences at the first third of the vessel.

The analysis is now focused on three specific vessels (12LAD, 24LAD and 25LAD), which
were chosen to discuss typical differences observed between CCTA and IVUS models. The
behavior of Γs-averaged quantities and the 3D spatial distribution of AWSS and FFR are
shown, respectively, in Figures 10.10, 10.11 and 10.12.

For vessel 12LAD, the lumen area obtained from both geometric models is affected by
a focal constriction at mid point of the vessel, more pronounced in the CCTA model. Also,
the IVUS model features much more branches. Regarding Γs-averaged quantities, and as
a consequence of the focal constriction, the velocity increases and then the pressure drops.
Therefore, AWSS features a peak at that location, with an overall bias of 50% (larger in
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CCTA IVUS ρ Rel. Bias Rel. LA

FFR
Proximal 0.97±0.03 0.98±0.02 0.69 -0.01±0.03 [-0.07, 0.05]
Mid 0.92±0.11 0.96±0.03 0.51 -0.04±0.11 [-0.27, 0.18]
Distal 0.89±0.16 0.96±0.03 0.39 -0.07±0.16 [-0.38, 0.24]

AWSS [dyn/cm2]
Proximal 81± 68 55±40 0.54 0.38±0.98 [-1.54, 2.29]
Mid 93±126 54±43 0.43 0.53±1.63 [-2.67, 3.73]
Distal 63± 66 37±24 0.17 0.51±1.33 [-2.01, 3.11]

Table 10.7: Statistical analysis of Γs-averaged quantities in the proximal, mid and distal
thirds of geometric models. Mean ± standard deviation are shown for each model and for
the relative bias. The bias (CCTA-IVUS) and the limits of agreements (mean±SD) for the
Bland-Altman analysis were normalized by the average between CCTA and IVUS means.
All statistical tests, including correlations were statistically significant (p-value� 0.01).
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Figure 10.9: Scatter plots featuring differences between CCTA and IVUS models in (a)
FFR and (b) AWSS, against differences in area, in the entire sample. The position, i.e.
proximal, mid and distal third, are identified.

CCTA), and FFR drops abruptly, resulting in a mean bias of 6% (smaller in CCTA). It
is also observed that Q is progressively dimininshed in the IVUS model, while it drops
markedly at the first branching point in the CCTA model.

The geometric models for vessel 24LAD present good agreement for all Γs-averaged
quantities. As in most of the vessels, the CCTA model features a highly oscillating lumen
area A, which impacts the behavior of v̄ and AWSS. However, the behavior of these
quantities is roughly the same from both models, rendering a low sensitivity to imaging
modality. As well, p̄ and FFR are not sensitive to imaging modality. Finally, the coronary
anatomy for the vessel of interest is almost identical, except for a small branch appearing
in the IVUS model at the distal-most region. As a consequence, the flow rate Q is quite
similar for both models, and a relatively similar AWSS is therefore obtained, with a bias
of 10% larger in the IVUS model, in contrast to the trend of the entire sample.

On the other hand, models for patient 25LAD exemplify the typical case in which
cross sectional area A is smaller in the CCTA model and greatly impacts the rest of the
quantities. In fact, BA analysis yields that AWSS is 80% larger in the CCTA model.
Also, pressure drop in the IVUS model is smaller than in the CCTA model, which is
exclusively caused by the progressive vessel tapering seen in the CCTA geometry (note
that the flow rate is similar in both models). Moreover, in the CCTA model FFR is 12%
smaller, resulting from an overestimation of a calcified stenosis at the LAD-LCx branching
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point, proximal to the region of interest (see 3D distribution at different scales for CCTA
and IVUS). The behavior of FFR along the centerline also shows a different pattern from
both models, closely following the one of p̄.

Figure 10.10: Distribution of the variables along the normalized centerline of 12LAD. Blue
represents CCTA and red stands for IVUS. Particularly, 3D distribution of FFR and AWSS
through the associated arterial region are shown for both geometric models.

10.5.3 Discussion

Before going into the specific discussions, it is worthwhile to remark that the results
presented in this section can be strongly dependent on the magnitude assigned to the total
coronary blood flow in hyperemia. We have employed a value of CFR as reported in the
literature [165]. However, the CFR can be up to 4, or even 6, in some patients [165].
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Figure 10.11: Distribution of the variables along the normalized centerline of 24LAD. Blue
represents CCTA and red stands for IVUS. Particularly, 3D distribution of FFR and AWSS
through the associated arterial region are shown for both geometric models.

Discrepancies in the prediction of hemodynamics variables delivered by CCTA and IVUS
models under such more extreme flow regimes are expected to be significantly larger.

10.5.3.1 Sample-wide analysis

Patient-specific hemodynamic simulations for coronary arteries have, for long, re-
ceived much attention because of the potentialities to understand onset and progress of
coronary disease as well as to develop simulation-based diagnostic tools to assess risk of
myocardial ischemia. However, head-to-head comparisons of predictions made by models of
the same arterial vessels obtained with different modalities was, until recently, completely
overlooked. This work reported a quantitative analysis of several hemodynamic variables
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Figure 10.12: Distribution of the variables along the normalized centerline of 25LAD. Blue
represents CCTA and red stands for IVUS. Particularly, 3D distribution of FFR and AWSS
through the associated arterial region are shown for both geometric models.

for 16 vessels (11 patients) facing CCTA and IVUS blood flow models under myocardial
hyperemia.

Results reported in this section indicate that IVUS models are able to retrieve a
more refined anatomical vasculature in terms of lumen area and branch count. However,
IVUS clinical procedure focuses on one (or two) arterial vessels, and inclusion of branches
in the geometric models is an arduous task. Hence, from a practical point of view, CCTA
modality is the easiest alternative. Furthermore, due to the presence of the catheter in
the AX images used to reconstruct the vessel in 3D, IVUS models may undergo vessel
straightening, see Section 9.1.2.1. Such distortion of arterial topology does not occur in
CCTA models.
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The definition of coronary anatomy is crucial to define boundary conditions. Ac-
cording to the criteria developed in this work, the number of outlet boundaries, as well as
the relative size of branching vessels are key to establish blood flow distribution. It was
found that, despite the fact that IVUS models feature more branches, and the size of side
branches is different in IVUS and CCTA models (not quantified in this work), for the same
inflow, the relative flow at the outlet of the main vessel is larger in IVUS models. This
is explained by the phenomenon known as coronary steal, through which side branches
become a preferred pathway for the blood when the main vessel presents a relatively larger
resistance to flow. This is the particular case of some exaggeratedly tapered vessels in
CCTA models.

Overall, a smaller lumen area consistently yields larger blood velocity, forcing the
pressure to drop more markedly in CCTA than in IVUS models. Focusing on the pressure
and FFR, the sensitivity to the imaging modality increases as we move distally. This
can be explained as the result of three major factors: (i) low image resolution of CCTA
compared to IVUS; (ii) different lumen definition in regions with calcified lesions, which
are better captured by IVUS models (see Figure 10.13); and (iii) in CCTA, the natural
tapering of vessels may be distorted due to attenuation of lumen pixel intensity in distal
regions [74].

Following the same rationale, the smaller lumen area of the CCTA models results in
larger AWSS, for roughly the same flow rate. Differently from the pressure and FFR, the
bias and limits of agreement of the wall shear stress are extremely large, which indicate
that wall shear stress estimation from CCTA is to be carefully regarded when correlating
this to coronary disease, at least under hyperemic conditions. In turn, the oscillatory shear
index featured small values in both imaging modalities, which is consistent with the fact
that no retrograde flow is occurring along the cardiac cycle.

CCTA

AX+IVUS

Figure 10.13: Comparison of rectified vessel lumen for calcified regions in model 12LAD.
Top: CCTA image, bottom: IVUS image, and corresponding models.
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10.5.3.2 Specific vessel analysis

In addition, qualitative assessment of per vessel area, allows classification into three
cases:

(i) focal constriction in the CCTA model, that is a localized underestimation of lumen
area, which therefore causes focal deviations in the hemodynamic quantities (vessel
12LAD);

(ii) excellent agreement between both geometric models along the vessel, which results
in consistent predictions from both models (patient 24LAD); and

(iii) distributed (and also possibly focal) underestimation of lumen area, which provokes
progressive (and possibly focal) alteration of all hemodynamic quantities (patient
25LAD).

According to this classification, the entire sample presents: 3 vessels for case (i), 6 for
case (ii) and 7 for case (iii). This analysis helps us to discern those cases that, a priori,
could result in distorted predictions. For example, characterization of lesion components
such as fatty component, calcifications and fibrotic components turns out to be crucial for
geometry improvement in CCTA models (see approaches in [124, 283]).

In any case, the ultimate challenge is whether to identify that the lumen area in
CCTA models is in fact being underestimated, and in such cases how to correct such
situation. The present quantitative analysis indicates that this may be a sensitive issue
that must be addressed in CCTA models.

10.5.3.3 Validity and limitations

In the present study the consistency between CCTA and IVUS boundary conditions
was achieved using a hierarchical strategy which implied setting boundary conditions for
the CCTA models and just then adapting these to the IVUS models. Nevertheless, working
only with IVUS implies that one has to somehow define these boundary conditions, which
would result in different boundary conditions than those derived here. This is a major
concern in the community and still remains as an open and foundational problem. In
Chapter 9, Section 9.3, flow distribution criteria for IVUS models were proposed. Such
criteria do not make use of the complete coronary tree to estimate flow per-outlet. See
Section 10.7, for preliminary results using such criteria.

In turn, segmentation procedures usually involve propagation of uncertainties, and
recent efforts started to address this problem [293]. Results reported here are consistent
with literature specialized in comparing CCTA and IVUS imaging procedures [105].

An additional limitation of the present study is the relatively small number of vessels
considered. Nevertheless, collecting the amount of data for each patient is an extremely
complex task, and the results reported here have helped to elucidate some of the main
drawbacks when trying to simulate coronary blood flow under hyperemic conditions.
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10.6 Comparison of 3D and 1D models

As presented in Chapter 8, Section 8.4, in the context of computational calcula-
tion of FFR, the use of 3D models has been the most natural approach to try to esti-
mate pressure losses in coronary vessels using image modalities such as CCTA [328, 368],
AX [236, 336, 256], OCT [137] and some pilot studies using IVUS [313]. Nonetheless, there
is an increasing interest in the use of simplified mathematical models, either based on the
1D Navier-Stokes equations in compliant vessels (in CCTA [76, 184] and AX [334]) or
based on compartmental (0D) representations using CCTA data [368]. Since these models
neglect fundamental aspects of the 3D physics regarding flow across geometric singularities,
specific models to account for focal pressure losses, i.e. lesions and junctions, are usually
employed [362, 363, 152, 242], as presented in Chapter 9, Section 9.2.2.

Validation of 1D models against 3D simulations has been reported in other arterial
districts such as the cerebral vessels, aorta and major vessels [16, 131, 166, 359]. To the
best of our knowledge, comparison of 1D and 3D simulations in a large sample of patient
specific coronary arterial domains has not been reported in the past. Such study is key for
the interpretation of computational evaluation of FFR using 1D models.

The goal of this section is to demonstrate, for the first time, that 1D models are
capable of predicting FFR (denoted FFR1D) with the same degree of accuracy as 3D
models (denoted FFR3D). Importantly, and because of our interest in the estimation of
FFR, the focus of this section is exclusively given to the comparison of FFR in the vessel
domain. The sensitivity of the FFR1D to the modeling of arterial stenoses and arterial
bifurcations is assessed in detail.

10.6.1 Material and methods

The study sample consisted of all patients from Section 10.1, a total of 11 CCTA
models and 33 IVUS models.

Image and mesh processing for the generation of 3D and 1D models were performed
as detailed in Chapter 9, Section 9.1. Fully 3D fluid dynamic simulations were performed
following the methodology explained in Chapter 9, Section 9.2.1. Transient 3D simulations,
spanning three patient-specific cardiac cycles were performed. In turn, 1D simulations were
performed following the methodology explained in Chapter 9, Section 9.2.2. Transient 1D
simulations, spanning six patient-specific cardiac cycles were performed. For each patient,
a total of 6 simulations were performed using different approaches to model junctions and
stenoses, namely:

• Junctions are treated with a standard model in which continuity of total pressure is
enforced.

– SJ:fwd: No stenosis model is used.

– SJ:S:fwd: The Young model [363] is used at each stenosis. Default parameters
are used at each stenosis model.

– SJ:S:fwd:kv: The Young model [363] is used at each stenosis. The Kv param-
eter, for each stenosis model, is estimated using the Kalman filter, such that
pressure drop across the stenosis matches the one given buy the 3D simulation
at each time step.

• Analogously, three setups are defined when the Mynard model [242] for junctions is
used, in which pressure losses at the junctions are considered.

– MJ:fwd

– MJ:S:fwd
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– MJ:S:fwd:kv

Regarding boundary conditions, the same pressure was imposed at the inlet of both
models, and the resulting flow rate curve retrieved from 3D simulations was imposed in
the corresponding outlets of the 1D models. Patient-specific hemodynamics parameters
were defined following the methodology detailed in Chapter 9, Section 9.3. For the study
sample, the estimated resting CBF is 251 ± 40 ml/min, which agrees with physiological
ranges (270± 82 ml/min) reported in [286].

Regarding flow distributions, see Chapter 9, Section 9.3, the resistance parameter in
the CCTA models were estimated using the DMD approach, and for the IVUS models the
PDC was employed. All the 11 CCTA models consisted of left coronary arteries, while the
IVUS models are divided in 29 left and 4 right coronaries. From the literature [286], average
resting flow at the inlet of the LM and RCA are 156 ± 40 ml/min and 113 ± 49 ml/min,
respectively. For the present sample, the average resting flow at the inlet of the LM
coronary resulted in 142± 38 ml/min and 154± 27 ml/min for CCTA and IVUS, and for
the RCA in 100± 19 ml/min for IVUS, which agrees with reported values.

All simulations were performed under hyperemic conditions with the same CFR= 2.6,
which is a mean value for nonischemic human coronary arteries [165]. Then, the 11 CCTA
simulations are the same as the ones used in Section 10.5.

Post-processing and data analysis of the simulations results involved in the compar-
ison, was performed as following. Direct comparison is performed over the main coronary
arteries, i.e. LAD, LCX and RCA, since they are of most clinical relevance for the FFR
index. For a given patient, each of these arteries (when present) is sampled at four points,
proximal (L× 0.25), middle (L× 0.5), distal (L× 0.75) and end (L), here L is the length
of the artery The value of FFR is linearly interpolated in points associated to stenoses,
for simulations using the Young model (recall that in such case the Young model replaces
the 1D portion of the vessel with the stenosis). The solution of 3D simulations is lumped
to the centerline points as follows: (i) cross-sectional slices of the tetrahedral mesh are
computed at each centerline point; (ii) pressure and FFR are averaged in such slices; (iii)
flow is computed using the velocity field interpolated in the slice and the slice area. This
study focuses on comparing the resulting FFR field in the centerlines.

Point-wise comparison between FFR3D and FFR1D was performed. Statistical anal-
ysis to show agreement between FFR values comprised: Spearman’s correlation coefficient
(ρ); slope (a) and intercept (b) of linear regression equation; and paired nonparametric
Mann-Whitney U-Test (two tailed) and Bland-Altman (BA) analysis of differences (mean
mBA with standard deviation SDBA).

