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Prof. Antonio André Novotny, D.Sc.
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As doenças cardiovasculares são a principal causa de mortalidade e morbidade em todo
o mundo, principalmente devido a acidentes vasculares tais como infarto de miocárdio
e acidente cerebro-vascular. O entendimento da gênese, progressão e comportamento de
tais doenças é fundamental para um eficaz diagnóstico, tratamento e avaliação de risco
cirúrgico. Grandes avanços foram realizados na caracterização histológica da placa vul-
nerável que conduz a acidentes vasculares, embora as técnicas in-vivo para a visualização
da mesma ainda constituam uma área de investigação extremamente activa.
Neste trabalho é proposta um metodologia para estudar a caracterização in-vivo dos
tecidos da parede arterial. Esta metodologia envolve: novos métodos de aprimoramento
de imagens médicas (gating, registro e redução de rúıdo para imagens de ultrassom de
alta frequência) e estimativa de fluxo ótico; modelos mecânicos detalhados para artérias
coronárias; e um método eficiente de assimilação de dados para a caracterização de tecidos.
A tese é dividida em três partes: i) processamento de imagens médicas; ii) estimação de
parâmetros de material e iii) aplicações médicas. Particularmente, este trabalho foca-se
no uso do ultrassom intravascular (IVUS) como técnica de imagens médicas, embora a
segunda parte do manuscrito é suficientemente genérica para ser estendida para outros
tipos de imagens médicas.
Na primeira parte, são apresentados diferentes métodos para melhorar e recuperar de
medidas de deformações e descrição espacial das estruturas anatômicas dos vasos arteriais.
Propõe-se um novo método de gating para extrair a descrição do vaso em cada instante
do ciclo card́ıaco. Devido ao movimento intŕınseco dos sensores durante a aquisição da
imagem de ultrassom, propomos um método de registro que corrige este deslocamento
no plano transversal e no eixo axial de aquisição. Para melhorar a relação sinal-rúıdo
das imagens geradas, propõe-se um método de redução de rúıdo baseado na estat́ıstica
do rúıdo “speckle” (rúıdo intŕınseco do ultrassom), que supera as estratégias clássicas de
redução de rúıdo presentes na literatura. Usando os três métodos anteriores, apresentamos
uma metodologia para estimar o fluxo óptico da seção transversal do vaso durante o ciclo
card́ıaco.
Na segunda parte, apresentamos um resumo do estado da arte sobre a anatomia arterial e
o comportamento mecânico da parede arterial, com especial ênfase nas artérias coronárias.
Assim, descrevemos a fisiopatologia da aterosclerose e as alterações mecânicas nos tecidos
dos vasos afetados. Em seguida, o problema de caracterização de tecidos é abordado,
estimando os parâmetros constitutivos de modelos mecânicos para tecidos arteriais via
filtros de Kalman. Utilizando dados experimentais de espećımens ex-vivo e modelos
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constitutivos apropriados, estuda-se a configuração do filtro de Kalman e avalia-se a
capacidade da estratégia proposta para a estimação de tecidos. Por último, são empregadas
técnicas de fluxo óptico desenvolvidas na primeira parte, para abordar a caracterização
dos tecidos in-vivo.
A terceira parte da tese apresenta uma contribuição obtida com as técnicas desenvolvi-
das na primeira parte deste trabalho. Realiza-se uma comparação multimodal para a
geração de modelos geomêtricos arteriais a partir de imagens médicas. Especificamente,
comparamos a tomografia coronariana computadorizada (CCTA) versus a angiografia
coronariana fundida com ultrassom intravascular em termos de descritores geométricos e
ı́ndices hemodinâmicos derivados dos modelos geomêtricos. Neste estudo são empregadas
técnicas de gating e registro para obter uma correta descrição geométrica dos vasos.
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Cardiovascular diseases are the principal cause of mortality and morbidity worldwide
mostly due to myocardial infarction and stroke. The understanding of the genesis, de-
velopment and progression of such diseases is key for effective diagnosis, treatment and
surgical risk assessment. Notorious advances have been performed in the histological
characterization of culprit plaque for such events, although in-vivo techniques for tissue
characterization still comprise an extremely active area of research.
In this work, a framework is proposed targeting the in-vivo characterization of the arterial
wall tissues. The set of methodologies involves: novel image processing methods for med-
ical image enhancement (gating, registration and denoising of high frequency ultrasonic
images) and optical flow estimation; detailed mechanical models for coronary arteries; and
an efficient data assimilation method for tissue characterization. The thesis is structured
in three parts: i) medical image processing; ii) material parameter estimation and iii)
medical applications. Particularly, this work makes use of Intravacular Ultrasound (IVUS)
as medical image acquisition technique, even though, the second part of the thesis is generic
and can be straightforwardly extended to other imaging techniques.
In the first part, different methods are presented to enhance and retrieve data of arterial
vessel deformations and spatial description of anatomical structures. A novel gating
method is proposed to obtain the vessel description at each instant along the cardiac
cycle. Due to the intrinsic motion of the sensors during the image acquisition, we propose
a registration method that corrects the sensor displacement in the transversal plane of
acquisition and along the axis of the vessel. To improve the signal-to-noise ratio of
the ultrasound, we propose a denoising method based on the speckle noise (ultrasound
characteristic noise) statistics which outperforms classic denoising strategies. Using the
three previous methods, we present a methodology to obtain the optical flow of the vessel
cross-section during the whole cardiac cycle.
In the second part, we scrutinize state-of-the-art literature about the arterial anatomy and
mechanical behavior of the arterial wall with particular focus on coronary arteries. Hence,
we describe the pathophysiology of the atherosclerosis and the mechanical alterations of
the components of the tissues in affected vessels. Then, the tissue characterization problem
is addressed by estimating the constitutive parameters of constitutive mechanical models
for arterial tissues with a reduced-order unscented Kalman filter. Using the surveyed data
and adequate constitutive models, the appropriate setup for the data assimilation problem
is studied, and the capabilities of the proposed strategy for tissue estimation are assessed.
Then, optical flow techniques are employed to characterize the tissues in-vivo.
The third part of the thesis presents a side contribution related to the first part of this work,



that is a multimodality comparison for the generation of geometric arterial models from
medical images. Specifically, we compare coronary computed tomography angiography
(CCTA) versus coronary angiography fused with intravascular ultrasound in terms of
geometric descriptors and hemodynamic indexes derived from the geometric models. In
such study the gating and registration techniques developed in the first part of the thesis
are employed.
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Ẑ Estimate of the observation
vector

X̂+ A posteriori estimate of the
state vector

P+ A posteriori covariance ma-
trix of the state vector

Xa Extended state vector
θ Parameter vector
M Amount of parameters
L,U Matrices obtained through

the decomposition of P
Dw Diagonal matrix containing

the sigma-point weights



List of Symbols xxv

{HL},Pw Matrices obtained through
the decomposition of the co-
variance matrices

(·)X Matrix (·) associated only to
the vector X contributions
of Xa

(·)θ Matrix (·) associated only to
the vector θ contributions of
Xa

θ̂(i) Estimate of the parameter
vector using the i-th sigma
point

θ̂− A priori estimate of the pa-
rameter vector

θ̂+ A posteriori estimate of the
parameter vector

uM(·) Displacement field in the
configuration (·) computed
by solving the mechanical
problem of equilibrium

uOF(·) Displacement field in the
configuration (·) computed
by the optical flow with
IVUS images