The diagnostic capability of the 1D model, taking the 3D result as gold standard,
was assessed using a cut-off value of FFR≥ 0.8. The location for the comparison, ΩFFR
was determined as explained in Chapter 9, Section 9.4. Invasive measurements of FFR
were available for each vessel of the set, see Section 10.7 for results.

10.6.2 Results

Regarding the construction of 1D models, the automatic stenosis detection method
consistently detected more lesions (percentage area reduction≥ 40%) in the 11 CCTA mod-
els (73 lesions) than in the 33 IVUS models (8 lesions). Such difference can be explained,
in part by: (i) CCTA models comprise larger vessels, while IVUS has shorter branches; (ii)
as shown in Section 10.5, CCTA models tendto underestimate lumen cross-sectional area.

Models for 3D simulations of CCTA and IVUS contained, respectively, 2.05±1.18 M
and 1.58±0.51 M degrees of freedom. In turn, 1D models contained 348±189 and 162±40
degrees of freedom for CCTA and IVUS respectively. The average wall clock run-time (RT)
of all the 44 3D simulations was 79.9± 65.3 hs, using 137± 59 computational tasks.
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Regarding the IVUS 1D simulations, 7 geometries where excluded from the sample
due to problems in the 1D solution. In such cases, the intrinsic limitations of the setting
of boundary conditions, i.e. a prescribed flow curve generated from the 3D simulations
output, rendered numerical instabilities in the 1D simulations. Therefore, a total of 26
IVUS models were used in the forthcoming analysis. As for the CCTA 1D simulations,
no problems were encountered with the exception of one simulation resulting in negative
pressure due to an excessive pressure drop on the Young model with default parameters
(SJ:S:fwd and MJ:S:fwd). Both simulations were excluded in the forthcoming analysis,
since the results are not physiologically valid. For the final set of 134 1D simulations,
average wall clock run-time (RT) was 0.6 ± 0.6 hs, using 12 computational tasks. Note
that to perform the same amount of cardiac cycles than the 3D simulations, the RT of
1D simulations was 0.3± 0.3. Noteworthy, for the 26 IVUS models, only 4 were found to
present stenosis as detected by the automatic method, and therefore a total of 68 IVUS
1D simulations plus the 66 CCTA 1D simulations were performed taking into account all
the scenarios.

10.6.2.1 Comparison along major arteries

Table 10.8 presents the statistical results for the comparison between FFR3D and each
simulation setup for the FFR1D. Values of FFR were taken at four location the LAD, LCx
or RCA arteries whenever present, which produce similar sample size fpr CCTA and IVUS
models. Figure 10.14 plots the same information in the form of scatter and Bland-Altman
plots. Regarding the CCTA simulations, it can be observed that:

i large correlation coefficients (0.87 < ρ < 0.94) result in all six cases, with slightly
better correlation when the stenosis parameter Kv is estimated;

ii the linear regression consistently improves with the use of the Young model and with
the estimation of Kv;

iii the analysis of difference shows that themBA is smaller when the Young model is used
directly (<·>:S:fwd), the estimation of Kv doubles the bias and slightly reduces the
dispersion, which implies that modeling errors are being compensated. Both mean
and SD of the difference are larger when no stenosis model is used (<·>:fwd);

iv in all cases, mBA indicates an error below the 2%;

v notably, simulation MJ:S:fwd:kv, although presented good agreement for all sta-
tistical indexes, was the only case in which the null hypothesis was rejected (95%
confidence interval) using the U-Test.

Regarding IVUS simulations, note that statistics for the cases in which the Young
model was used (<·>:S:<·>) are presented for the sake of completeness, but are not dis-
cussed due to the small number of simulations (4) in which stenosis model were employed.
Compared to CCTA, the IVUS simulations featured:

i similar correlation coefficients, ρ ∼ 0.87;

ii better linear approximation, FFR1D = 0.85FFR3D + 0.14 compared to FFR1D =
0.65FFR3D + 0.32;

iii approximately 5 times smaller biases,mBA, and three times smaller dispersion, SDBA;

iv furthermore, the U-Test rejected the null hypothesis of zero mean at 95% confident
interval in all cases.
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Overall, in our data sample, the use of the Mynard model for junctions resulted
in: (a) slightly better linear approximation (only for CCTA) and Spearmans’s correlation
coefficients; (b) slightly smaller dispersion SDBA values, with better bias, mBA, only when
no stenosis model is used. In turn, the use of the Young model for stenosis resulted in: (d)
considerable improvements in the linear approximations; (e) the Spearmans’s correlation
coefficient is improved only if the Kv parameter is estimated; (f) smaller mean difference
(mBA) and dispersion (SDBA) values.

1D Model n
Linear approx. Corr. Difference
a b ρ∗ mBA ± SDBA

C
C
T
A

MJ:fwd 92 0.661 0.311 0.939 0.010±0.063†
MJ:S:fwd 84 0.920 0.068 0.928 -0.004±0.037†
MJ:S:fwd:kv 92 1.002 -0.010 0.941 -0.008±0.033
SJ:fwd 92 0.645 0.331 0.899 0.016±0.065†
SJ:S:fwd 84 0.907 0.085 0.878 0.001±0.042†
SJ:S:fwd:kv 92 0.988 0.009 0.901 -0.002±0.038†

IV
U
S

MJ:fwd 104 0.850 0.145 0.886 0.002±0.019†
MJ:S:fwd 16 0.820 0.179 0.941 0.011±0.020†
MJ:S:fwd:kv 16 1.110 -0.103 0.973 0.000±0.011†
SJ:fwd 104 0.854 0.141 0.863 0.003±0.020†
SJ:S:fwd 16 0.883 0.116 0.956 0.007±0.020†
SJ:S:fwd:kv 104 1.177 -0.169 0.994 -0.004±0.015†

Table 10.8: Comparison between FFR3D and each simulation setup for the FFR1D. Values
of FFR were taken at four location along arterial segments belonging to the LAD, LCx
or RCA arteries. The linear approximation coefficients represents the equation FFR1D =
aFFR3D + b. Spearman’s correlation coefficient ρ was statistically significant (p < 0.05) in
all cases. Marker † in the Bland-Altman analysis of difference (FFR1D−FFR3D) indicates
p > 0.05, i.e. the U-Test can not detect significant differences between the values being
compared.

10.6.2.2 Comparison at clinically relevant locations

Analogous to Table 10.8, in Table 10.9 the comparisons are presented for values of
FFR taken at the so called ΩFFR, the location where clinical measurements were performed.
Figure 10.15 plots the same information in the form of scatter and Bland-Altman plots.
Additionally, Table 10.9, also presents the diagnostic capabilities of FFR1D taking as gold
standard FFR3D. Note that the number of comparison points is significantly reduced in
all cases. Regarding CCTA simulations, remarks follows:

i the linear approximation behaves similar than in the case of more sample points
(Table 10.8), improving when the use of Young model and the estimation of Kv.
Although, the values of a and b are not as good as in Table 10.8.

ii correlation coefficients are also large, 0.89 < ρ < 0.92;

iii contrary to the mBA from Table 10.8, the bias is larger with the use of the Young
model, although the dispersion is reduced;

iv for a prevalence (FFR3D < 0.8) around 25%, the predictive capabilities of the FFR1D
are remarkable, with large values of area under the receiver operator curve (AUC>
93%), accuracy (Acc> 81%), specificity (Spe> 91%) and negative predictive value
(PPV> 84%);

v in turn, the ability of correctly identifying positive cases (true positives FFR1D < 0.8)
features less impressive results, although the sensitivity (Sen) and positive predictive
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Figure 10.14: Scatter and Bland-Altman plots featuring comparison between FFR3D and
FFR1D simulations, superscripts C and I stands for CCTA and IVUS models. Values of
FFR were taken at four location along arterial segments belonging to the LAD, LCx or
RCA arteries. Rows one-to-three show results for CCTA models for<·>:fwd, <·>:S:fwd
and <·>:S:fwd:kv respectively. Row four, presents results for the IVUS model when no
stenosis model is used, i.e. <·>:fwd. Columns one and two feature results when the
Mynard model for junctions is used. In turn, columns three and four present results when
the standard junction model is used.

value (PPV) improve with the use of the Young model, and were higher for the
Mynard junction model.

Regarding the IVUS simulations, and again focusing onMJ:fwd and SJ:fwd, results
indicated:

i small underestimation of FFR value, with good agreement in terms of linear approx-
imation, ρ, mBA and SDBA;

ii predictive capabilities are biased due to the low prevalence (Prev= 4%, only one
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simulation presented FFR3D < 0.8), nonetheless, only using the standard junction
model resulting in a perfect classification;

Overall, regarding the evaluation of FFR at clinically relevant locations, the use of the
Mynard model for junctions resulted in: (a) slightly better linear approximation (only for
CCTA) and Spearmans’s correlation coefficients; (b) larger mean differencemBA, at similar
dispersion SDBA values; (c) better predictive capabilities in terms of the classification
indexes. In turn, the use of the Young model for stenosis resulted in: (d) considerable
improvements in the linear approximations; (e) the Spearmans’s correlation coefficient is
improved only if the Kv parameter is estimated; (f) larger mean difference mBA, with
smaller dispersion SDBA values, such tendency accentuates with the estimation of Kv; (g)
better predictive capabilities in terms of the classification indexes.
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1D Model n
Linear approx. Corr. Difference Prediction value
a b ρ mBA ± SDBA Prev AUC Acc Sen Spe PPV NPV

C
C
T
A

MJ:fwd 16 0.479 0.452 0.892∗ 0.007±0.093† 0.250 0.938 0.875 0.750 0.917 0.750 0.917
MJ:S:fwd 14 0.813 0.143 0.914∗ -0.018±0.052† 0.214 0.970 0.929 1.000 0.909 0.750 1.000
MJ:S:fwd:kv 16 0.863 0.093 0.922∗ -0.024±0.044 0.250 0.979 0.938 1.000 0.917 0.800 1.000
SJ:fwd 16 0.476 0.460 0.907∗ 0.011±0.092† 0.250 0.958 0.813 0.500 0.917 0.667 0.846
SJ:S:fwd 14 0.805 0.155 0.893∗ -0.013±0.054† 0.214 0.970 0.857 0.667 0.909 0.667 0.909
SJ:S:fwd:kv 16 0.861 0.100 0.912∗ -0.019±0.046† 0.250 0.979 0.875 0.750 0.917 0.750 0.917

IV
U
S

MJ:fwd 26 0.811 0.174 0.869∗ -0.003±0.022† 0.038 1.000 0.962 0.000 1.000 - 0.962
MJ:S:fwd 4 0.832 0.158 0.800 0.006±0.022† 0.250 1.000 0.750 0.000 1.000 - 0.750
MJ:S:fwd:kv 4 1.116 -0.114 1.000∗ -0.010±0.010† 0.250 1.000 1.000 1.000 1.000 1.000 1.000
SJ:fwd 26 0.833 0.154 0.859∗ -0.002±0.023† 0.038 1.000 1.000 1.000 1.000 1.000 1.000
SJ:S:fwd 4 0.894 0.095 0.800 0.000±0.025† 0.250 1.000 0.750 0.000 1.000 - 0.750
SJ:S:fwd:kv 4 1.182 -0.180 1.000∗ -0.016±0.016† 0.250 1.000 1.000 1.000 1.000 1.000 1.000

Table 10.9: Comparison between FFR3D and each simulation setup for the FFR1D. Values of FFR were taken at clinically relevant location for
diagnosis, ΩFFR. The linear approximation coefficients are for the equation FFR1D = aFFR3D+b. Marker ∗ indicates that the Spearman’s correlation
coefficient (ρ) was statistically significant (p < 0.05). Marker † in the Bland-Altman analysis of difference (FFR1D − FFR3D) indicates p > 0.05.
Predicted values are computed using FFR3D as gold standard and a cut-off value of FFR ≥ 0.8. The prevalence of functional stenoses according to
FFR3D are also displayed.
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Figure 10.15: Scatter and Bland-Altman plots featuring comparison between FFR3D and
FFR1D simulations, superscripts C and I stands for CCTA and IVUS models. Values of
FFR were taken at clinically relevant location for diagnosis, ΩFFR. Rows one-to-three show
results for CCTA models for <·>:fwd, <·>:S:fwd and <·>:S:fwd:kv respectively. Row
four, presents results for the IVUS model when no stenosis model is used, i.e. <·>:fwd.
Columns one and two feature results when the Mynard model for junctions is used. In
turn, columns three and four present results when the standard junction model is used.

10.6.2.3 Stenoses analysis

The analysis is now focused on the stenotic regions. Table 10.10 presents the
mean±SD for several stenosis related quantities, i.e. degree and length of stenosis, a
multiplicative factor for the Kv parameter estimated by the Kalman filter, the pressure
drop (∆P ) across the stenosis for each simulation type and the Reynolds number averaged
between the inlet and outlet of the stenosis region.

As in previous tables, statistical results for IVUS are presented for the sake of com-
pleteness, but since only 4 stenoses were detected results should be carefully interpreted.
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Then, for the CCTA models, the following remarks can be made:

i notably, the comparison between ∆P 3D and ∆P 1D for each 1D simulation shows
small discrepancies.

ii moreover, no statistically significant difference was found in such comparisons, i.e.
p > 0.05 in the U-Tests.

iii note that ∆P 3D = 4.66 ± 5.9 mmHg is relatively low, which is related to the low
prevalence of functional estenoses FFR < 0.8 and to the relative low values for the
Reynolds number Re = 199± 94.

iv furthermore, it is important to mention that approximately 73 stenoses were auto-
matically detected in the 11 CCTA models, several of which are in branches with no
clinical relevance and low blood flow rates.

Overall, note that pressure drops and estimation of Kv are insensitive to the use of the
Mynard or standard model for the junctions. As expected, the use of the Young model
improves the ∆P estimation and calibration of Kv using the Kalman filter results in an
excellent agreement between pressure drops. Remarkably, the correction factor Kf

v =
0.97 ± 0.57, indicates that default values of the Kv parameter results in accurate results,
in mean, for most of automatically detected stenoses.

Regarding the IVUS models, for the 4 models containing stenoses, note that pressure
drops are smaller, the Re is larger and significant corrections Kf

v are needed to match
pressure drops. Also the prescence of more branches in the main artery indicates that the
use of the Mynard model favorably impacts the results.

Junc.
Kfv

Steno.
L [cm] Re Pressure drop † [mmHg]

Model Degree ∆P3D <·>:fwd <·>:S:fwd <·>:S:fwd:kv

C
C
T
A MJ 0.97±0.56 0.56±0.15 0.52±0.31 199± 94 4.66±5.90 4.32±3.62 4.42±5.19 4.66±5.86

SJ 0.97±0.57 4.32±3.62 4.42±5.19 4.66±5.88

IV
U
S MJ 1.85±1.68 0.64±0.13 0.41±0.35 287±166 2.52±2.43 1.79±1.92 1.39±0.79 2.52±2.36

SJ 1.86±1.69 1.79±1.92 1.39±0.79 2.58±2.38

Table 10.10: Comparison of the pressure drop, in [mmHg], across all stenoses between all
1D simulations and the 3D simulations. Marker † indicates that all 1D simulations render
p > 0.05 in the U-Test, meaning that no significant differences between the pressure drops
of each 1D simulation and the 3D outcome was found. The Reynolds number for each
stenosis was defined as the average between the inlet and outlet of the stenotic region of
length L, in [cm] defined by the automatic algorithm explained in Chapter 9, Section 9.1.3.
The stenosis degree represents the ratio As

A of the Young model, where A is the area at
the stenosis inlet and As is the minimum area of stenosis Finally, the value Kf

v represents
a factor estimated by the Kalman filter, for which the actual Kv parameter is multiplied.

10.6.3 Discussions

The results presented in this section indicate that 1D simulations can reproduce
FFRCE values of 3D simulations with bias smaller than −0.024±0.044. The overall agree-
ment between the different 1D model configurations and the 3D simulations is remarkable,
as well as the predictive capabilities in terms of diagnosis, for FFR < 0.8. It was found
that, in general, using the Young model for stenosis in combination with the Mynard model
for junctions leads to better linear approximation, correlations and predictive values, with
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smaller dispersions (SDBA), in detriment of the bias (mBA). Such tendency accentuates
when the Kalman filter is used to estimate the stenosis parameter Kv.

Note that the methodology employed for the imposition of the boundary conditions
in the 1D models ensures a fair comparison in terms of flow rate per arterial segment.
The results presented here must be interpreted in such context, i.e. for prescribed inlet
pressure and outflows, 1D simulations are equivalent to 3D simulations in the calculation
of FFRCE.

Since the use of flow rate BC may produce problems in some networks, a more robust
methodology for the computation of FFR using 1D models could use a different type of
BC. For example, the method employed in 3D simulations that enforces a total inflow with
resistive terminals, could be implemented in the 1D model directly, or by means of the
Kalman filter. In such scenario, the flow distribution along the outlets may differ from the
one predicted by the resistance parameters, as in the 3D simulations, which would certainly
impact in the prediction of FFR1D compared to FFR3D. Moreover, such methodology could
be useful in real-life scenarios, i.e. estimating invasive FFR in a blinded fashion using 1D
models.

Note that the small discrepancies between simulations performed with the standard
and Mynard model for junctions may be explained for the fact that such junction model was
originally developed for planar branches and tested for 350 < Re < 2400 [242]. Regarding
the Young model, although the calibration of Kv results in an overall improvement in
comparison statistics, the use of default values are useful to predict FFR accurately.
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10.7 Comparison to invasive FFR

The goal of this section is to present the diagnostic capabilities of the FFRCE, when
compared to the invasive measurements of FFR. A total of 33 invasive measurements of
FFR are available, one for each IVUS model in Table 10.1. For a subset of 16 invasive
measurements, CCTA models are available. As explained in Chapter 9, Section 9.4, the
location of the pressure wire in the arterial models is manually determined by an expert
from the associated angiographic image. A region ΩFFR of approximately 2 mm of length
is used to average the FFR field which is used as FFRCE. Due to poor image quality,
only 1 (of 11) CCTA model did not reach the measurement domain ΩFFR. In turn, 15
IVUS models did not reach the ΩFFR, because IVUS pullbacks started more proximally
than the location of the pressure wire at the moment of the FFR test, for all other IVUS
models, ΩFFR coincides with the distal part of the computational model. Despite this
mismatch between the location of invasive measurement and ΩFFR in some models, the
region comprised between ΩFFR and the actual location of the pressure sensor was free of
elements that could produce modification in flow or pressure, i.e. lesions or large branches.
Therefore they were considered safe to be used. In all cases, the cut-off value of FFR < 0.8
and FFRCE < 0.8 were employed to detect functional lesions, or positive measurements.

Simulations performed for the study presented in Sections 10.5 and 10.6, as well as
tests for different flow distribution strategies, see Chapter 9, Section 9.3, will be compared
to invasive measurements of FFR. Therefore, for the sake of clarity, a set of study cases
are defined, see Table 10.11, and agreement to invasive FFR is performed for each set.
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Study
case ID

Patient
sample

Image
modality

Flow
dis. CFR Description

SC1 [6,25] CCTA DMD 2.6 Associated to the tests presented in Section 10.5, 3D models and transient simulations.
SC2 [6,25] IVUS CSRD 2.6 Associated to the tests presented in Section 10.5, 3D models and transient simulations.
SC3 [6,39] IVUS PDC 2.6 Associated to the tests presented in Section 10.6, 3D models and transient simulations.
SC4 [6,25] CCTA DMD 2.6 Associated to the tests presented in Section 10.6, MJ:fwd simulations.
SC5 [6,25]-{11} CCTA DMD 2.6 Associated to the tests presented in Section 10.6, MJ:S:fwd simulations.
SC6 [6,25] CCTA DMD 2.6 Associated to the tests presented in Section 10.6, MJ:S:fwd:kv simulations.
SC7 [6,25] CCTA DMD 2.6 Associated to the tests presented in Section 10.6, SJ:fwd simulations.
SC8 [6,25]-{11} CCTA DMD 2.6 Associated to the tests presented in Section 10.6, SJ:S:fwd simulations.
SC9 [6,25] CCTA DMD 2.6 Associated to the tests presented in Section 10.6, SJ:S:fwd:kv simulations.
SC10 S1D.I IVUS PDC 2.6 Associated to the tests presented in Section 10.6, MJ:fwd simulations.
SC11 S1D.II IVUS PDC 2.6 Associated to the tests presented in Section 10.6, MJ:S:fwd simulations.
SC12 S1D.II IVUS PDC 2.6 Associated to the tests presented in Section 10.6, MJ:S:fwd:kv simulations.
SC13 S1D.I IVUS PDC 2.6 Associated to the tests presented in Section 10.6, SJ:fwd simulations.
SC14 S1D.II IVUS PDC 2.6 Associated to the tests presented in Section 10.6, SJ:S:fwd simulations.
SC15 S1D.II IVUS PDC 2.6 Associated to the tests presented in Section 10.6, SJ:S:fwd:kv simulations.
SC16 [6,25] CCTA DMD 2.0

Sensitivity to variations in the CFR, 3D models and steady state simulations.SC17 [6,25] CCTA DMD 2.6
SC18 [6,25] CCTA DMD 3.0
SC19 [6,25] CCTA DMD 4.0
SC20 [6,25] CCTA PMD 2.0

Sensitivity to variations in the CFR, 3D models and steady state simulations.SC21 [6,25] CCTA PMD 2.6
SC22 [6,25] CCTA PMD 3.0
SC23 [6,25] CCTA PMD 4.0
SC24 [6,39] IVUS PDC PS Testing patient-specific CFR and sensitivity to the flow distribution strategy, 3D models

and steady state simulations.SC25 [6,39] IVUS PDP PS

Table 10.11: Definition of all study cases used in this section. Set definition for simulation cases [4-15] are as follows. S1D.I = [10, 39] −
{11LCx, 18LCx, 20LAD, 34LAD, 35LCx, 35RCA}, and S1D.II = {19LCx, 26, 28, 36}.
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Table 10.12, summarizes the statistical results for all study cases defined in Ta-
ble 10.11. Discussion is focused in groups of related study cases.

Simulations used in Section 10.5, study cases SC1 and SC2, comprise CCTA
and IVUS 3D models using DMD and CSRD flow distribution strategies, respectively. All
simulations were performed using a CFR= 2.6 for modeling hyperemia, and transient-state
flow conditions were used. A total of 16 invasive measures were used, with a prevalence
of 12.5% (2 positive measurements). Note that, under the associated setting for SC2
(IVUS), all FFRCE were found to be negative, i.e. Sen=0, Spe=1. The linear regression
and correlation coefficients show poor agreement. A moderate bias and dispersion were
obtained, 0.07 ± 0.07. In turn, for SC1 (CCTA), more positive values of FFRCE were
detected, improving the sensitivity, and decreasing the specificity. Linear regression and
correlation show poor agreement, and the analysis of difference indicated large dispersion
−0.03± 0.18.

Simulations used in Section 10.6 are divided in several study cases, SC{3-15}.
All simulations were performed with CFR= 2.6, flow distribution for CCTA models SC{4-
9} was defined by the DMD strategy and for all other cases (IVUS), the PDC strategy was
employed to determine flow distribution. Note that cases SC{4-9} are 1D transient simula-
tions associated to the 3D transient simulations of SC1. For such cases, the sensitivity was
consistently 0.5, and the specificity range was 0.71 < Spe < 0.86. Pearson’s correlation was
poor and non significant (r < 0.29), and the linear approximation coefficients presented
low slope (0.21 < a < 0.36) and large intercepts (0.52 < b < 0.64). Overall, the best
results were obtained by SC7, corresponding to 1D simulations without stenosis model
and standard junction model, SJ:fwd, for which the analysis of difference featured small
bias with moderate dispersion −0.02± 0.1.

Regarding cases SC{10-15}, corresponding to 1D simulations for IVUS models, only
cases SC{10,13} are considered, since the others comprise a small sample. It was found
that the use of the standard model for junctions (SC13) results in better agreement to
the invasive measurement. Although the low sensitivity (0.17) for a prevalence of 0.23
(six positive measurements), the rest of the classification index are above 0.8. The Pearson
correlation was moderate (0.7) and significant, although the linear approximation was poor
(a = 0.35, b = 0.62). The analysis of difference featured low bias and moderate bias of
0.06± 0.07.

Note that case SC3, corresponds to the 3D simulations of the IVUS models which 1D
simulations were compared to. In such case, with a few more measurements, the agreement
is very similar to the one of SC13.

Simulations grouped in cases SC{16-23}, comprise tests for variations in CFR
and flow distribution strategy in the 11 CCTA models, 16 invasive FFR measurements
with prevalence 12.5% (2 positive measurements). Full 3D simulation in steady-state flow
conditions were performed. Results indicates that for DMD flow distribution strategy,
the CFR= 3 scores better results, i.e. SC18. In turn, for the PMD flow distribution
strategy, the CFR=2.6 improves the overall statistics, i.e. SC21. Although the same level
of sensitivity (0.5) is obtained in SC18 and SC21, the predictive capability of SC18 is
slightly better than SC21. In turn, linear approximation, Person’s correlation and the
analysis of difference favor SC21. Despite the poor correlation (r = 0.28) and linear
approximation (a = 0.32, b = 0.57), SC21 featured the lowest bias in all study cases and a
moderate dispersion (−0.002± 0.1).

Simulations grouped in cases SC24 and SC25, comprise tests for variations in
the flow distribution strategy for fixed CFR estimation using the PS criterion in the 33
IVUS models, 33 invasive FFR measurements with prevalence 21.2% (7 positive mea-
surements). Full 3D simulation in steady-state flow conditions were performed. Re-
sults consistently indicate that the use of the PDP flow distribution, i.e. SC25, outper-
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formed the PDC criterion. Overall, the SC25 case obtained the best linear approximation
(a = 0.76, b = 0.24), largest significant Pearson correlation (r = 0.77), the smallest dis-
persion and low bias (0.028 ± 0.056). Regarding the predictive capabilities of case SC25,
all classification indexes rate remarkable values (> 0.84) with the exception of sensitiv-
ity (0.29). Which indicates that 70% of positive measurements are misclassified by the
corresponding FFRCE.

Overall, the results from classification indexes should be interpreted carefully, since
the sample is small and with low prevalence of positive FFR measurements. In fact,
the patient sample was purposedly set up in order to have borderline patients. As a
general tendency, all FFRCE presented here featured small values for sensitivity and PPV,
indicating an underestimation of pressure drop in patients with postive FFR measurements.
In turn, for most of the cases, the specificity and NPV resulted in large values. Note that,
as expected, when CFR is increased the sensitivity increases and the specificity decreases,
since simulations yield larger pressure drops and lower FFRCE values. Moreover, the linear
approximations and Pearson’s correlation were generally weak and non-significant. Finally,
smaller bias are neither related to better linear approximation nor to stronger correlations,
since the dispersion may be large. Figure 10.16 presents scatter and Bland-Altman plots
for the best cases of each group from the above discussion.

As expected, the CFR and flow distribution criterion were found to be key for a better
agreement of the FFRCE and invasive FFR. Which is explained by the direct relation to
the blood flow and consequently pressure drop in the hemodynamic simulations.

Table 10.13 is an expanded version of Table 8.2, in which the most relevant cases from
Table 10.12 were included for comparison purposes. When comparing to reported data,
note that the reported prevalence ranged 20 to 54%, while cases using CCTA models,
i.e. SC7 and SC21, have a low prevalence (12.5%), cases using IVUS models, i.e. SC3,
SC13 and SC25, feature prevalence of 21.2%. Also, the number of measurements in this
study is smaller than most of those reported in the literature, with exception of [236, 368].
Focusing on the predictive capabilities, all study cases are comparable to those reported in
the literature with the distinction of the sensitivity which is considerably lower in all the
SC, and the PPV which is low in the cases with low specificity. As for the linear correlation,
r, it is weak and non significant for cases SC7 and SC21. In turn, for SC3, SC13 and SC25,
r values are in the range of reported data [0.50, 0.93]. Regarding the analysis of difference,
the bias and dispersion in all the SC are comparable to data reported in the literature.

Finally, despite the small sample and relatively low prevalence in the data used in
this work, it was found that: (a) predictive value of FFRCE are comparable to the state
of the art, although a considerably low sensitivity was obtained; (b) agreement in terms
of correlation r was in the range of reported values for cases based on IVUS, and was not
good for cases based on CCTA, which also comprised smallest sample of all study cases;
(c) the bias and dispersion obtained in all cases are comparable to the state of the art
methods.
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Study case #Patients/
#Arteries Prev Measured FFR prediction value Corr. Difference Linear approx.