0 Null operator
σZ Observation uncertainty
σθ Parameter uncertainty

Chapter 7

CCTA Coronary computed tomog-
raphy angiography

AX Angiography
FFR Fractional flow reserve
AWSS Average wall shear stress
OSI Oscilatory shear index
CDF Computational fluid dynam-

ics
RCA Right coronary artery
LAD Left anterior descending

coronary artery
LCx Left circumflex coronary

artery
RI Ramus intermedius
%DS Percentage of diameter

stenosis
MLA Minimum lumen area
IQR Interquartile range
CABG Coronary artery bypass

graft
PCI Percutaneous coronary in-

tervention
LVEF Left ventricular ejection

fraction
VMTK Vascular modelling toolkit
BA Bland-Altman
Γs Cross-sectional slice
∂Γs Cross-sectional slice contour

(·) Γs-averaged quantity
Pd Distal pressure

Pa Aortic pressure
Ω Domain occupied by the

coronary vessel
Γw Domain boundary

corresponding to the
arterial wall

Γp Proximal domain boundary
Γi i-th outlet boundary
No Amount of boundary outlets
n Unit normal vector
v Velocity field
p Pressure field
ρ Blood density
µ Blood viscosity
Pp Mean systemic blood pres-

sure
ti Traction imposed at Γi
γ Murray’s law exponent
v Velocity magnitude
A Lumen area
D Lumen diameter
Re Reynolds number
Q Flow rate
FFOI Ratio between flow at the

outlets and flow in the inlet
ΩFFR Sub-domain where FFR is

computed
ρ Spearman’s correlation

value



xxvi List of Symbols



Chapter 1

Introduction

In this chapter, the motivations and challenges behind this work are introduced. To
place the contribution of this thesis within the state-of-the-art context, a survey about
the characterization of the material properties of tissues composing the arterial wall is
performed. Then, a detailed description of the steps and goals of this thesis is presented,
highlighting the necessary methods that must be developed to achieve the mechanical
characterization of the vessel. Finally, the structure of the manuscript is described, sum-
marizing the specific motivation and contents of each chapter.

1.1 Motivation

This work is mainly motivated by the huge impact of cardiovascular diseases in our
society, as the major cause of death worldwide, and also by the difficulties in its diagnosis,
treatment and research, all of which can be eased by the use of computational mechanics
as a complementary tool for research, risk assessment and prognosis. Particularly, we
focus our research in the development of computational tools for the study, detection
and description of atherosclerotic plaque lesions, motivated by their central role in the
development of cardiovascular events.

1.1.1 The worldwide impact of cardiovascular diseases

In the last century, the technological revolution in medicine, biochemistry and san-
itation achieved a substantial diminution of the worldwide deaths due to infectious and
other transmissible diseases. As consequence, a larger percentage of the population at-
tained elder stages where chronic diseases are naturally developed. Today, the principal
causes of death and morbidity worldwide are the cardiovascular diseases (CVDs). In fact,
myocardium ischemia and stroke are the worldwide leading causes of death in the last 15
years and just in 2015 accounted for a combined 15 million deaths [217]. Besides the fatal
events, the morbidity caused by CVDs is responsible for 10% of the disability-adjusted
life years (DALYs) lost in low and middle-income countries, and for 18% of DALYs lost
in high-income countries [302]. The morbidity does not only attain at personal and fa-
miliar levels, it is a large social burden in terms of work-force lost and health economic
expenditures. More precisely, the projected cumulative economic losses in the period of
2011-2025 from all noncommunicable diseases is $7.28 trillion in low and middle-income
countries [153]. From these losses, CVDs represents roughly the 50% and neglecting the
investment for prevention and treatment of such diseases may cost $47 trillion worldwide
in the next 25 years [184].

In developed and developing countries, this impact is substantial to the economy
due to the aging of its population. The decay of natality combined with the increase of

1
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the life expectancy, projects a future decrease of the population ratio between work active
and elder population. Thus, the rates of mortality and morbidity in our society due to
CVDs will raise. To attenuate such consequences, it is of the utmost importance, socially
and economically, the investment in: i) research about genesis, progression, causes and
vulnerability of the atherosclerotic plaque to increase the insight on the related CVDs; ii)
new medical techniques for early detection of these diseases whose early treatment would
reduce the morbidity and decrease the disease progression; iii) diagnosis and visualization
techniques to assess the arterial composition and functionality; iv) risk assessment tools
to identify viable and effective treatments in combination with better therapeutic devices
and procedures to improve the treatment outcome. In particular this work contributes in
the items i), iii) and iv), where the arterial composition recovered from medical images
can be used to study the plaque development along follow-ups of patient samples, as well
as to elaborate patient-specific diagnosis and risk assessment based on the vessel state at
the moment.

1.1.2 Silent diseases and prognosis uncertainty

Diagnosis and early detection of CVD is hindered by characteristic absence of symp-
toms. Many cardiovascular accidents occur due to advanced atherosclerotic plaque pro-
gression. The plaque is slowly developed during our whole life and can remain clinically
silent [81]. During this progression, the cardiovascular system remodeling and the nervous
system mechanisms of control adapt the organism to behave similarly as in a free-disease
state. Although at some point the plaque reaches a critical condition when these mech-
anisms cannot sustain a healthy state for the individual and symptoms start to arise or
even a cardiovascular event occurs. Even when the patient is symptomatic there is also
uncertainty in its condition. Some cases exhibit acute coronary syndrome followed by a
period of stability that can be short or last for years or decades [81] and the reasons of this
variability is yet unknown. What is categorically evident is the fact that the mechanisms
responsible for plaque growth and plaque instability (with a consequent cardiovascular
accident) are different at some point. Some theories for these phenomena have been
proposed ([30, 291, 292, 298, 305, 338], see Section 5.2 for further details), although there
is no conclusive evidence to support any of them entirely [107].

The lack of in-vivo and patient specific tools for tissue identification in arteries hin-
ders the follow-up of the progression and mechanical destabilization of the plaque [107]. As
ex-vivo data of unstable plaque morphology have already been reported [55, 321], there is
no reliable technique to identify such culprit patterns during in-vivo diagnosis. The CCTA
and MRI techniques only may visualize the larger arteries with enough relevant details
due to its low spatial resolution. Even more, the classification of soft tissues with CCTA
is very challenging due to the low intensity contrast among them. Intravascular imaging,
such as IVUS and OCT, solves the resolution issue delivering ≈ 1 − 17µm resolutions.
Nevertheless, IVUS features low signal-to-noise ratio and close intensity values for lipidic
and fibrotic materials, while OCT lacks of sufficient signal penetration to characterize the
complete thickness of the vessel wall. For such reasons, conventional imaging techniques
on their own do not allow an in-vivo examination of the vessel wall tissues.

On the contrary, data assimilation and numerical simulation enable the in-silico
creation of patient models without resolution or invasiveness constraints. Using segmen-
tation and reconstruction techniques, patient-specific geometrical models can be retrieved
from medical imaging. Integrating these geometries with appropriate constitutive laws
for the different tissue materials, allows the simulation of scenarios of interest for medical
research such as plaque rupture, therapeutic procedures and vessel deformation. Even
more, the numerical simulation of the vessel wall under the image acquisition conditions
can be synergically combined with image data and data assimilation techniques to analyze
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the vessel composition. Such methodology may unveil the in-vivo structure of the vessel
from medical images, delivering a key tool for medical research (e.g. the follow-up of the
progression and mechanical destabilization of the plaque, as discussed before). Also, it
delivers a feedback to conduct more accurate patient-specific simulations since the be-
havior of the vessel wall is better described. Among other applications, risk assessment
of therapeutic procedures and fluid structure interaction between blood and vessel wall
on different patient conditions may lead to a better understanding and prognosis of the
patient condition.