AUC Acc Sen Spe PPV NPV r mBA ± SDBA a b

SC1 11/16 0.125 0.679 0.750 0.500 0.786 0.250 0.917 0.016 -0.031±0.179† 0.034 0.820
SC2 11/16 0.125 0.929 0.875 0.000 1.000 - 0.875 0.456 0.070±0.069 0.186 0.788
SC3 24/33 0.212 0.827 0.818 0.143 1.000 1.000 0.813 0.645∗ 0.063±0.064 0.339 0.641
SC4 11/16 0.125 0.732 0.750 0.500 0.786 0.250 0.917 0.288 -0.025±0.101† 0.336 0.560
SC5 10/14 0.143 0.792 0.714 0.500 0.750 0.250 0.900 0.195 -0.045±0.151† 0.358 0.522
SC6 11/16 0.125 0.750 0.688 0.500 0.714 0.200 0.909 0.129 -0.056±0.156† 0.240 0.614
SC7 11/16 0.125 0.679 0.813 0.500 0.857 0.333 0.923 0.270 -0.020±0.101† 0.308 0.590
SC8 10/14 0.143 0.792 0.786 0.500 0.833 0.333 0.909 0.192 -0.040±0.151† 0.352 0.532
SC9 11/16 0.125 0.750 0.750 0.500 0.786 0.250 0.917 0.113 -0.051±0.158† 0.212 0.644
SC10 21/26 0.231 0.888 0.769 0.000 1.000 - 0.769 0.701∗ 0.063±0.066 0.338 0.639
SC11 4/ 4 0.500 1.000 0.500 0.000 1.000 - 0.500 0.934 0.045±0.058† 0.528 0.453
SC12 4/ 4 0.500 1.000 0.750 0.500 1.000 1.000 0.667 0.838 0.030±0.063† 0.599 0.376
SC13 21/26 0.231 0.904 0.808 0.167 1.000 1.000 0.800 0.704∗ 0.064±0.065 0.355 0.625
SC14 4/ 4 0.500 1.000 0.500 0.000 1.000 - 0.500 0.947 0.039±0.052† 0.584 0.398
SC15 4/ 4 0.500 1.000 0.750 0.500 1.000 1.000 0.667 0.864 0.023±0.058† 0.657 0.318
SC16 11/16 0.125 0.696 0.813 0.000 0.929 0.000 0.867 -0.075 0.013±0.161† -0.129 1.008
SC17 11/16 0.125 0.679 0.750 0.500 0.786 0.250 0.917 -0.015 -0.028±0.184† -0.032 0.882
SC18 11/16 0.125 0.679 0.750 0.500 0.786 0.250 0.917 0.028 -0.057±0.200† 0.066 0.766
SC19 11/16 0.125 0.679 0.625 0.500 0.643 0.167 0.900 0.133 -0.136±0.247† 0.417 0.378
SC20 11/16 0.125 0.750 0.875 0.000 1.000 - 0.875 0.334 0.036±0.079† 0.240 0.705
SC21 11/16 0.125 0.750 0.688 0.500 0.714 0.200 0.909 0.282 -0.002±0.100† 0.321 0.596
SC22 11/16 0.125 0.679 0.688 0.500 0.714 0.200 0.909 0.259 -0.031±0.119† 0.374 0.520
SC23 11/16 0.125 0.643 0.563 0.500 0.571 0.143 0.889 0.227 -0.111±0.181† 0.532 0.301
SC24 24/33 0.212 0.876 0.818 0.143 1.000 1.000 0.813 0.703∗ 0.051±0.059 0.446 0.536
SC25 24/33 0.212 0.909 0.848 0.286 1.000 1.000 0.839 0.768∗ 0.028±0.056 0.757 0.241

Table 10.12: Summary of statistical results for each study case. All statistics are performed at a per-artery level. Values of FFR were taken at
clinically relevant location for diagnosis, ΩFFR. The linear approximation coefficients represents the equation FFRCE = aFFR+b. Marker ∗ indicates
if the Pearson’s correlation coefficient (r) was statistically significant (p < 0.05). Marker † in the Bland-Altman analysis of difference (FFRCE−FFR)
indicates p > 0.05. Predicted values are computed using FFR as gold standard and a cut-off value of FFR ≥ 0.8. The prevalence (Prev) of functional
stenoses according to FFR is also display.
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Research group Study (year) #Patients/
#Arteries

Prediction value [%] Corr. Difference
Prev AUC Acc Sen Spe PPV NPV r mBA ± SDBA

HeartFlow

DISCOVER-FLOW [186] (2011) 103 / 159 36.5 90.0 84.0 87.9 82.2 73.9 92.2 0.68 0.022 ± 0.116
Yoon et al. [360] (2012) 65 / 82 39.0 94.0 89.0 81.3 94.0 89.7 88.7 0.70 -

DeFACTO [226] (2012) 252 / 406 54.4 81.0 73.0 90.0 54.0 67.0 84.0 0.63 0.058± -
Nakazato et al. [247] (2013) 82 / 150 23.3 79.0 69.0 74.0 67.0 41.0 90.0 0.50 0.050 ± 0.200

NXT [251] (2014) 235 / 484 20.7 90.0 81.0 86.0 79.0 65.0 93.0 0.93 0.020 ± 0.074

Siemens
Renker et al. [275] (2014) 53 / 67 29.8 92.0 - 85.0 85.0 71.0 93.0 0.66 -
Coenen et al. [76] (2014) 106 / 189 42.3 83.0 74.6 87.5 65.1 64.8 87.7 0.59 -0.040 ± 0.130
Tröbs et al. [334] (2016) 73 / 100 29.0 93.0 90.0 79.0 94.0 85.0 92.0 0.85 0.008 ± 0.063

Toshiba Ko et al. [184] (2016) 30 / 56 33.9 83.9 88.0 77.8 86.8 73.7 89.2 0.57 0.065 ± 0.137
Univ. of Sheffield, UK VIRTU-1 [236] (2013) 19 / 35 20.0 - 97.0 86.0 100. 100. 97.0 0.84 0.020 ± 0.080
Lediden, Netherlands Tu et al. [336] (2014) 68 / 77 29.9 93.0 88.0 78.0 93.0 82.0 91.0 0.81 0.000 ± 0.060
Univ. from Greece and UK Papafaklis et al. [256] (2014) 120 / 139 37.4 92.0 86.0 79.0 90.0 82.0 88.0 0.78 -0.004 ± 0.085
Univ. of Yonsei, Korea Ha et al. [137] (2016) 92 / 92 26.1 93.0 88.0 68.7 95.6 84.2 89.0 0.72 -0.030 ± 0.080
Univ. from Singapore, USA, China Zhang et al. [368] (2016) 21 / 32 31.2 95.5 90.6 80.0 95.5 88.9 91.3 0.84 0.026± 0.050

This work

SC3 24 / 33 21.2 82.7 81.8 14.3 100. 100. 81.3 0.64 0.063 ± 0.064
SC7 11 / 16 12.5 67.9 81.3 50.0 85.7 33.3 92.3 0.27 -0.020 ± 0.101
SC13 21 / 26 23.1 90.4 80.8 16.7 100. 100. 80.0 0.70 0.064 ± 0.065
SC21 11 / 16 12.5 75.0 68.8 50.0 71.4 20.0 90.9 0.28 -0.002 ± 0.100
SC25 24 / 33 21.2 90.9 84.8 28.6 100. 100. 83.9 0.77 0.028 ± 0.056

Table 10.13: Summary of results available in the literature comparing invasive FFR and computational estimations. All listed publications used a
threshold value of 0.8 to diagnose risk of ischemia in both invasive and computational FFR indexes. Correlation, prediction and differences indexes
computed in a per-artery basis. The most relevant study cases performed in this work are presented for comparison.
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Chapter 10. Simulations results
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Figure 10.16: Scatter and Bland-Altman plots featuring comparison between FFRCE and
invasive FFR for most relevant study cases. Scatter plots indicate in red the threshold
FFR=0.8 and in blue the linear regression approximation. Bland-Altman plots feature the
bias in blue line and the limits of agreement (mBA±1.96SDBA) in dashed blue lines. Study
cases are presented as follows: SC3 in panels (a) and (b), SC7 in panels (c) and (d), SC13
in panels (e) and (f), SC21 in panels (g) and (h) and SC25 in panels (i) and (j).
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Chapter 11

Computational estimation of FFR:
Final comments

“Would it save you a lot of time if I just gave up and went mad now?”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

Through Chapter 10, a comprehensive set of studies designed to test the capability of
different numerical methodologies to perform hemodynamics simulations in patient-specific
coronary arterial trees was presented. The ultimate goal was to estimate the invasive
measurement of FFR. Nonetheless, studies comprised the impact of image modality in
hemodynamic variables, as well as comparisons between 3D and 1D CFD models. This
chapter addresses such results to provide a global perspective of the second Part of this
Thesis.

11.1 On 3D simulations

Full 3D simulations can demand computational power exceeding the capabilities of a
personal computer. The second part of this Thesis would have been impossible to perform
in a feasible time span without the use of the high performance computing hardware
described in Chapter 10, Section 10.2. The results of 274 computer simulations (214
steady state and 60 transient) were presented in this work. A total of 36720 computational
tasks were allocated in two clusters (Santos Dumont and MACC-HPC) and the total wall
clock runtime was 5124 hs (213 days).

To ensure that all relevant hemodynamics quantities are accurately computed, mesh
independence tests were performed. Results presented in Chapter 10, Section 10.3, allowed
the determination of the parameters used to construct computational meshes with sufficient
refinement to ensure convergence for all relevant hemodynamic variables. Such results also
suggested that coarser meshes could be used and still compute the pressure and FFR fields
with small errors. This could be useful to reduce computational costs in the context of an
application specifically focusing the estimation of FFR.

In such scenario, the results of the comparison between steady and transient simu-
lations, see Chapter 10, Section 10.4, pose relevant practical implications. With the level
of mesh refinement and numerical methods employed in this work, a good agreement in
all hemodynamics variables is obtained between steady state and transient simulations.
Specifically, average discrepancies are bellow 4% disregarding the image modality used to
construct the computational models, and, particularly, differences in the FFR field are
below 1%. In turn, steady state simulations are performed 57± 37× faster than transient
ones, in terms of normalized runtime (NRT). Regarding the computational estimation of
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FFR, our results indicate that steady state simulations can be safely used, making 3D
FFRCE affordable in terms of computational cost.

11.2 On the impact of image modality

In Chapter 10, Section 10.5, a comparison between blood flow simulations in coronary
arteries performed on top of geometric models constructed from two imaging modalities,
CCTA and IVUS, was presented.

The boundary conditions developed in Chapter 9, Section 9.2.1, were used with ap-
propriate flow distributions (DMD and CSRD, for CCTA and IVUS models respectively),
such that comparisons were well defined and simulation scenarios emulate hyperemic con-
ditions typically encountered in FFR procedures.

In such context, it was observed that the major factor affecting hemodynamics was
arterial geometry, more specifically, lumen cross-sectional area. Wall shear stress and blood
velocity were largely sensitive to the lumen radius. In turn, pressure and FFR were not that
sensitive, although pressure drop was systematically larger in CCTA models. However, and
also as a consequence of the smaller lumen area rendered by CCTA, and even featuring
less proximal side branches, these models are more affected by coronary steal phenomena
than IVUS ones. This fact implies that the IVUS model carries more flow rate than the
CCTA model, which, in terms of the prediction of FFR, counterbalances the effect of IVUS
having a larger lumen area.

Results indicate that much care should be taken when drawing conclusions from
computational simulations of coronary flow using CCTA models under hyperemic condi-
tions. Although in certain cases the agreement of hemodynamics as predicted by CCTA
models and by IVUS models was excellent, there are fundamental situations in which such
agreement is lost. This is the case of vessels with large calcified lesions, for which strong
underestimation of lumen area (focally or distributedly) leads to overestimation of blood
velocity, wall shear stresses, pressure drop and, finally, underestimation of FFR. In these
cases, hemodynamics is largely sensitive to imaging modality.

11.3 On 1D simulations

In Chapter 10, Section 10.6, the capabilities of several 1D model configurations,
i.e. 6 variants combining the use of junction and stenosis models, were compared to 3D
simulations. The imposition of BC in the 1D model was chosen such that the flow rate at
each outlet is the same in both 3D and 1D simulations. A total of 11 CCTA and 26 IVUS
models were employed.

Results indicate that 1D simulations can reproduce the FFR field computed from
3D simulations with remarkable agreement when dedicated junction and stenoses models
are used (Mynard and Young models). Furthermore, 1D transient simulations can be
performed in minutes, compared to the average of 80 hs or 3 hs for transient and steady
3D simulations, which require much more computational resources. In terms of RT, the
1D simulations are 298± 326 times faster than 3D pulsatile simulations and 16± 30 times
faster than steady 3D simulations, the amount of computational tasks are 11±5 times less
in the 1D model.

All considering, the use of 1D models for the computational assessment of FFR is a
cheaper and safe alternative to 3D simulations, under the hypothesis tested in this work.
The use of other BC in the 1D models, e.g. the one developed for 3D simulations in
this work, will not drastically increment the computational time, although it is difficult
to predict the impact in the discrepancies against the corresponding 3D simulations, since
flow distribution may be affected. This is matter of current research.
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11.4 On the estimation of invasive FFR

In Chapter 10, Section 10.7, several computational methodologies for the calculation
of FFRCE were compared to invasive FFR measurements using a comprehensive set of
statistical indexes. A total of 25 study cases were used, comprising all simulations per-
formed in Sections 10.5 and 10.6 from Chapter 10, plus tests changing the CFR and flow
distribution criterion.

When using computational models derived from CCTA images, it was found that
the combination of CFR= 2.6, a standard value reported in the literature, and the PMD
flow distribution criterion developed in this work, improved the overall agreement of 3D
(steady-state) simulations. Although 1D tests were only performed for CFR=2.6 and
DMD flow distribution criterion, it was found that using the setting SJ:fwd, i.e. standard
junction model and no stenosis model, results in an overall better agreement to the invasive
FFR, even better than the associated 3D simulation. This opens room for the discussion
about the compensation of modeling errors in 1D and 3D simulations.

When IVUS images are employed to construct computational models, it was found
that the combination of a patient-specific criterion (PS) for the determination of CFR
and the flow distribution criterion PDP produced the best overall agreement to invasive
FFR. Since such configuration was not tested using 1D simulations, we highlight that the
model using standard junctions slightly outperformed the one using the Mynard model.
For IVUS models, the small number of geometries in which stenoses were detected restricts
their inclusion in the analysis and discussions.

When comparing FFRCE to the state of the art methods reported in the literature,
it should be taken into account that the sample used in this work is relatively small and
with relatively low prevalence of positive measurements (FFR < 0.8). Nonetheless, the
following remarks are worth mentioning: (a) predictive value of FFRCE are comparable to
the state of the art, although a considerably low sensitivity was obtained; (b) agreement
in terms of correlation r was in the range of reported values for cases based on IVUS, and
was not good for cases based on CCTA, which also comprised a smaller sample; (c) the
bias and dispersion obtained in all cases are comparable to the state of the art methods.

Furthermore, to the best of the author’s knowledge, the computational assessment of
FFR using IVUS data with a patient sample as large as the one presented here had never
been reported before.

11.5 Limitations

The main limitation of the present study is the relatively small sample. Nevertheless,
the construction of computational models for each patient is a complex task, and the
results reported here have helped to elucidate some of the main drawbacks when trying to
simulate coronary blood flow under hyperemic conditions. Particularly, the determination
of patient-specific boundary condition, e.g. CBF, flow distribution criterion and CFR, are
key points to accurately simulate coronary blood flow. When studying the diagnostics
capabilities of FFRCE, the relatively low prevalence of positive FFR measurements in the
sample must be taken into consideration to interpret statistics.

An intrinsic limitation of all applications aiming to simulate patient-specific com-
putational hemodynamics, lies on the uncertainties propagated from the image processing
procedures. Although such topic was not directly analyzed in this work, the study pre-
sented in Chapter 10, Section 10.5, clearly shows that models construed from CCTA and
IVUS medical image modalities produce different results in several relevant hemodynamics
quantities, e.g. WSS, OSI and FFR. Results reported here are consistent with literature
specialized in comparing CCTA and IVUS imaging procedures [105]. In the context of the
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computational assessment of FFR, recent efforts started to address sensitivity to arterial
geometry, see [293].

Although 3D models capture the complex fluid dynamic phenomena, carrying out
transient simulations is computationally expensive, which poses a practical limitation.
Although it was shown that to calculate the FFRCE, simulations runtime can be reduced
by performing steady state simulations, high performance hardware is still required to
obtain results in a few hours of runtime.

In turn, 1D models certainly eliminate the need for high performance computing
hardware, and it was shown that 3D FFRCE can be predicted with 1D models with good
agreement. Nevertheless, it should be noted that discrepancies are originated by the in-
trinsic limitations of 1D models. Specifically, in this work, the special cases in which a
junction features a stenosis, cannot be accurately modeled by either the standard not the
Mynard junction models. Furthermore, the automatic stenoses detection algorithm was set
to detect stenoses percentage area > 40%, which may identify lesions that do not require
the use of a Young model, which could overestimate the pressure drop.

11.6 Concluding remarks for Part II

A comprehensive analysis of the different aspects related to the computational as-
sessment of FFR was presented. Particularly, this work focused on

• Relevant topics related to the determination of patient-specific parameters for sim-
ulation of coronary blood flow, i.e. estimation of total coronary blood flow, criteria
for distribution of flow among outlets and estimation of coronary flow reserve, which
is key to simulate hyperemic scenarios.