1.1.3 Challenges in diagnosis, risk assessment and treatment

Effective diagnosis, risk assessment and treatment of CVDs involve new challenges
for the mainstream medical practices. The complexity of such diseases is given by: i)
the multiple patient-specific factors that contribute to the progression and genesis of the
CVDs; ii) the complex integrability between the cardiovascular components where local
and systemic mechanisms affect the local vessel conditions.

The genesis, stability and progression CVD relies on patient-specific factors such
as vascular geometry and composition, hemodynamics, phenotype, genotype and patient
anamnesis. Each of these factors present a notorious variability from one patient to
another, from anatomical differences, mechanical state of the vessels and hemodynamic
variables, to previous medical procedures, conditions, daily routine and environmental
conditions. For such reasons, indexes and generalizations derived from a population of
patients usually lack of representativity for a specific patient. This does not imply that
patient population studies are useless. On the contrary, valuable insights are obtained
from these studies such as indicators for risk assessment or the characterization of the
pathology, among many others. Nevertheless, it must be taken into account that patients,
due to their particular conditions, may diverge from the population trend. At this point,
the acquisition and analysys of patient-specific features is key for a robust and tailored
evaluation of the patient. In clinical practice, patient monitoring and medical imaging
techniques deliver large amounts of patient specific data although its effective analysis
and complete comprehension is challenging. Here, new computational tools may enhance
the data organization, analysis and assimilation. For instance, after the image acquisition
segmentation, registration and gating tools rearrange the data to ease its interpretation
and provide better suited inputs for data analysis. In turn, numerical simulation tech-
niques for hemodynamics and vessel wall interaction can ease and extend the analysis
of such data. Patient-specific hemodynamic simulations deliver a detailed description of
the blood flow kinematics and, also, allow to analyze variability of the flow conditions
(such as pressure, pulse wave, systemic resistance, among others) and the vessel geometry
(e.g. increase or decrease stenoses levels, simulate stent implantation) and its state (e.g.
choose its constitutive materials, its axial stretch) to analyze pathological scenarios. These
customizations permit the analysis of the diseases in a patient-specific context, through
a computational model of the patient, for any physiological or non-physiological condi-
tion and without accessibility or resolution constraints for measurements of any variable.
Hence, the contribution of each patient-specific factor mentioned before, can be studied
independently in these models by varying their influences and observing the outcomes.
Such methodology will aid in the understanding of how these factors are combined in
complex scenarios and which impact they actually have in hemodynamics and vessel wall
mechanics.

The high integrability between components of the cardiovascular system impose
another difficulty for the study of CVDs. In fact, the local conditions within a particular
vessel are influenced by the systemic conditions. For example, suppose that the distal cap-
illary beds of a vessel reduce their resistance because the irrigated tissue demands larger
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blood supply. Such adjustment induces a local pressure drop and, in turn, may trigger
a local vasomotor tone adaptation to avoid excessive pressure reduction. This is only
one of numerous scenarios where systemic adaptations modify the local hemodynamics
and/or the local mechanical conditions of the vessel. To study such complex integration
among the cardiovascular components, highly detailed models of the cardiovascular sys-
tem are required. The ADAN (Anatomically Detailed Arterial Network) model [42, 43]
makes possible to study such complex contributions and the estimation of appropriate
hemodynamic conditions for simulations in any given artery. The availability of such
resource with the contents developed in the current thesis may lead to realistic recreation
of the physical conditions in coronary arteries which will be fundamental for therapeutic
procedure simulations, risk assessment and diagnosis.

The conception of the previous computational solutions described for preprocessing,
numerical simulation or complex anatomical modeling are inherently created by a cross-
functional team. The creation of such teams and the establishment of a common ground
for brainstorming, critical discussion and exchange of knowledge is another big challenge.
This multi-disciplinary paradigm requires teams where all members have a basic knowledge
across all team areas of expertise to share a common language and understanding along
their activities. Also, the delineation of common meaningful goals, synergically integrat-
ing the contributions of each expertise, is not a straightforward task. Nevertheless, the
capabilities of such groups allowed the creation of specific tools and a deeper specialization
for complex problems.

These challenges are an important motivation for this thesis because of the available
resources to tackle them. The joint work with the medical professionals of Incor and Śırio-
Libanês health centers is materialized across all chapters of the current manuscript, from
the medical data acquired in those centers to meaningful discussions and interpretation
of the results. The expertise available in the HeMoLab1 group concerning computational
hemodynamics, solid mechanics, numerical simulations and modeling facilitates the mate-
rialization of the several methods here developed. The access to high performance com-
puting resources (HPCMACC and Santos Dumont2 clusters located at LNCC) endowed
this work with substantial sensitivity analysis of the developed methods and the creation
of computationally demanding scenarios to validate several methods and computational
strategies.

1.2 State-of-the-art in in-vivo characterization of the vessel wall

The correlation between the vessel remodeling and rupture with the stresses of
the arterial wall has awoken the interest in quantifying stresses in atherosclerotic lesions
[72, 244, 274]. The methods usually used for these tasks are the elastography [63, 248]
and palpography [62]. These approaches measure the strains in the arterial wall at differ-
ent pressures to estimate the stress, considering the vessel as an isotropic, homogeneous,
incompressible and linearly elastic material. Two feasible sources for the internal load
are the arterial pressure [89] and the expansion of a compliant angioplasty balloon [296].
An advantage of these methods, in comparison with those commented in the previous
paragraph, is the capability to differentiate soft fatty from stiff tissues because of their
different mechanical properties [187, 198, 199]. However, because of mechanical hypothe-
ses, the strains and, therefore, the stresses are calculated locally via image data polluted
with speckle noise. As consequence, the observed global deformations of the vessel wall
may not be in accordance with the estimated stresses.

1HeMoLab web page at http://hemolab.lncc.br/web/
2More information about these clusters can be found at http://www.cenapad-rj.lncc.br/
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Available methods to perform in-vivo tissue characterization in health facilities are
image-based methods, namely: VH-IVUS (Volcano Corp., Rancho Cordova, CA, USA)
[239], IB-IVUS (YD Co., Ltd., Nara, Japan) [172] and iMap (Boston Scientific, Natick,
MA, USA) [287]. These methods analyze the radio-frequencies of the IVUS studies and
extract data based on different features. Then, using ex-vivo vessel samples and the
associated histology, a ground truth database is built to train a classifier (for VH-IVUS or
iMap) or to estimate threshold values to determine the tissue characterization. The main
problems from these approaches are that: (i) they are extremely sensitive to the training
dataset; (ii) in-vivo and ex-vivo tissues may not present the same echogenic response
[77] leading to inappropriate categories for the classifier; (iii) the tissue composition of the
vessel wall is not necessarily compatible with the vessels strains observed. The comparison
of these methods is not trivial given that they classify the tissue in different and not
comparable categories [138, 345]. Furthermore, the validation against ex-vivo samples
may not be appropriate due to item (ii) mentioned above.