• Computational tests were performed to ensure appropriate mesh refinement for sim-
ulations.

• Comparisons between steady and transient state simulations showed that the former
setting can be safely used to calculate the FFRCE, considerably saving time.

• Impact on hemodynamic variables produced by the use of CCTA- and IVUS-derived
computational models was quantified.

• The capability of 1D models to predict the FFRCE obtained with 3D models was
demonstrated.

• Several simulation settings were compared to invasive measurements, it was shown
that results are comparable to the state of the art. The results presented here should
be interpreted as preliminary results, due to the small nature of the patient sample.

• This work presented results of computational assessment of FFR using IVUS image
data in a moderate-sized sample for the first time.

It is important to remark that this work could not have been possible without the
synergistic collaboration between the HeMoLab and the InCor research groups. Although
this Thesis ends here, several future works ramify from it, for which the continuity of
such collaboration is fundamental. Particularly, it is of utmost importance to enlarge the
patient sample, but several other studies embracing diverse related topics can be done, for
example

• Develop automatic image segmentation algorithms would be key to deal with large
patient samples.
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• Performance and scaling analysis would be important to optimize computational
resources in a production scenario using 3D simulations.

• Explore new 3D meshing algorithms that can reduce the number of degrees of freedom
taking into account the tubular nature of the arterial domain, see [211].

• Test the patient-specific CFR estimation (PS) in CCTA models. It was shown that
this could improve the agreement in IVUS models, it could also improve the results
in CCTA models.

• Perform sistematic sensitivity analysis to quantify the impact on FFRCE of several
parameters, e.g. arterial and lesion geometry, CBF, CFR, flow distribution criteria,
blood viscosity, velocity profile (exclusively for 1D models). Note that such studies
are more viable on 1D models due to their computational efficiency.

• Develop stenotic-junction models for the 1D model. This will improve the agreement
between 3D and 1D simulations in certain cases.

• Implement algorithms for CBF estimation from angiographic images. This could
eliminate the uncertainty in the total inflow parameter. However, this approach
could only be used in combination with an invasive procedure.

• Develop models of collateral circulation for both, 3D and 1D models. The importance
of collateral circulation was highlighted in the seminal work of FFR [266], and it is
intrinsically taken into account in the invasive measurement of FFR. Moreover, cur-
rent publications regarding computational approaches to estimate FFR (summarized
in Chapter 8, Section 8.4.2) do not model collaterals and rarely mention the existence
of the collateral circulation, which probably is a source of modeling error between
the computational estimation and the actual measure of FFR.
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Final thoughts

“Only a few things are cheaper than dying.”

Pedro Lemos

For those who have reached this final chapter, I salute you!. This final chapter was
written after presenting the Thesis, motivated by a suggestion from Prof. Rodrigo to give
a unified ending to the manuscript. In order to not fall into repetition of technical and
theoretical aspects of the Thesis, this chapter sums-up some discussions and comments
that took place during the Thesis presentation.

The extension of this document was initially conditioned by its two main goals: (i) to
propose methods for the geometrical characterization and comparison of coronary arterial
trees; and (ii) to develop a methodology for the computational estimation of FFR (FFRCE).
The amount of work carried out to reach both goals naturally shaped this document in
two parts, and the desire to make it self-complete sealed its destiny as a long manuscript.
As Prof. Buscaglia pointed out, The more complete a work is, the more incomplete it gets.
But that is a good thing to be, since the very foundation of knowledge and progress are
rooted in the everlasting human curiosity.

Through Part I, a comprehensive analysis of the geometric characteristics of the
coronary arterial tree was presented. Such studies comprised morphometric analysis of
the coronary arteries, similarity metrics based on geometry, heritability of arterial geo-
metric characteristics and exploration of geometric risk factors for CAD. A summary of
contributions is presented in Chapter 6.

Through Part II, a comprehensive set of studies designed to test the capability of
different numerical methodologies to perform hemodynamics simulations in patient-specific
coronary arterial trees was presented. The ultimate goal was to estimate the invasive
measurement of FFR. Furthermore, studies comprised the impact of image modality in
hemodynamic variables, as well as comparisons between 3D and 1D CFD models. A
summary of contributions is presented in Chapter 11.

Although in this document both Parts were only related by the type of input data
and methodological procedure, e.g. image processing and centerline models, the combi-
nation of both topics is feasible. For example, hemodynamic risk factors can be explored
and combined with the geometric characteristics; the true effect of arterial geometry over
hemodynamics can be studied; geometric characteristic of arteries can be incorporated in
the 1D model, through geometric-dependent additional pressure losses or by including an
adaptive velocity profile coefficient.

Prof. Pedro, who closely accompanied this work pointed out limitations and ques-
tions on how to improve the very invasive FFR index, and how these improvements could
be incorporated in the computational models, e.g. measuring pressure during diastolic
flow. He also pointed out that typically, clinical research focuses on the diseased and the
risk factors, and proposed a paradigm shift, in which we could focus in the healthy and
protective factors. This kind of fundamental questioning is, without doubt, the kind of
questions that motivate high impact research. For me, it was a great experience working
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with Prof. Pedro and his research group, and I hope to continue such collaboration in the
future.

As discussed with Prof. Abimael, multidisciplinary research contain in this work, is
key to forge bridges between different areas, in this case, mathematical and computational
models with cardiology. In the context of medicine assisted by scientific computing, and
in particular in the topics studied in this work, it is possible to speculate future academic
careers and specializations training professionals that would be able to extract and interpret
computational models and simulations, giving more information to physicians and helping
in the clinical decision process.

Finally, Prof. Gilson accompanied my progress since the masters dissertation, and
his comments addressed more specific and technical issues related to data mining, which
also helped to improved the manuscript.

When I was starting this Thesis, Profs. Pablo and Raúl indicated several papers
and books to introduce me into the area. Those initial references rapidly multiplied to a
long list of bibliography covering a broad spectrum of complexity, from basic definitions to
detailed methods and information in areas such as anatomy, physiology, image processing,
geometric analysis, statistics and computational fluid dynamics. I hope that this document
can be used by new students and collaborators as a reference and as a starting point to
begin research in topics related to patient specific modeling and simulation of the coronary
arterial physiology and pathophysiology.
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Appendix A

Mesh quality improvement operations

This appendix describes the default mesh quality improvement pipeline used to generate three-dimensional meshes for hemodynamic simula-
tions. Each processing step is described by: application (HeMoLab [4] or vmtk [11]), filter name, typical parameters and a description.

Application Filter name Parameters Description

HeMoLab Clip Clip type: Box This operation is used to open the aortic root at its start (aortic valves loca-
tion).

HeMoLab Connectivity + Threshold RegionID: The id of the region
corresponding to the entire mesh

This operations eliminate any spurious (disconnected) surface that may be
created after the surcafe opening or be present in the original surface.

HeMoLab HM3DPolyDatatoUnstructuredGridConverter +
HM3DUnstructuredGridtoHMMeshDataConverter

Fix deformed edge triangles:
true

This filters convert surface to a convenient the data structure representation
to used in the following filter. It also correct mesh elements to ensure that
all elements be triangles.

HeMoLab HMD3DSurfaceMesher (Insert Nodes) Value: 0.31 This operation insert nodes over the surface in order to reach semi homoge-
neous node density. It also ensure connectivity of new and old nodes.

HeMoLab HMD3DSurfaceMesher (Smooth)

Rlaxation Factor: 0.63;
Group: -1;
No shrink: true;
Number of Interactions: 30;
Remove Needles: false

The entire surface is smoothed, using a non-shrink restriction to avoid col-
lapse. This is an iterative process that uses a default relaxation factor. Al-
though the overall mesh quality is improved, degenerate (needle) triangles
may remain. These elements will be corrected in forthcoming filter opera-
tions.

HeMoLab HMD3DSurfaceMesher (Swap diagonals) Angle: 10 This filter correct some degenerate triangles by changing connectivity of
nodes, but maintains nodes positions.
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Application Filter name Parameters Description

HeMoLab HM3DCenterLineFilter

Resampling: 0.5;
Tolerance: 0.001;
Absolute Tolerance: 0;
Convert Lines to Points: true;
Convert Polys to Lines: true;
Convert Strips to Polys: true;
Point Merging: true

An auxiliary centerline is computed using all arterial terminals.

HeMoLab HM3DClipByCenterLineFilter

The previously computed centerline is used to perform opening of arterial
end-points on the associated surface. The output of this filter is an opened
surface triangulation. Although this mesh has not the necessary quality to be
used in 3D hemodynamics simulations, it can be used to extract centerlines
for reduced models.

HeMoLab HM3DCenterLineFilter

Resampling: 0.5;
Tolerance: 0.001;
Absolute Tolerance: 0;
Convert Lines to Points: true;
Convert Polys to Lines: true;
Convert Strips to Polys: true;
Point Merging: true

A centerline of the complete coronary tree is extracted, this model is used
for geometric characterization and as based geometry for 1D+, 1D or 0D
simulations.

HeMoLab Clip Clip type: Box
The clip filter is used to separete the subtree of interest, i.e. the left tree from
the aorta. If hemodynamics will be perform in the entire tree this, and the
following filter are not used.

HeMoLab Connectivity + Threshold + ExtractSurface + Trian-
gulate Clip type: Box This operations ensure correct extraction of a triangulated surface of the

target arterial tree.

vmtk Flow extension

Flow extension of short arteries or arteries ending in curve segments. This
improves simulation results by better impositions of boundary conditions.
Command:

vmtksurfacereader -ifile temp_001.vtk --pipe
vmtkcenterlines -seedselector openprofiles --pipe
vmtkflowextensions -adaptivelength 1 -extensionratio 5
-normalestimationratio 1 -extensionmode boundarynormal --pipe
vmtksurfacewriter -ofile temp_002.vtk
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Application Filter name Parameters Description

vmtk MeshGenerator

This filter perform remeshing of the input surface, nodes and connectivity
are modified. The output are a volumetric mesh (tetrahedrons) suitable for
hemodynamics simulations and an associated surface (triangles) mesh.
Command:

vmtksurfacereader -ifile temp_002.vtk --pipe
vmtkcenterlines -endpoints 1 -seedselector openprofiles --pipe
vmtkdistancetocenterlines -useradius 1 --pipe
vmtkmeshgenerator -elementsizemode edgelengtharray -edgelengtharray
DistanceToCenterlines -edgelengthfactor 0.18 -ofile volume.vtk
-remeshedsurfacefile surface.vtk

Table A.1: Mesh improvement pipeline.
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Appendix B

Arterial labeling considerations

Centerlines tracks representing arterial segments are labeled by cardiologist using
a fixed set of labels (see Table B.1). The large quantity of labels is due to the high
variability of the coronary anatomy and multiple bifurcation levels that may be model from
the medical images. The complexity of the heart vasculature may produce uncertainty or
ambiguity during the labeling procedure. In order to tackle this problem, the following
guidelines and considerations were defined:

• An artery can change its label only after a bifurcation point. This restriction elimi-
nates physician’s subjectivity at the time of defining when an artery ends and another
starts.

• An artery is considered to be bifurcated when it separates itself in two branches
with approximately the same length/radius (meaning that one does not double in
length/radius the other), and both branches follow a similar path, which would be
the one of the original artery if not bifurcated. Otherwise, the smaller artery is
considered as a branch of the bigger one.

• Branches are enumerated from proximal to distal in a consecutive manner. Only
segmented arteries are considered, this means that if the cardiologist sees a branch
that is no segmented, that branch should not be considered in the counter. Arteries
such as diagonals and marginals are enumerated (see Table B.1 for a list of arteries
with enumeration).

• The posterolateral segment artery (PLSA) is labeled as RPLSA/LPLSA depending
on its parent, right coronary or left circumflex artery. All the PLSA branches towards
the posterolateral face of the left ventricle are labeled as posterolateral branches and
enumerated from proximal to distal appearance. The same applies to the atrioven-
tricular node artery.

• The posterior descendant artery (PDA) is labeled as RPDA/LPDA depending on
its parent, right coronary or left posterolateral artery. All arteries that reach the
posterior interventricular sulcus are considered PDA, and therefore listed in proximal
to distal order.

• All arteries reaching the interface between the right ventricle and the pulmonary
artery root are considered conus arteries and listed from proximal to distal appear-
ance.
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Ao Aorta RCA Right Coronary Artery
LM Left Main artery

ConusA1 First Conus Artery, also known as Third coronary

LAD Left Anterior Descendant, also known as Anterior Interventric-
ular Artery ConusA1_B1 First Branch of the ConusA1

LAD_bif1 First bifurcation of the LAD ConusA1_B2 Second Branch of the ConusA1
LAD_bif2 Second bifurcation of the LAD ConusA1_B3 Third Branch of the ConusA1

ConusA2 Second Conus Artery
D1 Diagonal 1 of the LAD ConusA2_B1 First Branch of the ConusA2
D1_B1 First Branch of the Diagonal 1 of the LAD ConusA2_B2 Second Branch of the ConusA2
D1_B2 Second Branch of the Diagonal 1 of the LAD ConusA2_B3 Third Branch of the ConusA2
D1_B3 Third Branch of the Diagonal 1 of the LAD ConusA3 Third Conus Artery
D1_bif1 First Bifurcation of the D1 segment ConusA3_B1 First Branch of the ConusA3
D1_bif1_B1 First Branch of the D1_bif1 ConusA3_B2 Second Branch of the ConusA3
D1_bif1_B2 Second Branch of the D1_bif1 ConusA3_B3 Third Branch of the ConusA3
D1_bif2 Second Bifurcation of the D1 segment
D1_bif2_B1 First Branch of the D1_bif2 RCA_AB1 First Atrial Branch of the RCA
D1_bif2_B2 Second Branch of the D1_bif2 RCA_AB1_B1 First Branch of the First Atrial Branch of the RCA

RCA_AB1_B2 Second Branch of the First Atrial Branch of the RCA
D2 Diagonal 2 of the LAD RCA_AB2 Second Atrial Branch of the RCA
D2_B1 First Branch of the D2 of the LAD RCA_AB2_B1 First Branch of the Second Atrial Branch of the RCA
D2_B2 Second Branch of the D2 of the LAD RCA_AB2_B2 Second Branch of the Second Atrial Branch of the RCA
D2_B3 Third Branch of the D2 of the LAD RCA_AB3 Third Atrial Branch of the RCA
D2_bif1 First Bifurcation of the D2 segment RCA_AB3_B1 First Branch of the Third Atrial Branch of the RCA
D2_bif1_B1 First Branch of the D2_bif1 RCA_AB3_B2 Second Branch of the Third Atrial Branch of the RCA
D2_bif1_B2 Second Branch of the D2_bif1
D2_bif2 Second Bifurcation of the D2 segment RM1 First right marginal of the RCA
D2_bif2_B1 First Branch of the D2_bif2 RM1_B1 First Branch of the RM1
D2_bif2_B2 Second Branch of the D2_bif2 RM1_B2 Second Branch of the RM1