Other image-based techniques have also appeared incorporating alternatives on the
frequency analysis or the classifier. Different mathematical approaches for the feature
extraction have been tested, such as discrete wavelet packet frame and a 2-D Hilbert
transform of multiscale representations [169, 234], fractal theory [137], angle-dependence
analysis [139] or moment invariants [342]. An interesting approach to reduce the drawback
exposed in the item (ii) of the previous paragraph, is presented in [77] to integrate ex-vivo
and in-vivo information at the training of the classifier, although the uncertainty of the
in-vivo histological data limits the classifier efficiency for these tissues.

A promising approach for the characterization problem is the estimation of me-
chanical properties of biological tissues via data assimilation. In the last decades, several
studies assumed the displacement field of the vessel wall as known and formulated the
problem of estimating constitutive parameters trying to reproduce the measurements, i.e.
the displacement field. The different strategies can be classified in any of the following
two categories: i) variational approach or ii) sequential filtering approach. The varia-
tional approaches minimize a functional cost that measures the dissimilarities between
the displacement field extracted from the images and the prediction of the mechanical
problem. The problem is typically solved using the Karush-Kuhn-Tucker necessary con-
ditions [32, 97, 179, 210, 255, 294] involving the solution of an adjoint problem. The
main drawback of this approach is the amount of evaluations to the cost functional (or its
derivative) that must be performed in order to solve the inverse problem (usually ranging
from 102 to 103 [185]). For such scenarios, [185] proposes reduced order strategies to solve
the Navier Stokes equations in combination with a domain parametrization technique that
reduces both the geometrical and computational complexity. Other approach is taken in
[32], applying model reduction techniques based on a proper orthogonal decomposition to
accomplish the solution of 3D FSI in a computationally efficient way. Efficient implemen-
tations for solid mechanics problems have also been proposed in [25, 353] using a virtual
fields method and a constitutive equation gap functional, respectively. In turn, sequential
filtering approaches are naturally less computationally demanding and embarrassingly
parallel. In the last decade several methods have been proposed for the estimation of car-
diovascular model parameters [66, 228, 229, 230] and vessel tissue properties [33, 34, 195].
To adapt the traditional linear Kalman filter to such non-linear problems, the formulation
of an extended Kalman filter (EKF) was employed where the first order derivative of the
mechanical problem operator must be computed along the filtering [66, 195, 229, 230].
Immediately, a more accurate and faster strategy was proposed by using a reduced order
unscented Kalman filter (ROUKF) which exploits the fact that the unscented transform
tracks the mean and standard deviation of variables after being affected by a non-linear
operator. An advantage of the ROUKF strategy is that the unscented transform guar-
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antees at least second order approximation in its prediction step (similar to the use a
higher order derivative operator in the variational approaches or non-linear Kalman filter)
without the need for the estimate of any operator derivative.

A deeper literature review is performed in due time in each of the chapters of the
thesis, surveying the state-of-the-art for each specific topic. Concerning the previously
introduced data assimilation techniques, the reader may look into Chapter 6 for further
details. Currently, there is still not work which presents a complete methodology from
medical image acquisition to in-vivo mechanical characterization of the arterial tissues. In
this thesis, we aim to establish the tools, methodology and knowledge targeting such need.

1.3 Aims and goals

The aim of the present thesis is the construction of a methodology to obtain the
mechanical characterization of the vessel wall tissues from IVUS images. This requires
the development of new image processing tools (see Part I) and a deeper understanding
of the vessel wall composition and mechanical behavior combined with the use of data
assimilation techniques (see Part II).

To achieve such goal, a novel methodology is here proposed with the following
workflow. First, an IVUS study is acquired for the vessel of interest. Since this study
acquires images at different instants of the cardiac cycle, a gating is performed to obtain
the spatial configuration of the vessel during each cardiac phase. As the heart and the
coronaries arteries are deformed during the cardiac cycle, all gated phases are registered
to the end-diastolic phase configuration because it presents the lowest cardiac deforma-
tion. Then, we remove the characteristic ultrasonic noise (speckle noise) from the images
to allow the use of optical flow techniques. At this stage, a cross-section of the vessel
is chosen, where the tissue characterization is to be performed, e.g., an atherosclerotic
lesion. The same cross-section is extracted from all the gated phases obtaining a sequence
of the cross-section deformation along the cardiac cycle. Using an optical flow technique,
the displacement of the vessel wall is estimated for each frame in the sequence. Finally,
combining the optical flow displacement field, appropriate models for the tissues of the
vessel wall and a data assimilation technique, the constitutive parameters of the tissue
models are determined. The values of the constitutive parameters can be contrasted with
experiments reported in the literature to identify the specific materials of the vessel wall.

Several methods have to be developed to obtain the necessary tools for the study of
the mechanical characterization problem. Each of them is a goal and novel contribution
by its own. In fact, we will present the use of such methods in other medical applications:
i) the use of registration methods to assess the axial deformation of the vessel between
two cardiac phases (see Chapter 3); and ii) the use of gating for an accurate geometrical
reconstruction of the coronary vessels (see Chapter 7).

Thus, the goals of this thesis are the following

• The development and validation of image-based gating methods with sufficient ro-
bustness to deal with a wide range of cardiac frequencies, different coronary arteries,
calcified and stented arteries and, also, with acceptable accuracy to gate several
cardiac phases;

• The development and validation of a registration method that aligns each frame of
the gated cardiac phases to the ones in the end-diastolic phase.

• The development and validation of a novel denoising method specially tailored for
the reduction of speckle noise in IVUS images. The method must be compared
with state-of-the-art methods for image denoising to highlight the advantages of the
customized strategy.
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• The analysis of the state-of-the-art optical flow methods to assess which one is the
best suited alternative for the estimation of the displacement field when making use
of IVUS images.

• The analysis of constitutive models for coronary vessel tissues and atherosclerotic
plaque. Survey the medical and anatomic bibliography and the available experimen-
tal data to assess the best suited model and range of parameters for each type of
material.

• The exhaustive analysis and validation of a data assimilation approach for the char-
acterization of the mechanical properties of arterial vessels using full-field measure-
ments as input data.

1.4 Structure of the thesis

The thesis is structured in three parts of cohesive contents:

• Image processing of IVUS studies: Presents all the contents associated with the
post-processing of an IVUS study. It is divided in three chapters detailing the
gating, registration, denoising and optical flow methods. It was decided to group
the denoising and optical flow methods in the same chapter because both of these
methods are closely tied in the successful estimation of the vessel wall displacements.

• Biomechanical characterization of the vessel wall: Presents all contents regarding
the mechanical models and data assimilation techniques used for the biomechanical
characterization of the vessel wall. The first chapter deals with the mechanical mod-
els chosen for the modelling of each arterial wall and atherosclerotic plaque tissues.
To justify the chosen models, range of parameters and corresponding hypotheses
during the data assimilation process, it is performed a bibliographic scrutiny of
the arterial anatomy and histopathology of the plaque. Also, experimental data is
gathered regarding the mechanical state and properties of the coronary vessels for
the setup of the models. The second chapter details the data assimilation process for
the biomechanical characterization of the vessel wall using a Kalman filter method
and state-of-the-art mechanical models.

• Medical applications: Presents the summary of two comparative clinical studies
performed with the use of the image processing methods developed in the first part
of the manuscript. The studies are a geometrical and a hemodynamic comparison of
models derived from IVUS and CCTA images for the same sample of patients. It aims
to highlight the strength and weakness of each model and, also, the considerations
that must be taken into account when drawing conclusions from models derived with
each modality.

Furthermore, appendices with auxiliary signal processing methods, mathematical
developments and a medical glossary are included at the end of the document. Lastly, we
present the derived contributions from this thesis, published in international and national
journals and conference proceedings.





Part I

Image processing
of

IVUS studies
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Chapter 2

Gating

The reconstruction of vessel configuration at different cardiac phases is a key step to
retrieve the vessel wall kinematics during the cardiac cycle. This data is present in non-
gated IVUS studies. However, such data are unsorted in the study because the frames
of different cardiac phases are intertwined during the pullback of the acquisition sensor
(hereafter simply transducer). For this reason, in the present chapter we introduce a
methodology to retrieved the set of images associated to each specific cardiac phase leading
to a more accurate and time consistent arrangement of the IVUS data.

2.1 Background

In the case of coronary IVUS, the periodic contractions of the heart impose large dis-
placements of the vessel structures and acquisition probe. In that scenario, the estimation
of volumetric measurements and axial position of structures can be misleading due to this
motion as shown in [235]. Consequently, non-homogeneous displacements and rotations
are observed along the vessel in the axial as well as in the cross-sectional directions [21].
Since a typical IVUS study spans many cardiac cycles (≈ 2 minutes of acquisition time),
the pseudo-periodic motion imposed by the heartbeat is clearly distinguishable throughout
the entire study. Also, along the different heartbeats of the study, a similar motion pattern
is seen, which suggests an association between each cardiac phase and the motion exerted
to the structures by the cardiac contraction. Several approaches explored this aspect by
sampling images of a particular cardiac phase during (on-line) or after (off-line) the IVUS
acquisition [2, 57, 125, 155, 235, 284, 285, 286]. The resulting set of images presents a
severe reduction of the motion phenomena delivering a static configuration of the vessel
structures in a particular cardiac phase.

On-line ECG-gated techniques use the ECG signal to acquire images of one par-
ticular cardiac phase. This scheme increases the time of acquisition up to three times
in comparison with the plain IVUS study [322]. Importantly, such online approach only
presents information of one cardiac phase, thus neglecting all the others, which may be
crucial for studies such as palpographies or 4-D reconstructions. As a final remark here,
we point out that the cardiac phase acquired is expected to correspond to the end-diastolic
phase, associated with the lowest motion imposition over the cardiac cycle, however, this is
difficult to be achieved [235, 286]. Since the acquisition is gated in terms of R-peak offsets
and due to the heart rate variability, ensuring a consistent cardiac phase acquisition is a
challenging task.

To overcome the obstacles pointed out in the previous paragraph, an off-line ECG-
gated can be performed over a plain IVUS study when the ECG signal is synchronized with
the IVUS acquisition equipment. However, the necessary setup to perform this technique
is not always available.

11
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In the last decade, image-based techniques for off-line gating IVUS studies have been
developed [2, 57, 125, 155, 284, 285, 286]. The independence of ECG acquisition permits
an efficient low-cost implementation of these techniques. As proposed in [2], these methods
usually present three steps for the gating process: 1) generation of a signal that measures
the cardiac motion in each frame; 2) filtering and extraction of the extrema values over the
motion signal and 3) off-line gating of the study. The first stage creates a signal which is
intrinsically associated with the motion pattern previously described. In the second step,
local extremal values related to a specific cardiac phase are extracted to obtain a partition
of the study into cardiac cycles. Finally, in the last step, each cycle is divided into cardiac
phases which are used to retrieve a specific cardiac phase from the whole study. The main
differences among the available methodologies are in the implementation strategies of the
first two steps.

Different strategies for the first step permit the classification of approaches based on
lumen morphology variations [125, 155, 285] and based on image intensity features [2, 57,
284, 286]. The methods in the former category present dependence with the segmentation
of the luminal area, which is still an active research field, and some approximations are
time consuming due to the lack of an automatic and robust procedure [125, 285]. Also,
luminal topological variations, such as bifurcations, induce spurious extremal values in the
motion signal. For methods in the second category, a set of features are used to measure
the variations between adjacent images: cross-correlation [284, 286], local mean variation
[2] and Gabor associated features [57]. None of the previous approaches takes advantage
of the blurring induced by the transducer probe motion, which is also a marker of cardiac
motion and is insensitive to topological variations.

The second stage frequently involves the application of a bandpass filter centered in
a fundamental frequency associated with the mean cardiac frequency along the study. This
strategy neglects the high order frequencies of the motion signal, which might misalign
local extrema.

In the current chapter, we propose an automatic gating method for synergical com-
bination of image features. Also, a novel method for phase extraction is presented using
an iterative signal reconstruction scheme. Specifically, the proposed method, hereafter
referred as Combined Correlation and Blurring (CCB), is based on: (i) the definition of a
combined motion signal that integrates the signals presented in [286] and [58] giving less
sensitivity to topological variations and more accuracy for the cardiac phase extraction;
(ii) a scheme for the identification of local extrema in the motion signal based on the pro-
gressive incorporation of harmonic components to gradually refine the position of extremal
values; and (iii) a simple physiological criteria for the extraction of multiple phases. The
method validation is conducted using 61 in-vivo IVUS studies from 21 patients including
a wide range of functional and physiological situations (different degrees of stenosis, stent
deployments and mild arrhythmias) through different coronary arteries.

2.2 Methodology

2.2.1 Integration of motion signals

Let us define the motion signal as a function s(n) that measures the motion of the
n-th image of the study. Then, s(n) increases if the structures in the image change their dis-
tribution by translation, deformation or rotation with respect to the preceding/succeeding
images. Besides, the image noise (speckle) produced by the micro-structures of the tissue
[3] arises as a coherent pattern that varies through the different material composition in
the vessel wall. For this reason, the noise variations that increment s(n) are associated to
movements or topological changes of the structures present in the images.
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The signal s(n) is chosen to be a linear combination of M image features, si(n),
i = 0, . . . ,M − 1, characterizing the motion in an image. Then, the function s(n) is
defined as

s(n) =

M−1∑
i=0

wi si(n), (2.2.1)

where wi ∈ (0, 1) is the weight factor of the feature si and
∑M−1

i=0 wi = 1.
In this work, we choose two features similar to those presented in [286] and [58],

respectively. The first feature, ŝ0(n), is an inverse correlation between two consecutive
images, that is

ŝ0(n) = 1−
∑H

i=1

∑W
j=1 (un(i, j)− µn) (un+1(i, j)− µn+1)

σn σn+1
, (2.2.2)

where un(i, j) is the intensity at the i-th row and j-th column, µn and σn are mean and
standard deviation of the intensity for the n-th frame (we refer to frames and images as
synonyms) and H and W are the frame height and width, respectively. The choice of this
feature is justified because the absence of movement is associated with two almost identical
images, leading to a ŝ0(n) ≈ 0. When the motion between the frames increases, the
matching of structures decreases leading to smaller correlation. Nevertheless, observe that
ŝ0 also can increase in motionless scenarios such as topological changes (e.g. bifurcations)
or the appearance of new structures (e.g. stents or calcium deposits). To improve the
treatment of these scenarios, we use another feature for motion assessment, insensitive
to differences between adjacent frames. This second feature, called ŝ1(n), measures the
blurring in the image,

ŝ1(n) = −
H∑
i=1

W∑
j=1

|∇un(i, j)| , (2.2.3)

which exploits the fact that the transducer movement provokes a blurring effect at the
borders of the structures.