RM1_bif1 First bifurcation of the RM1
D3 Diagonal 3 of the LAD RM1_bif1_B1 First Branch of the RM1_bif1
D3_B1 First Branch of the D3 of the LAD RM1_bif1_B2 Second Branch of the RM1_bif1
D3_B2 Second Branch of the D3 of the LAD RM1_bif2 Second bifurcation of the RM1
D3_B3 Third Branch of the D3 of the LAD RM1_bif2_B1 First Branch of the RM1_bif2
D3_bif1 First Bifurcation of the D3 segment RM1_bif2_B2 Second Branch of the RM1_bif2
D3_bif1_B1 First Branch of the D3_bif1
D3_bif1_B2 Second Branch of the D3_bif1 RM2 Second right marginal of the RCA
D3_bif2 Second Bifurcation of the D3 segment RM2_B1 First Branch of the RM2
D3_bif2_B1 First Branch of the D3_bif2 RM2_B2 Second Branch of the RM2
D3_bif2_B2 Second Branch of the D3_bif2 RM2_bif1 First bifurcation of the RM2

RM2_bif1_B1 First Branch of the RM2_bif1
D4 Diagonal 4 of the LAD RM2_bif1_B2 Second Branch of the RM2_bif1
D4_B1 First Branch of the D4 of the LAD RM2_bif2 Second bifurcation of the RM2
D4_B2 Second Branch of the D4 of the LAD RM2_bif2_B1 First Branch of the RM2_bif2
D4_B3 Third Branch of the D4 of the LAD RM2_bif2_B2 Second Branch of the RM2_bif2
D4_bif1 First Bifurcation of the D4 segment
D4_bif1_B1 First Branch of the D4_bif1 RM3 Third right marginal of the RCA
D4_bif1_B2 Second Branch of the D4_bif1 RM3_B1 First Branch of the RM3
D4_bif2 Second Bifurcation of the D4 segment RM3_B2 Second Branch of the RM3
D4_bif2_B1 First Branch of the D4_bif2 RM3_bif1 First bifurcation of the RM3
D4_bif2_B2 Second Branch of the D4_bif2 RM3_bif1_B1 First Branch of the RM3_bif1

RM3_bif1_B2 Second Branch of the RM3_bif1
D5 Diagonal 5 of the LAD RM3_bif2 Second bifurcation of the RM3
D5_B1 First Branch of the D5 of the LAD RM3_bif2_B1 First Branch of the RM3_bif2
D5_B2 Second Branch of the D5 of the LAD RM3_bif2_B2 Second Branch of the RM3_bif2
D5_B3 Third Branch of the D5 of the LAD
D5_bif1 First Bifurcation of the D5 segment RM4 Fourth right marginal of the RCA
D5_bif1_B1 First Branch of the D5_bif1 RM4_B1 First Branch of the RM4
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D5_bif1_B2 Second Branch of the D5_bif1 RM4_B2 Second Branch of the RM4
D5_bif2 Second Bifurcation of the D5 segment RM4_bif1 First bifurcation of the RM4
D5_bif2_B1 First Branch of the D5_bif2 RM4_bif1_B1 First Branch of the RM4_bif1
D5_bif2_B2 Second Branch of the D5_bif2 RM4_bif1_B2 Second Branch of the RM4_bif1

RM4_bif2 Second bifurcation of the RM4
D6 Diagonal 6 of the LAD RM4_bif2_B1 First Branch of the RM4_bif2

RM4_bif2_B2 Second Branch of the RM4_bif2
S1 Septal 1 of the LAD
S1_B1 First Branch of the Septal 1 of the LAD RM5 Fifth right marginal of the RCA
S1_B2 Second Branch of the Septal 1 of the LAD RM5_B1 First Branch of the RM5
S1_B3 Third Branch of the Septal 1 of the LAD RM5_B2 Second Branch of the RM5
S2 Septal 2 of the LAD RM5_bif1 First bifurcation of the RM5
S2_B1 First Branch of the Septal 2 of the LAD RM5_bif1_B1 First Branch of the RM5_bif1
S2_B2 Second Branch of the Septal 2 of the LAD RM5_bif1_B2 Second Branch of the RM5_bif1
S2_B3 Third Branch of the Septal 2 of the LAD RM5_bif2 Second bifurcation of the RM5
S3 Septal 3 of the LAD RM5_bif2_B1 First Branch of the RM5_bif2
S3_B1 First Branch of the Septal 3 of the LAD RM5_bif2_B2 Second Branch of the RM5_bif2
S3_B2 Second Branch of the Septal 3 of the LAD
S3_B3 Third Branch of the Septal 3 of the LAD RM6 Sixth right marginal of the RCA
S4 Septal 4 of the LAD RM6_B1 First Branch of the RM6
S4_B1 First Branch of the Septal 4 of the LAD RM6_B2 Second Branch of the RM6
S4_B2 Second Branch of the Septal 4 of the LAD RM6_bif1 First bifurcation of the RM6
S4_B3 Third Branch of the Septal 4 of the LAD RM6_bif1_B1 First Branch of the RM6_bif1
S5 Septal 5 of the LAD RM6_bif1_B2 Second Branch of the RM6_bif1
S5_B1 First Branch of the Septal 5 of the LAD RM6_bif2 Second bifurcation of the RM6
S5_B2 Second Branch of the Septal 5 of the LAD RM6_bif2_B1 First Branch of the RM6_bif2
S5_B3 Third Branch of the Septal 5 of the LAD RM6_bif2_B2 Second Branch of the RM6_bif2

LAD_ConusA Conus artery of the LAD R_AVNA Atrioventricular nodal Artery of the Right subtree
L_AVNA Atrioventricular nodal Artery of the Left subtree

LCx Left Circumflex
LCx_AB1 First Atrial Branch of the LCx LPD1 Left Posterior Descendent Artery (First)
LCx_AB1_B1 First Branch of the First Atrial Branch of the LCx LPD1_B1 First branch of the LPDA1
LCx_AB1_B2 Second Branch of the First Atrial Branch of the LCx LPD1_B2 Second branch of the LPDA1
LCx_AB1_B3 Third Branch of the First Atrial Branch of the LCx LPD1_B3 Third branch of the LPDA1
LCx_AB2 Second Atrial Branch of the LCx LPD1_bif1 First bifurcation of the LPD1
LCx_AB2_B1 First Branch of the Second Atrial Branch of the LCx LPD1_bif1_B1 First branch of the LPDA1_bif1
LCx_AB2_B2 Second Branch of the Second Atrial Branch of the LCx LPD1_bif1_B2 Second branch of the LPDA1_bif1
LCx_AB3 Third Atrial Branch of the LCx LPD1_bif1_B3 Third branch of the LPDA1_bif1
LCx_AB3_B1 First Branch of the Third Atrial Branch of the LCx LPD1_bif2 Second bifurcation of the LPD1
LCx_AB3_B2 Second Branch of the Third Atrial Branch of the LCx LPD1_bif2_B1 First branch of the LPDA1_bif2

LPD1_bif2_B2 Second branch of the LPDA1_bif2
LCx_bif1 First bifurcation of the LCx LPD1_bif2_B3 Third branch of the LPDA1_bif2
LCx_bif1_AB1 First Atrial Branch of the LCx_bif1 LPD2 Left Posterior Descendent Artery (Second)
LCx_bif1_AB1_B1 First Branch of the LCx_bif1_AB1 LPD2_B1 First branch of the LPDA2
LCx_bif1_AB1_B2 Second Branch of the LCx_bif1_AB1 LPD2_B2 Second branch of the LPDA2
LCx_bif1_AB1_B3 Third Branch of the LCx_bif1_AB1 LPD2_B3 Third branch of the LPDA2
LCx_bif1_AB2 Second Atrial Branch of the LCx_bif1 LPD2_bif1 First bifurcation of the LPD2
LCx_bif1_AB2_B1 First Branch of the LCx_bif1_AB2 LPD2_bif1_B1 First branch of the LPDA2_bif1
LCx_bif1_AB2_B2 Second Branch of the LCx_bif1_AB2 LPD2_bif1_B2 Second branch of the LPDA2_bif1
LCx_bif1_AB3 Third Atrial Branch of the LCx_bif1 LPD2_bif1_B3 Third branch of the LPDA2_bif1
LCx_bif1_AB3_B1 First Branch of the LCx_bif1_AB3 LPD2_bif2 Second bifurcation of the LPD2
LCx_bif1_AB3_B2 Second Branch of the LCx_bif1_AB3 LPD2_bif2_B1 First branch of the LPDA2_bif2

LPD2_bif2_B2 Second branch of the LPDA2_bif2
LCx_bif2 Second bifurcation of the LCx LPD2_bif2_B3 Third branch of the LPDA2_bif2
LCx_bif2_AB1 First Atrial Branch of the LCx_bif2 LPD3 Left Posterior Descendent Artery (Third)
LCx_bif2_AB1_B1 First Branch of the LCx_bif2_AB1 LPD3_B1 First branch of the LPDA3
LCx_bif2_AB1_B2 Second Branch of the LCx_bif2_AB1 LPD3_B2 Second branch of the LPDA3
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LCx_bif2_AB1_B3 Third Branch of the LCx_bif2_AB1 LPD3_B3 Third branch of the LPDA3
LCx_bif2_AB2 Second Atrial Branch of the LCx_bif2 LPD3_bif1 First bifurcation of the LPD3
LCx_bif2_AB2_B1 First Branch of the LCx_bif2_AB2 LPD3_bif1_B1 First branch of the LPDA3_bif1
LCx_bif2_AB2_B2 Second Branch of the LCx_bif2_AB2 LPD3_bif1_B2 Second branch of the LPDA3_bif1
LCx_bif2_AB3 Third Atrial Branch of the LCx_bif2 LPD3_bif1_B3 Third branch of the LPDA3_bif1
LCx_bif2_AB3_B1 First Branch of the LCx_bif2_AB3 LPD3_bif2 Second bifurcation of the LPD3
LCx_bif2_AB3_B2 Second Branch of the LCx_bif2_AB3 LPD3_bif2_B1 First branch of the LPDA3_bif2

LPD3_bif2_B2 Second branch of the LPDA3_bif2
OM1 Obtuse Marginal 1 of the LCx LPD3_bif2_B3 Third branch of the LPDA3_bif2
OM1_B1 First Branch of the OM1
OM1_B2 Second Branch of the OM1 RPD1 Right Posterior Descendent Artery (First)
OM1_B3 Third Branch of the OM1 RPD1_B1 First branch of the RPDA1
OM1_bif1 First bifurcation of the OM1 RPD1_B2 Second branch of the RPDA1
OM1_bif1_B1 First Branch of the OM1_bif1 RPD1_B3 Third branch of the RPDA1
OM1_bif1_B2 Second Branch of the OM1_bif1 RPD1_B4 Fourth branch of the RPDA1
OM1_bif1_B3 Third Branch of the OM1_bif1 RPD1_bif1 First bifurcation of the RPD1
OM1_bif2 Second bifurcation of the OM1 RPD1_bif1_B1 First branch of the RPDA1_bif1
OM1_bif2_B1 First Branch of the OM1_bif2 RPD1_bif1_B2 Second branch of the RPDA1_bif1
OM1_bif2_B2 Second Branch of the OM1_bif2 RPD1_bif1_B3 Third branch of the RPDA1_bif1
OM1_bif2_B3 Third Branch of the OM1_bif2 RPD1_bif2 Second bifurcation of the RPD1

RPD1_bif2_B1 First branch of the RPDA1_bif2
OM2 Obtuse Marginal 2 of the LCx RPD1_bif2_B2 Second branch of the RPDA1_bif2
OM2_B1 First Branch of the OM2 RPD1_bif2_B3 Third branch of the RPDA1_bif2
OM2_B2 Second Branch of the OM2 RPD2 Right Posterior Descendent Artery (Second)
OM2_B3 Third Branch of the OM2 RPD2_B1 First branch of the RPDA2
OM2_bif1 First bifurcation of the OM2 RPD2_B2 Second branch of the RPDA2
OM2_bif1_B1 First Branch of the OM2_bif1 RPD2_B3 Third branch of the RPDA2
OM2_bif1_B2 Second Branch of the OM2_bif1 RPD2_bif1 First bifurcation of the RPD2
OM2_bif1_B3 Third Branch of the OM2_bif1 RPD2_bif1_B1 First branch of the RPDA2_bif1
OM2_bif2 Second bifurcation of the OM2 RPD2_bif1_B2 Second branch of the RPDA2_bif1
OM2_bif2_B1 First Branch of the OM2_bif2 RPD2_bif1_B3 Third branch of the RPDA2_bif1
OM2_bif2_B2 Second Branch of the OM2_bif2 RPD2_bif2 Second bifurcation of the RPD2
OM2_bif2_B3 Third Branch of the OM2_bif2 RPD2_bif2_B1 First branch of the RPDA2_bif2

RPD2_bif2_B2 Second branch of the RPDA2_bif2
OM3 Obtuse Marginal 3 of the LCx RPD2_bif2_B3 Third branch of the RPDA2_bif2
OM3_B1 First Branch of the OM3 RPD3 Right Posterior Descendent Artery (Third)
OM3_B2 Second Branch of the OM3 RPD3_B1 First branch of the RPDA3
OM3_B3 Third Branch of the OM3 RPD3_B2 Second branch of the RPDA3
OM3_bif1 First bifurcation of the OM3 RPD3_B3 Third branch of the RPDA3
OM3_bif1_B1 First Branch of the OM3_bif1 RPD3_bif1 First bifurcation of the RPD3
OM3_bif1_B2 Second Branch of the OM3_bif1 RPD3_bif1_B1 First branch of the RPDA3_bif1
OM3_bif1_B3 Third Branch of the OM3_bif1 RPD3_bif1_B2 Second branch of the RPDA3_bif1
OM3_bif2 Second bifurcation of the OM3 RPD3_bif1_B3 Third branch of the RPDA3_bif1
OM3_bif2_B1 First Branch of the OM3_bif2 RPD3_bif2 Second bifurcation of the RPD3
OM3_bif2_B2 Second Branch of the OM3_bif2 RPD3_bif2_B1 First branch of the RPDA3_bif2
OM3_bif2_B3 Third Branch of the OM3_bif2 RPD3_bif2_B2 Second branch of the RPDA3_bif2

RPD3_bif2_B3 Third branch of the RPDA3_bif2
OM4 Obtuse Marginal 4 of the LCx
OM4_B1 First Branch of the OM4 RPLSA Right Posterolateral Segment Artery
OM4_B2 Second Branch of the OM4 RPLSA_PLB1 First posterolateral brach of the RPLSA
OM4_B3 Third Branch of the OM4 RPLSA_PLB1_B1 First branch of the RPLSA_PLB1
OM4_bif1 First bifurcation of the OM4 RPLSA_PLB2 Second posterolateral brach of the RPLSA
OM4_bif1_B1 First Branch of the OM4_bif1 RPLSA_PLB2_B1 First branch of the RPLSA_PLB2
OM4_bif1_B2 Second Branch of the OM4_bif1 RPLSA_PLB3 Third posterolateral brach of the RPLSA
OM4_bif1_B3 Third Branch of the OM4_bif1 RPLSA_PLB3_B1 First branch of the RPLSA_PLB3
OM4_bif2 Second bifurcation of the OM4 RPLSA_PLB4 Fourth posterolateral brach of the RPLSA
OM4_bif2_B1 First Branch of the OM4_bif2 RPLSA_PLB4_B1 First branch of the RPLSA_PLB4
OM4_bif2_B2 Second Branch of the OM4_bif2 RPLSA_AB1 First atrial brach of the RPLSA
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OM4_bif2_B3 Third Branch of the OM4_bif2 RPLSA_AB2 Second atrial brach of the RPLSA
RPLSA_AB3 Third atrial brach of the RPLSA