To adequately combine the image features used to generate s(n), we normalize their
ranges as

si(n) =
s+
i (n)∑N

n=1 s
+
i (n)

, (2.2.4)

where
s+
i (n) = ŝi(n)− min

1≤n≤N
(ŝi(n)), (2.2.5)

and N is the number of images in the IVUS study. This last step ensures that all si are
positive and of the same order of magnitude. For the particular case of using two image
features, the weighing factors can be reduced to only one parameter, α, defined as w0 = α
and w1 = 1− α, thus

s(n) = αs0(n) + (1− α)s1(n). (2.2.6)

The image features and the integrated signal are presented in Figure 2.1 for a frame
window in an in-vivo study. It is observed that several consecutive columns present a
similar intensity pattern around the points of minima, which means that the transducer
is acquiring a set of almost identical frames. A pseudo-periodic pattern with equally
separated minima is observed for s(n). These minima are also present in the individual
features and are equally displaced to the end diastolic phase (P-wave, marked with green
dashed vertical lines) in each heartbeat. Therefore, we can infer a direct relation between
these minima and a specific cardiac phase in the study.
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Figure 2.1: Partial longitudinal view (first 150 frames) of an IVUS study presenting the
motion signal s(n) and the associated features, s0(n) and s1(n), using α = 0.25. Also
the P-wave occurrence from the synchronized electrocardiogram is marked with a dashed
green line.

2.2.2 Cardiac phase identification

The next goal is to detect the set of pseudo-periodic minima related to the specific
cardiac phase previously described. As seen in Figure 2.1, s(n) presents many local minima
in each heartbeat making non-trivial the automatic gating of this cardiac phase. But taking
advantage of the s(n) pseudo-periodicity, the frequency spectrum of s(n) is analyzed and
a low frequency version of s(n) is created, eliminating spurious minima. To maintain the
direct relation between the remaining minima and the physiological cardiac phases, the
filtered low frequency signal must include a minimum amount of frequencies such that the
original pulsation pattern is preserved. Otherwise, the lack of high order frequencies can
lead to a poor representation of the pseudo-periodicity of the signal local minima.

The frequency spectrum of the signal, s̃(k), is computed as the discrete Fourier
transform of s(n). In Figure 2.2, the absolute value of the frequency spectrum s̃(k) from
an in-vivo IVUS study is presented. There, a local maximum frequency fm in the range
of physiologically valid heart frequencies is observed (0.75 Hz to 1.66 Hz or, equivalently,
45 BPM to 100 BPM). As will be shown later, fm is a close approximation of the mean
cardiac frequency along the study (see Section 2.3.5). The use of fm as cutoff frequency
for a low-pass filter over s(n) yields a filtered signal that preserves an approximate amount
of heartbeats from the study. Therefore, the automatic detection of fm is performed by
extracting the maximum frequency component of s(n) in the physiological range, i. e.,

fm = max
k∈[0.75,1.66]

(s̃(k)), (2.2.7)

where the physiological range is defined between 0.75 Hz and 1.66 Hz.
To consider the pseudo-periodicity of the signal we introduce a factor, δ fm, δ ∈

(0, 1), which models the deviation of the heartbeat frequency along the study. Then, the
cutoff frequency for the low-pass filter is defined as

fc = (1 + δ)fm . (2.2.8)

The low frequency signal, slow(n), is constructed as the convolution of s(n) against a
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Figure 2.2: Motion signal in the frequency domain. Red lines depict the range of physio-
logically valid heart frequencies.

fc = (1 + δ)fm
slow(n) = s(n) ∗ f(n)

with cutoff frecuency fc

p(i) =
the i-th minima in slow(n)

fc = fc + fm

if fc > fmax
slow(n) = s(n) ∗ f(n)

with cutoff frecuency fc

adjust each previous
minimum p(i) to the

nearest minimum

fc = fc + fm

no yes

Figure 2.3: Activity diagram detailing the iterative adjustment of p(i) from the initial
signal slow(n) to s(n).

low-pass kernel f(n), namely
slow(n) = s(n) ∗ f(n), (2.2.9)

where ∗ is the convolution operator. In turn, the low-pass kernel is defined as

f(n) = w(n)h(n), (2.2.10)

where w(n) is the equivalent of a rectangular unitary window for the frequencies k ∈ [0, fc]
and h(n) is a Hamming window of N points. The approximations involved with the
Fourier discrete transform are avoided by applying this kernel in the time domain. Thus,
the expression of f(n) is given by

f(n) =

[
fc
fmax

sinc

(
fcn

fmax

)] [
τ − ν cos

(
2π

n

N

)]
, (2.2.11)

where fmax if the maximum frequency in the study calculated as half of the transducer
frame rate. In the equiripple sense, optimal values for the Hamming window are chosen
as τ = 25

46 and ν = 21
46 (see [99, 129]).

The resulting signal slow(n) presents approximately one minimum for each heart-
beat, which provides a first approximation for the local minima positions p(i), at the i-th
heartbeat. Using this initialization, the iterative scheme presented in Figure 2.3 is applied.
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Figure 2.4: Evolution of the iterative scheme for adjusting the minima position. The axis
fc corresponds to the cutoff frequency of the low-pass filter and, at each fixed value of
this axis, the slow(n) associated signal is presented. The red dots mark the position of the
adjusted minima, p(i), corresponding to the identified cardiac phase.

At each step, all frequencies up to the next harmonic component are incorporated in the
definition of slow(n), and p(i) is adjusted to the nearest local minimum. Note that, the
adjusted value of p(i) is not necessarily the i-th minimum of slow(n) because addition
of higher frequencies may induce the appearance of additional minima. This process is
repeated until slow(n) incorporates all harmonic components of fm, obtaining the adjusted
minimum for each heartbeat.

In Figure 2.4, the evolution of slow(n) through the incorporation of frequencies
is observed along the fc axis. It can be seen that the initialization of the minima in
slow(n) can be heterogeneously shifted from the pseudo-periodic minima of s(n) due to
the absence of high frequency contributions. As we incorporate harmonic components
of s(n) progressively, the minima is adjusted smoothly (red points path in the fc axial
direction) to the associated minima position at the signal s(n). This increases the precision
of the p(i) locations, for the cardiac phase detection.

2.2.3 Decomposition in cardiac phases

The identification of the images corresponding to the detected cardiac phase, i. e.
the ones acquired at the p(i) instants, allows the decomposition of the study in sets of
images associated to each heartbeat. This is done by grouping the images between p(i)
and p(i+1) as the set of images acquired in the i-th heartbeat. In this manner, the number
of sets found, corresponds to the number of heartbeats identified in the IVUS study.

Over these new sets of images, we define HB(i, j) as the index (frame number) in the
original IVUS study of the j-th image corresponding to the i-th heartbeat in the study.
In this indexation HB(i, 1) represents the images at the first identified cardiac phase (i.e.,
the frames acquired at p(i)).

Since the cardiac frequency changes along the study, the heartbeats are sampled
with a variable amount of frames. This variability in the heartbeat affects mainly the
time of the diastole (more specifically the T-P interval), i. e. the heart relaxes during a
longer or shorter period of time. However, the cardiac waves duration associated with the
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cardiac phases remain almost invariant. As consequence, longer heartbeats feature more
cardiac phases (more frames) than short heartbeats.