OM5 Obtuse Marginal 5 of the LCx
OM5_B1 First Branch of the OM5 LPLSA Left Posterolateral Segment Artery
OM5_B2 Second Branch of the OM5 LPLSA_PLB1 First posterolateral brach of the LPLSA
OM5_B3 Third Branch of the OM5 LPLSA_PLB1_B1 First Branch of the LPLSA_PLB1
OM5_bif1 First bifurcation of the OM5 LPLSA_PLB1_B2 Second Branch of the LPLSA_PLB1
OM5_bif1_B1 First Branch of the OM5_bif1 LPLSA_PLB2 Second posterolateral brach of the LPLSA
OM5_bif1_B2 Second Branch of the OM5_bif1 LPLSA_PLB3 Third posterolateral brach of the LPLSA
OM5_bif1_B3 Third Branch of the OM5_bif1 LPLSA_PLB4 Fourth posterolateral brach of the LPLSA
OM5_bif2 Second bifurcation of the OM5 LPLSA_AB1 First atrial brach of the LPLSA
OM5_bif2_B1 First Branch of the OM5_bif2 LPLSA_AB2 Second atrial brach of the LPLSA
OM5_bif2_B2 Second Branch of the OM5_bif2 LPLSA_AB3 Third atrial brach of the LPLSA
OM5_bif2_B3 Third Branch of the OM5_bif2

RI
RI_B1 First Branch of the RI
RI_B2 Second Branch of the RI
RI_B3 Third Branch of the RI
RI_bif1 First bifurcation of the RI
RI_bif1_B1 First Branch of the RI_bif1
RI_bif1_B2 Second Branch of the RI_bif1
RI_bif1_B3 Third Branch of the RI_bif1
RI_bif2 Second bifurcation of the RI
RI_bif2_B1 First Branch of the RI_bif2
RI_bif2_B2 Second Branch of the RI_bif2
RI_bif2_B3 Third Branch of the RI_bif2

Table B.1: Complete list of arterial labels and the corresponding description.
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Appendix C

Coronary anatomy

As any other tissue, the heart needs to be perfused. The arterial network responsible
for the blood to the heart is the coronary arterial tree. A gross anatomical description of
coronary arteries is presented, with the primary objective of: (i) serving as quick reference
guide for medical image interpretation through the segmentation process, (ii) understand-
ing of morphometric information through arterial modeling and analysis, (iii) being useful
through hemodynamic simulation parametrization and interpretation. This appendix re-
sumes the work of [108].

The clinical importance of which artery perfuses each myocardial territory, had led
to the concept of dominance, which resumes to the identification of the artery that gives
rice to the posterior descendant artery (PDA), the posterolateral artery (PLA), and the
atrioventricular (AV) nodal artery. Therefore, if these arteries originate from the right
coronary artery (RCA), the circulation can be classified as “right-dominant”. Alternatively,
if supplied by the left circumflex artery (LCx), the circulation can be classified as “left
dominant”. Furthermore, a third classification is used, the “co-dominant” circulation, when
the right coronary artery supplies the PDA and terminates.

Approximately 85% of the general population is right-dominant, 8% are left-dominant,
and 7% are co-dominant. Therefore, there are many variations of “normal” anatomy that
are not considered “abnormal”. Figure C.1 presents the schematic structure of heart vessels
for different circulation dominance.

The left ventricle connects to the aorta through the aortic valve, the bulbar aortic
sinus and the proximal ascending aorta comprise the aortic root. The bulbous sinus and
the three aortic cusps merge to form the sinuses of Valsalva. The coronary ostia1 are
usually located below the sinotubular ridge2, within the sinus of Valsalva, centrally located
between the commissural attachments of the aortic cusps. These structures are illustrated
in Figure C.2. The heart tissue irrigation originates at the right and left coronary arteries,
which (in principle) provide blood to the right and left heart structures respectively.

C.1 Right coronary artery (RCA)

The RCA, lies deep in the epicardial fat between the pulmonary conus3. It continues
to course downward around the acute margin of the heart4 and then posteriorly, remaining

1The ostia is the rising point, the beginning of an artery.
2A slight circumferential thickening, also known as sinotubular junction, that marks the separation of

the ascending aorta and the sinuses of Valsalva.
3A conical extension of the right ventricle, from which the pulmonary artery originates.
4Left border of the heart associated to the right ventricle.
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Appendix C. Coronary anatomy

(a) (b)

(c)

Figure C.1: Right-dominant (a), left-dominant (b) and co-dominant circulation. LM =
left main artery; LAD = left anterior descending artery; Cx = circumflex; RCA = right
coronary artery; S = septal; D = diagonal; OM = obtuse marginal; RM = right marginal;
RPDA = right posterior descending artery; RPL = right posterolateral; RI = ramus inter-
mediate.

in the atrioventricular sulcus5 until it reaches the interventricular sulcus6 at the crux 7.
The branches of the RCA, from proximal to distal are: The conus artery, right

atrial branches, right ventricular branches, interventricular septal branches, atrioventricu-
lar nodal branches, and left ventricular branches (posterolateral branches of the postero-
lateral segment artery). Both, atrial and ventricle right branches are named by the point
of rise: anterior (proximal), marginal (intermediate) or posterior (distal).

The conus artery8 when present, takes a semicircular course away from the RCA on
the epicardial anterior surface of the right ventricle at the level of the pulmonary valve.

5Area of separation of the right atrium and right ventricle, at the heart surface.
6Area of separation of the right and left ventricles, at the heart surface.
7The point where the interatrial sulcus (which separates the right and left atrium) crosses the inter-

ventricular sulcus
8Also known as infundibular artery, adipose artery, third coronary artery, arteria of Vieussens.
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(a)

LCA

LV

AA

SoV

AV

SR

(b)

Figure C.2: Aortic root structure illustrations (a), and a visualization in a CTA image (b).
AA - Ascending Aorta; AV - Aortic valve; LV - Left ventricle; LCA - Left coronary artery;
SR - Sinotubular ridge; SoV - Sinus of Valsalva.

It terminates near the superior aspect of the anterior interventricular sulcus. A separate
ostium, at the right sinuses, gives rise to the conus artery in 23% to 51% of patients. The
conus artery often forms a vascular anastomotic bridge9 with a corresponding branch from
either the left main (LM) or proximal left anterior descending artery10 (LAD) forming the
circle of Vieussens11.

The atrial branches of the RCA are very variable in number, location and size (usu-
ally small in caliber, ≤ 1 mm). The main atrial artery is usually the atrial branch that
terminates in the sinoatrial node. The artery to the sinoatrial node arises from the RCA in
60% of subjects and from the left circumflex artery (LCx) in the remaining 40%. During
its course, it gives off branches to both atria and penetrates into the interatrial septum12

The right ventricular branches originates from the RCA when it passes the atrioven-
tricular sulcus at nearly right angles from the RCA and course over the anterior, marginal,
and posterior surface of the right ventricle. In approximately 65% to 85% of subjects, 1 or
2 right ventricular branches arise from the anterior segment of the RCA.

The posterior descending artery13 (PDA) usually arises as a branch or continuation
of the RCA at the crux, and courses along the posterior aspect of the interventricular
sulcus a variable distance toward the apex 14. The interventricular septum branches arises
from the PDA and supply the inferior aspect of the interventricular septum.

The atrioventricular nodal arteries usually arises from the RCA and less frequently
from the left circumflex artery, depending on which artery crosses the crux.

The left ventricular branches of the RCA are known as the posterolateral arteries. An-
giographically, they represent a continuation of the RCA beyond the PDA. These branches
traverse the interventricular septum and supply the inferior wall of the left ventricle.

9Connection of two arterial branches, resulting in a blood flow junction, not a separation as occur in
branches.

10Also known as intervetricular anterior artery.
11This bridge may play a role as a collateral pathway to the LAD.
12The wall of tissue that separates the right and left atria.
13Also known as intervetricular posterior artery.
14The lowest superficial part of the heart.
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C.2 Left coronary

The left coronary or left main artery15 (LMA) arises from the left sinus of Valsalva
and courses laterally between the base of the pulmonary trunk and left atrium. The LMA
usually has two major branches, the LAD and LCx. Occasionally, the left main ”trifurcates”
into the LAD, LCx, and the ramus intermediate artery (RIA)16.

In practice, the LAD is the continuation of the LMA. It passes to the left of the pul-
monary trunk (forming a 90◦ angle), travels into the upper portion of the interventricular
sulcus, and continues toward the apex of the heart17. How far the LAD extends is variable,
but it usually at least continues to the apex. Occasionally, the LAD bifurcates into two
parallel vessels.

The diagonal branches of the LAD, irrigates the left ventricle. They run parallel to
one another and are variable in number (2 to 9)18. Right ventricular branches of the LAD,
when present, are usually short and extend over the adjacent right ventricular surface,
usually meeting right ventricular branches of the RCA.

Interventricular branches, or septal perforating branches19, descend from the LAD
and travel down through the interventricular septum toward the smaller branches traveling
upward from the posterior descending artery. This branches also has a mechanical function,
which is immobilize the LAD, fixing it to the heart, limiting its motion, and preventing
buckling of the artery during systole.

The LCx arises from the LMA at almost a right angle20, and follows a course that
nearly mirrors the RCA. The degree of variability of the left circumflex artery and its
branches is comparable to that of the RCA. At the crux, the left circumflex artery may ex-
tend to become the posterior descending artery and supply the AV node or may terminate,
depending on dominance, as described above.

The ventricular branches of the LCx branch at acute angles. In 80% of subjects, 1
to 3 anterior left ventricular branches are present. Clinicians usually name them as obtuse
marginals (OM1, OM2, OM3).

15The length of the LMA, in general, varies from 2 to 12 mm but may be up to 30 mm. Its diameter,
ranging from 5 to 10 mm, is generally inversely related to its length.

16This third branch originates between the angle formed by the LAD and the left circumflex arteries
and has various names, including median artery, left diagonal artery, and straight left ventricular artery.

17During its course, the LAD is often covered by superficial muscle fibers, which run at right angles to
the vessel, creating what is known as a “myocardial bridge”.

18If a RI artery is present, the diagonal vessels are less prominent and arise more distally.
19Which range in diameter from 0.5 to 1.2 mm and penetrate two-thirds into the anterior septum. The

length of these vessels ranges from 40 to 80 mm and tends to become shorter as they reach the apex.
20At its origin, the LCx has a diameter ranging between 1.5 and 5 mm.
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Diagnostic of coronary artery disease

Over the years, several clinical tests were developed to detect the presence of CAD,
with increase interest in quantifying the functional significance of stenosis. Such procedures
can be roughly divided in three categories: (i) exercise test with monitoring of CAD symp-
toms or direct observation of coronary flow; (ii) invasive and noninvasive medical images;
(iii) functional assessment of lesion through physiologic response, i.e. absolute/relative
coronary flow reserve (CFR) and fractional flow reserve (FFR). Details on FFR are pre-
sented in Chapter 8 and Appendix E.

D.1 Tests based on exercise

D.1.1 Stress test

The patient is hooked up to equipment to monitor the heart. Walks slowly in place
on a treadmill. Then the speed is increased for a faster pace and the treadmill is tilted to
produce the effect of going up a small hill. Afterward, the patient will sit or lie down to
have their heart and blood pressure checked.

Heart rate, breathing, blood pressure, electrocardiogram, and how tired the patient
feel are monitored during the test.

It is a noninvasive, safe and inexpensive test that can be used to obtain information
on functional capacity and the symptomatic, hemodynamic, and ECG responses to ex-
ercise. Although it provides valuable prognostic and diagnostic information, inconclusive
test results are common and can lead to uncertainty about the likelihood of flow-limiting
coronary artery disease [47].

D.1.2 Stress echocardiography

It utilizes ultrasound imaging of the heart. First, images are taken “at rest” to
acquire a baseline of the patient’s wall motion. Then, the patient heart rate is increased
by a controlled exercise modality. Finally, images of the heart are taken “at stress” to
assess wall motion at the peak heart rate. Ischemia of one or more coronary arteries could
cause a wall motion abnormality which could indicate CAD.

It is a noninvasive test, that assesses wall motion of the heart, it does not, however,
image the coronary arteries directly. Patients with poor acoustic windows (e.g., obesity,
obstructive lung disease) may have reduced image quality, which can lower the diagnostic
accuracy of the examination [47]. The lack of radiation exposure makes this a compelling
option for young patients.
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D.1.3 Exercise test and thallium scanning

Measures the amount of blood in the heart muscle at rest and during exercise. A
radioactive tracer (thallium) is injected into the vein in the arm, as the tracer moves
through the heart muscle, areas that have good blood flow absorb the tracer. Areas that
do not absorb tracer may not be getting enough blood or may have been damaged. This test
is also known by other names including myocardial perfusion scan, myocardial perfusion
imaging, thallium scan, cardiac perfusion scan, sestamibi cardiac scan, and nuclear stress
test.

Images may be taken by a rotating gamma scintillation camera, or a single photon
emission computed tomography (SPECT) scan.

It is a noninvasive test, that can provide data for (A/R)-CFR index calculus. In
general, nuclear techniques tend to underestimate the extent of CAD, and are sensitive
to attenuation artifacts, common in obese patients and women with extensive breast tis-
sue [47].

D.2 Medical imaging

D.2.1 Coronary angiography (CA)

It is a procedure based on x-ray imaging to see the coronary arteries. During the
procedure, a catheterization is performed in order to reach the coronary tree. An x-ray
contrast agent is injected into the arteries of interest, while the x-ray images (angiograms)
are taken. Due to the spatial and temporal resolution, CA is considered the gold standard
for CAD detection and diagnosis.

D.2.2 Quantitative coronary angiography (QCA)

Using biplane coronary angiography, perpendicular images of the heart vasculature
are acquired and used to measure the percentage of stenosis, area of stenosis, stenosis
length, reference diameter of the adjacent normal segments and minimal luminal diameter.
Then the measure of both planes is averaged to get the final values of each geometric
variable. Despite previous works, [274] was the first to propose an automatic methodology
with small variability for the segmentation process.

It is an invasive test that needs catheterization in order to achieve biplane angiogr-
pahic images. It strongly depends on image quality and segmentation algorithm for the
correct determination of different geometric characteristics of the stenotic arteries.

D.2.3 Multi Slice Computed Tomography Angiography (MSCTA)

MSCTA, or coronary computer tomography angiography (CCTA), is a conventional
computed tomography angiography study, conducted with a multi slice scanner. This type
of scanner can acquire multiple CT slice at a time, decreasing the study length. The
acquisition process is synchronized with an electrocardiogram in order to sample the heart
at the same moment over the cardiac cycle. The injection of contrast agent is performed
through veins at the arm.

With MSCTA it si possible to evaluate the coronary luminal changes, visualize the
coronary artery wall morphology, identify and characterize coronary plaques, especially
the non-stenotic plaques that may be undetected by conventional coronary angiography.
Furthermore, MSCTA is a noninvasive technique that can provide prognostic information in
patients suspected of having CAD. According to [323], despite promising results reported in
the literature, MSCTA has the disadvantage of having a high radiation dose. Nevertheless,

192



Appendix D. Diagnostic of coronary artery disease

MSCTA can be used as a reliable technique for excluding patients suspected of CAD,
thereby reducing the need for invasive coronary angiography.