Then, P cardiac phases for the i-th heartbeat are identified as the first P frames.
The value of P is chosen as the amount of frames of the shortest heartbeat in the study
(the heartbeat composed by the smallest number of frames). The reason behind this choice
was to preserve axial spacing as homogeneous as possible between images from different
cardiac phases. This guarantees that each phase is represented by the same amount of
information.

Finally, the set of images Uk(i) corresponding to the k-th cardiac phase is defined
as

Uk(i) = I(HB(i, k)), i = 1, . . . , B, k = 1, . . . , P, (2.2.12)

where I(n) is the n-th image of the IVUS study and B is the quantity of heartbeats along
the study.

2.2.4 Parameter setup

An analysis of parameters α and δ (see equations (2.2.6) and (2.2.8), respectively)
is performed to ensure an appropriate and automatic execution of the method.

2.2.4.1 Parameter α

IVUS studies present small variations in the cardiac period during acquisition for
patients without severe cardiac arrhythmia. For this reason, the criteria used to choose the
optimal α is to reduce the heartbeat period variability detected with the gating method
(see Section 2.3.8 for associated implications). This is simply done by minimizing the
standard deviation of the set of values p(i+ 1)− p(i) for i = 1, . . . , B − 1.

In this manner, an optimization problem is solved to determine the optimal α pa-
rameter that efficiently combines the features s0 and s1 for a specific IVUS study. This
minimization process is performed by testing a large number of candidates, say αc, c ∈ C
being C the set of candidates, and then picking the best solution for the aforementioned
criteria. Combining s0 and s1 with a particular α and computing the adjusted minima p(i)
are computationally cheap tasks, then we can apply a brute force minimization scheme
with low computational cost.

To formalize this, let us define tαcHB(i) = p(i + 1) − p(i) as the period of the i-th
heartbeat from the signal s(n) calculated with αc and σαct as the standard deviation of
the periods tαcHB(i) for the entire study, then the optimal α is obtained as

α = arg min
αc∈C

σαct . (2.2.13)

To determine an appropriate quantity of αc values, we evaluate the sensitivity of the
minimum σαct from (2.2.13) with respect to different sizes of C. We define C as a set of
equally spaced candidates C = {αic;αic = i/A, i = 0, . . . , A} where A is the quantity of αc
candidates to be tested in (2.2.13). For the set of studies available (61 studies), a suitable
size of C was given by A = 103, for which the error of estimating σαct was smaller than
10−3 s.

The α value from (2.2.13) varies among studies due to their vessel topology and
intensity of sensor motion. As commented before, s0 does not accurately represent motion
for studies with several topological changes (bifurcations, dissections, etc.) then a lower
α is expected for these cases. On the other hand, studies with poor blurring (usually
associated with low sensor motion during acquisition) will produce an unreliable signal s1,
increasing the value of α.
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This setup is straightforwardly generalized for the integration of M motion signals
by performing the same optimization scheme over the M dimensional space defined by
the weight factors w = w1, w2, . . . , wM (see (2.2.1)). The optimal weights factors of the
features are obtained as

w = arg min
w∈Cw

σwt (2.2.14)

where Cw = Cw1 ×Cw2 × . . .×CwM and Cwi is the set of candidates for the weight factor
wi.

2.2.4.2 Parameter δ

The range δ ∈ (0, 1) guarantees no harmonic contributions in each low-pass filter
iteration. This ensures that the signal s(n) contains only one minima at each heartbeat.
Meanwhile, the variability in the heartbeat frequency can mislead the detection of the
heartbeats for values of δ close to the range limits.

For the inferior limit, when δ is close to 0, the heartbeats with frequency above
fm are not recovered in slow(n). For the superior limit, when δ is close to 1, we are
recovering in slow(n) a harmonic contribution for the heartbeats with frequency below fm.
As result, we would be generating two local minima for the heartbeats with duration larger
than the mean heartbeat duration. Both cases are unacceptable because they introduce
inaccuracies to the initialization of our minima adjustment scheme (Figure 2.3).

For these reasons, intermediate values render better results. Concretely, a good
agreement was empirically obtained for δ = 0.4, which resulted in neither omission nor
addition of minima in comparison with the data retrieved from the ECG signal. Theoret-
ically this value is also valid given that variability in the heartbeat frequency above 40%
of the mean is not usually seen in patients without severe cardiac arrhythmia.

2.3 Results

The proposed method was validated using IVUS images with a synchronized ECG
signal. A manual offline ECG gating was taken as ground truth for comparison purposes,
where a specialist determined the frames at the R-wave peak by inspection of the ECG
signal. Moreover, other state-of-the-art methods described in the literature were also
implemented, namely Absolute Intensity Difference (AID) [125], Correlation Dissimilarity
Matrix (CDM) [286] and Motion Blur (MB) [58]. It is worth noting that the image features
combined by our method are the ones presented in CDM and MB. A direct comparison
between the three methods is useful to assess the improvement introduced by the proposed
strategy.

2.3.1 Acquisition of IVUS studies

The IVUS studies were acquired with the Atlantis™SR Pro Imaging Catheter 40
MHz synchronized with an ECG signal and connected to an iLabTM Ultrasound Imaging
System (both by Boston Scientific Corporation, Natick, MA, USA), at the Heart Institute
(InCor), University of São Paulo Medical School and Śırio-Libanês Hospital, São Paulo,
Brazil. The acquisition frame rate was of 30 FPS performing for each frame 256 radial
scans with 256 intensity measurements. The generated frames of 512 × 512 pixels in
cartesian coordinates present a resolution of 17.5µm× 17.5µm per pixel.

The acquisition was performed during a diagnostic or therapeutic percutaneous coro-
nary procedure. Vessels were imaged during automated pullback at 0.5 mm/s, but addi-
tional manual runs, not used in the subsequent analysis, were performed. Overall, multiple
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Figure 2.5: Electrocardiogram (ECG) signal depicting red marks made by the specialist
at R-wave peak instants. The marks are then associated to the frames acquired at these
instants according to the IVUS DICOM header. This example shows 5 seconds of the
ECG signal synchronously acquired during the IVUS pullback by the iLabTM Ultrasound
Imaging System.

runs where performed on 21 patients leading to 61 IVUS studies with synchronized ECG
signal. The IVUS sequence length reported in these studies comprises 2974.8 ± 1133.8
frames (mean ± SD). Images from different coronary arteries (left anterior descending
artery - LAD, 31 studies; right coronary artery - RCA, 8 studies; left circumflex artery
- LCx, 12 studies; and obtuse marginal and diagonal arteries, 10 studies) at different
mean cardiac frequencies (from 65 BPM to almost 105 BPM) including cases with severe
stenosis, stent deployment and mild arrhythmia (presence of ≤ 5 extrasystole in 9 studies)
were analyzed.

After the procedure, a manual offline ECG gating was performed for each study.
Specifically, a specialist marks, as shown in Figure 2.5, the elapsed time at each R-wave
peak over the ECG signal of each study. Using that information, the period of each
cardiac cycle in the studies is calculated. As the IVUS study is synchronized with the
ECG signal, the R-wave peak frames are identified and the gating of this phase is used
as ground truth. As the time between the beginning P-wave and the R-wave peak rarely
varies, it is reasonable to infer the period between the steady phase as the period between
the R-wave peaks.