D.3 Functional assessment of lesions

D.3.1 Absolute coronary flow reserve (A-CFR)

Introduced by [130], A-CFR, also known as coronary vasodilatory reserve, is defined
as the maximal flow (reaching myocardium) under vasodilation, divided (normalized) by
control flow at rest. The A-CFR is defined as

A-CFR =
Qmax

s
Qres

s
(D.3.1)

where sub-index s indicates that an stenosis is present, and supra-indexes max and res
stand for maximal vasodilation and rest conditions. Q is the flow reaching the myocardium.

The different flow values can be measured by invasive catheterization (flow-meters)
or by noninvasive exercise test and thallium scans. As explained by [129], changes in
aortic pressure and heart rate are known to alter cardiac workload and, therefore, baseline
coronary blood flow, as well as altering maximal coronary flow under conditions of maximal
vasodilation.

This index reflects the flow capacity of the entire coronary vascular bed under what-
ever conditions of pressure, work load, hypertrophy, vasomotor tone or stenosis are present.

There is controversy on the normal ranges. Kern et al. [179] studied A-CFR in 214
patients using average peak velocities for estimation of flow in a per vessel fashion (416
arteries). They established normal reference ranges for assessing the coronary circulation
and post-stenotic A-CFR in patients with and without coronary artery disease. They also
present reference values of peak velocities in the coronary arteries.

McGinn et al. [218] studied the long-term variability of serial CFR measurements
in humans. Differences in CFR between studies were related to changes in heart rate but
not to changes in mean arterial pressure. They concluded that serial CFR measurements
in humans are highly reproducible in the absence of conditions known to affect resting or
hyperemic coronary blood flow. Increases in heart rate reduced CFR because (resting)
CBFV was increased while (hyperemic) CBFV was unchanged. In contrast, changes in
mean arterial pressure did not alter CFR. Proper interpretation of CFR measurements
should take into account the hemodynamic conditions at which they are obtained.

D.3.2 Relative coronary flow reserve (R-CFR)

In an effort to complement the A-CFR index, [129] presented the R-CFR, defined as
maximal flow in a stenotic artery divided (normalized) by the normal maximal flow in the
absence of stenosis. The R-CFR is defined as

R-CFR =
Qmax
s

Qmax
n

(D.3.2)

where sub-index s and n indicate stenotic and normal artery, and supra-indexes max stands
for maximal vasodilation and rest conditions.

[129] concluded that R-CFR reflects more specifically the effects of the stenosis in-
dependent of and not affected by the other physiologic variables if normal maximal flow
is high enough. And the index can complement A-CFR information. R-CFR is computed
directly from flow measurements acquired by invasive catheterization or noninvasive nu-
clear scanning. The normal flow is measured on a healthy contra-lateral artery, therefore
in cases of three vessel diseases it could not be measured properly.
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D.3.3 Absolute/Relative Stenosis flow reserve (A/R-SFR)

In an effort to estimate CFR from pressure drops over a stenotic artery, [128, 127, 129]
developed an alternative procedure to indirectly measure CFR from QCA. The geometrical
parameters (together with estimated normals fluxes) are used to predict pressure drops
using a (hemodynamic based) stenosis model, proposed in [362].

Although the index allows comparison of complex lesions without misleading effects
due to differences in physiologic conditions among the patients (separate from stenosis
geometry). As the model strongly depends on stenosis geometry, the image segmentation
process is crucial to achieve good results. At the time this index was proposed, limitations
on automatic segmentation were too high for clinical usage. Due to the angiography
imaging process, this is an invasive test.

D.3.4 dpv50
The combination of the diastolic flow velocity and pressure gradient (v-dp) gives a

comprehensive description of the coronary stenosis severity [212]. It was shown that the
v-dp relation in humans is associated to normal arteries versus intermediate and severe
coronary stenoses. The dpv50 is the instantaneous pressure gradient at a middiastolic
coronary flow velocity of 50 cm/s. In essence, this measurement provides an index of
stenosis resistance and could potentially be able to differentiate the contribution of epicar-
dial disease to abnormal CFR. The main drop-back of this method is the special doppler
catheter that needs to be used for velocity measurements.

D.3.5 Transluminal attenuation gradient

Opacification of coronary artery lumen and luminal contrast density with CTA is
dependent upon contrast bolus geometry (contrast iodine concentration, contrast infusion
rate, and volume), timing of image acquisition, cardiac output, and coronary flow. Using
sufficiently new CT scanner technology, the heart region can be imaged in a single heart-
beat, reducing the effects of such factors. Furthermore, measurement of coronary contrast
opacification might be used to estimate, indirectly, coronary blood flow [74, 191]. It might
be useful for estimating flow across unevaluable coronary segments, such as stents or calci-
fied regions, which might improve diagnostic accuracy. Using such measurements on hyper-
emic states could allow identification of hemodynamically significant stenoses [357, 322].

Transluminal attenuation gradient (TAG), is defined as the gradient of intraluminal
radiological attenuation. It is computed as the slope of the linear regression of pixel
intensity through a region of interest of an artery containing a lesion. Several studies have
correlated it with percentage stenosis and even with FFR [356].

D.3.6 Instantaneous wave-free ratio (iFR)

Sometimes referred to as instant flow reserve, it is an invasive technique to assess
ischemia risk of a stenosis. iFR is performed using invasive coronary pressure wires placed
proximal and distal to the stenosis that is to be assessed. Pressure is recorded in an specific
period in diastole called the wave-free period. It is defined as the ratio iFR = Pa/Pd,
between distal (Pd) and proximal (Pa) pressures, over such period. The rationale behind
the definition of iFR is that during this wave-free period, the microvascular resistance is
approximatly constant, and therefore there is a linear relation between pressure and flow.

Note that the definitions of iFR and FFR are the same. Both indexes exploit the
linear relationship between flow and pressure in a constant microvascular resistance period.
The difference is that iFR uses the wave-free period under normal (resting) condition,
while FFR is defined during drug-induced hyperemic conditions. Therefore, the iFR can
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be computed using available equipment without the need for pharmacological vasodilators.
Usually, the iFR is averaged through several wave-free periods, and iFR values below 0.90
suggest flow limitation.

Since its introduction in 2012 [303], there have been several studies testing and
comparing iFR to FFR [279, 36, 164, 302, 261, 261, 159, 248]. Furthermore, three large
randomized trials are in progress (DEFINE-FLAIR, iFR-SWEDEHEART and SYTNAX
II), which aim to consolidate the iFR technique in clinical practice.
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Appendix E

FFR formulae Derivation

This appendix explains how the FFR formulae are derived from the hypothesis that
coronary circulation can be modeled with purely resistive electrical components under
maximum hyperemia, see Figure E.1.

(a) (b)

Figure E.1: Schematic representation of coronary circulation with a purely resistive elec-
trical model. Panel (a) represents a stenotic condition, while panel (b) stands for a total
occlusion condition.

Before starting with the derivation, some useful relationships (valid in maximum
vasodilation) are presented. All of them are easily obtained from Figure E.1, considering
total occlusion of the stenosis (Rs =∞).

Qm1 = Qc (E.0.1a)
Pa − Pv = Qm1(Rm1 +Rc) (E.0.1b)
Pw − Pv = Qm1Rm1 (E.0.1c)
Pa − Pw = QcRc = Qm1Rc (E.0.1d)

Then, the following ratios between pressure drops are constant,

Pa − Pv
Pw − Pv

=
Qm1(Rm1 +Rc)

Qm1Rm1
= 1 +

Rc
Rm1

= C1 (E.0.2a)

Pw − Pv
Pa − Pw

=
Qm1Rm1

Qm1Rc
=
Rm1

Rc
= C2 (E.0.2b)

Pa − Pv
Pa − Pw

=
Qm1(Rm1 +Rc)

Qm1Rc
=
Rm1

Rc
+ 1 = C3 (E.0.2c)
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Hereafter, the supra-index N stands for normal conditions, which means that there
is no stenosis nor collateral flux (QNc = 0). In normal conditions, the other resistances, as
well as Pa and Pv do not change.

Now, consider the definition of coronary fractional flow reserve (FFRcor), and let
expand the expression,

FFRcor =
Qs
QNs

=
Qm1 −Qc
QNm1 −QNc

Using the fact that QNc = 0 and substituting the fluxes,

=

Pd − Pv
Rm1

− Pa − Pd
Rc

Pa − Pv
Rm1

=
Pd − Pv − (Pa − Pd)

Rm1

Rc
Pa − Pv

Substituting by (E.0.2b) and by simple algebra,

=
Pd − Pw
Pa − Pw

= 1− ∆Ps
Pa − Pw

(E.0.3)

Here, ∆Ps = Pa−Pd is the pressure drop across the stenosis. Then, the myocardium
fractional flow reserve (FFRmyo) can be calculated from its definition as follows,

FFRmyo =
Qm1

QNm1

=

Pd − Pv
Rm1

Pa − Pv
Rm1

=
Pd − Pv
Pa − Pv

= 1− ∆Ps
Pa − Pv

(E.0.4)

Note that it is possible to calculate the contribution of collateral flow to the myocar-
dial flow in presence of stenosis relative to the normal myocardium flow, as

Qc

QNm1

=
Qm1 −Qs
QNm1

=
Qm1

QNm1

− Qs

QNm1

Due that QNm1 = QNs without stenosis

=
Qm1

QNm1

− Qs
QNs

= FFRmyo − FFRcor

(E.0.5)

Finally, the ratio between these indexes associated to two clinical scenarios, before
(bi) and after (ai) intervention, can be derived using simple algebra and the constant
relationships from equation (E.0.2). Therefore, the ratio between stenotic flow before and
after intervention is
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Q
(ai)
s

Q
(bi)
s

=
Q

(ai)
s

Q
(bi)
s

Q
(bi)N

s

Q
(bi)N
s

Q
(ai)N

s

Q
(ai)N
s

=
FFR(ai)

cor

FFR(bi)
cor

Q
(ai)N

s

Q
(bi)N
s

In normal condition Q(x)N

s = Q
(x)N

m1 = (P
(x)
a − P (x)

v )/Rm1, then

=
FFR(ai)

cor

FFR(bi)
cor

P
(ai)
a − P (ai)

v

P
(bi)
a − P (bi)

v

Expressing the FFR in terms of pressure drops

=
P

(ai)
d − P (ai)

w

P
(ai)
a − P (ai)

w

P
(bi)
a − P (bi)

w

P
(bi)
d − P (bi)

w

P
(ai)
a − P (ai)

v

P
(bi)
a − P (bi)

v

=
P

(ai)
d − P (ai)

w

P
(bi)
d − P (bi)

w

(E.0.6)

Note that Q(ai)
s /Q

(bi)
s does not depend on arterial pressure Pa. Another way to test

the functional improvement of a stenotic artery after an angioplasty accounting the arterial
pressure, or as [266] stated: “correcting by arterial pressure changes”

FFR(ai)
cor

FFR(bi)
cor

=
P

(ai)
d − P (ai)

w

P
(ai)
a − P (ai)

w

P
(bi)
a − P (bi)

w

P
(bi)
d − P (bi)

w

(E.0.7)

Note that, if arterial (and wedge) pressure is maintained before and after intervention,
equations (E.0.6) and (E.0.7) are the same. An equivalent reasoning can be followed to
measure the relative improvement on the myocardial perfusion flow, therefore

Q
(ai)
m1

Q
(bi)
m1

=
P

(ai)
d − P (ai)

v

Rm1

Rm1

P
(bi)
d − P (bi)

v

=
P

(ai)
d − P (ai)

v

P
(bi)
d − P (bi)

v

(E.0.8)

As before, in order to correct by accounting possible arterial pressure changes,

FFR(ai)
myo

FFR(bi)
myo

=
P

(ai)
d − P (ai)

v

P
(ai)
a − P (ai)

v

P
(bi)
a − P (bi)

v

P
(bi)
d − P (bi)

v

(E.0.9)

Note that, if arterial (and venous) pressure is maintained before and after interven-
tion, equations (E.0.8) and (E.0.9) are equivalent.

Finally, calculating the relative contribution of collateral flow before and after the
intervention is another indicator of improved functionality of the stenosed artery. Contrary
to equations (E.0.6) and (E.0.8) where incremental values indicates better angioplasty
outcomes, (E.0.10) must decrease in order to indicate that collateral flow is no longer
needed (or at least, less needed),

Q
(ai)
c

Q
(bi)
c

=
P

(ai)
a − P (ai)

d

Rc

Rc

P
(bi)
a − P (bi)

d

=
P

(ai)
a − P (ai)

d

P
(bi)
a − P (bi)

d

=
∆P

(ai)
s

∆P
(bi)
s

Or corrected by arterial - venous pressure changes

=
∆P

(ai)
s

∆P
(bi)
s

P
(bi)
a − P (bi)

v

P
(ai)
a − P (ai)

v

(E.0.10)
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Appendix F

Proximal Murray Distribution
criterion

This appendix details the Proximal Murray Distribution (PMD) criterion to deter-
mine the terminal resistance parameters of a given network: a centerline with point-wise
radius information, a total inlet flow Qin, a characteristic ∆P between the inlet and the
outlets and a Murray exponent γ. The criterion consists in the recurrent usage of Murray’s
law at each branch point, while traversing the network from the inlet to all the outlets in
a pre-order fashion.

The algorithm pseudo-code is presented in Alg. 1, where it is assumed that the
coronary arterial tree model is represented by a tree-like computational structure. Note
that at each junction (node), the algorithms checks for an existing physiological restriction,
and if it exists, the restriction is ensured by modifying the Murray’s flow estimated at the
junction.

The so-called physiological restrictions are rules of flow distribution per outlet of
specifics junctions, that depend on the circulation dominant of the complete tree, and are
based on medical observations reported in the literature [286]. Table F.1 presents the mean
and STD used in our implementation for the Ao-RCA-LM and LM-LAD-LCx junctions,
the only restrictions that were enforced. If the given flow distribution does not satisfy
the criterion in Table F.1, it is slightly modified until the flow percentage is in the range
specified by the restriction.

Circ. Dominance Inlet: Ao Inlet: LM
RCA LM LAD LCx

Right 42±8 58±14 54±19 46±4
Left or Co 25±15 75±15 45±5 55±15

Table F.1: Physiological restrictions enforced in this work. Flow values are percentages of
the inlet flow.
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Algorithm 1 Pseudo-code of the PMD algorithm for estimation of terminal resistances.
Some generic functions are used:
isTerminal: Returns true if the node of the arterial tree represents a terminal segment.
emptyList: Creates an empty list object.
append: Appends a value or a list to a given list (first argument).
getListOfRadiusOutlets: Returns a list with the radius value at each arterial outlet
of the given node.
getNumOutlets: Returns the number of arterial segment outlets of the given node.
getOutletNode: Returns the arterial segment outlet i of the given node.
hasPhysiologicRestriction: Returns true if the given node has an associated physio-
logical restriction based on the label of the outlet segments.
ensuresPhysiologicRestriction: Returns a list of flows that satisfy the physiological
restriction associated to the given node.
1: function PMD(Qin, ∆P , γ, node)
2: if isTerminal(node) then
3: return R = ∆P/Qin;
4: end if
5: listR = emptyList();
6: r = getListOfRadiusOutlets(node);
7: β = Qin/

∑
j rj ;

8: for i = 0 to getNumOutlets(node) do
9: Qi = βrγi ;
10: end for
11: if hasPhysiologicRestriction(node) then
12: Q = ensuresPhysiologicRestriction(node, Q)
13: end if
14: for i = 0 to getNumOutlets(node) do
15: append(listR, PMD(Q, ∆P , γ, getOutletNode(node, i)))
16: end for
17: return listR;
18: end function
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