Manual R-wave peak segmentation reliability was estimated by calculating intra-
and inter-observer variability in terms of the Bland-Altman limits of agreement (LA)
and the coefficient of variability (%CV ). Thus, 3 specialists processed 3 times 5 studies
(with 77, 112, 130, 130 and 165 R-wave peaks giving N = 614 samples). For intra-
observer variability, we compare among the repeated segmentations of a fixed specialist
to observe the degree of variation. The results are presented in Table 2.1 where it is seen
that variations within each specialist are less than 1 frame (maximum variation of 0.3634
frames for the specialist 3 between segmentations 1 and 3), showing negligible variability in
the segmentation process. Inter-observer variability was addressed by estimating the mean
observation, Oi, corresponding to the i-th specialist. The values of Oi are simply the mean
values of each R-wave peak time from the 3 repeated segmentations of the i-th specialist.
Then, Oi represents the mean intra-observer value which minimize intra-observer bias. The
results presented in Table 2.2 suggest even lower variability than intra-observer analysis
(worst case presented a discrepancy of 0.184 frames between specialists 2 and 3), indicating
a high level of agreement between specialists about this ground truth.
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S1 vs S2 S1 vs S3 S2 vs S3

LA (in frames) %CV LA (in frames) %CV LA (in frames) %CV

O1 −0.0130± 0.2351 0.012 −0.0098± 0.2553 0.014 0.0033± 0.2285 0.012
O2 −0.0081± 0.2647 0.014 0.0016± 0.2457 0.013 0.0098± 0.2210 0.012
O3 0.0033± 0.3521 0.019 0.0163± 0.3471 0.018 0.0130± 0.3425 0.018

Table 2.1: Intra-observer variability from 3 segmentations (S1, S2 and S3) per specialist
(O1, O2 and O3). Bland-Altman limits of agreement (LA) and coefficient of variations
(%CV ) are presented for each comparison.

LA %CV

O1 vs O2 −0.0141± 0.1196 frames 0.006

O1 vs O3 −0.0038± 0.1729 frames 0.009

O2 vs O3 0.0103± 0.1737 frames 0.009

Table 2.2: Inter-observer variability from mean values of the 3 intra-observer segmenta-
tions. Bland-Altman limits of agreement (LA) and coefficient of variations (%CV ) are
presented for each comparison.

2.3.2 Features correlation

The main purpose of constructing a combined signal from two image features is
to increase the robustness of the heart motion estimation. Thus, we seek for features
uncorrelated that at the same time present a close motion pattern associated with the
heartbeat. As the features present a low correlation, their combination presents minimal
redundancy, implying that the motion is characterized in different manners by each feature.

In that manner, we analyze the correlation between the features s0 and s1, by
computing the Pearson’s linear correlation between them. As result, we obtain a mean
correlation of −0.164± 0.266 (mean ± SD), presenting scarce redundancy of information.
Meanwhile, both features present a similar motion frequency, characterized by fm from
(2.2.7), showing a subtle absolute difference of 0.0146±0.0263 heartbeats per second (mean
± SD) along the studies. The resemblance in fm allows us to infer that both feature
reproduce a pseudo-periodic pattern closely associated with the transducer motion.

2.3.3 Error measurements

The proposed image-based gating method was assessed using two quality measures.
For the sake of simplicity, we introduce some definitions first. Let us generalize the defi-
nition of p(i) as the time at which a particular cardiac event occurs at the i-th heartbeat
of the study, e. g., the R-wave peak in the ECG signal (pECG(i)) or the minima in an
image-based method (pIB(i)). From p(i) then we can derive tHB(i) and pm(i), the heartbeat
period and the middle time instant of the i-th heartbeat of the study, as

tHB(i) = p(i+ 1)− p(i)

pm(i) =
tHB(i)

2
+ p(i).

The mean error per heartbeat, εHBP, measures the mean period difference be-
tween the image-based and the offline ECG gating method. For each heartbeat its period,
obtained from the image-based gating, is compared with the nearest period from the ECG
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gating as

εHBP =

M∑
i=1

∣∣∣∣tIBHB(i)− tECG
HB

(
min
j

(∣∣pIB
m (i)− pECG

m (j)
∣∣))∣∣∣∣

M
(2.3.1)

where M is the quantity of cardiac events detected by the image-gating method and (·)IB

and (·)ECG are quantities associated with the image-based gating method and the offline
ECG gating method, respectively. Using this error measurement, the omission or erroneous
detection of the p(i) event does not affect the error estimation in the next cardiac cycles.
Notice that the quantity of heartbeats in a study according to the gating method is equal
to M − 1.

The phase detection error, εPD, measures the difference between the R-wave peak
detected by the image-based and the ECG gating methods. As previously mentioned, the
time elapsed between the P-wave and the R-wave peak rarely varies (independently of
the heartbeat frequency variations), then we can identify the R-wave peak frames in the
image-based gating by displacing all P-wave frames with the same offset. As we want to
retrieve the most similar phase to the R-wave peak, we calculate this offset as the mean
distance between pIB(i) events to the pECG, given by

µPD =

M∑
i=1

[
pECG

(
min
j

(∣∣pIB
m (i)− pECG

m (j)
∣∣))− pIB(i)

]
M

. (2.3.2)

Thus, we calculate the error at each heartbeat as the distance between the pECG instant
and the pIB displaced by µPD, namely

εPD(i) = pIB(i) + µPD − pECG

(
min
j

(∣∣pIB
m (i)− pECG

m (j)
∣∣)) , (2.3.3)

with i = 1, . . . ,M .

2.3.4 Method performance

The performance of the CCB method was evaluated through comparisons with the
following methods: Absolute Intensity Difference (AID), Correlation Dissimilarity Matrix
(CMB) and Motion Blurring (MB). The comparison of our method against [286] and [58]
shows the improvement obtained by the proposed integration of both motion signals.

In the first comparison, the capability of the different methods for predicting the
cardiac cycles periods is compared. The heartbeat periods estimated via the ECG offline
method were used as ground truth. In Figure 2.6 the error εHBP for the four methods is
shown. The CCB method presents the best behaviour as indicated by the linear fitting in
the same figure, followed by the AID method. The variability of the error is also smaller
for the CCB method, while higher cardiac frequencies tend to increment the error.

An additional comparison between the image-based methods and the ECG offline
gating method is displayed in Figure 2.7. In this case, we present the heartbeat period
estimation for each heartbeat in every study (61 studies). The Bland-Altman coefficient
of reproducibility (RPC= 1.96× SD) is the smallest for CCB, RPC(%) = 0.23 sec. (26%),
followed by AID with RPC(%) = 0.36 sec. (41%). This implies that the CCB method is
the closest one to the manual offline ECG gating. The proposed method also presents a
more robust estimation of the heartbeat period evidenced by the reduced dispersion and
range of samples in the y-axis (see Figure 2.7).
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Figure 2.6: Mean error per heartbeat, εHBP, at each study for the different gating methods.
The dashed lines represent a linear fitting (via linear least-squares) to describe the error
trend in each method.

Using the acquisition time of frames at R-wave peak according to the manual offline
ECG gating, we evaluate the performance of the methods. Since the R-wave peak is the
only cardiac phase that we can extract precisely from the ECG, this is the only indicator
where the success in recognizing a specific cardiac phase can be measured. For this reason,
the εPD error is a trustful indicator of success when using pECG as the R-wave peaks. As
the mean of this error is zero by construction, we are interested in its standard deviation
along each study as given by the offline gating and by the ground truth. The value of this
indicator is presented in Figure 2.8 where the mean and maximum standard deviation for
the 61 studies using each of the 4 methods are shown. The CCB method presents the
most accurate results, with mean SD of εPD being 0.165, 0.251, 0.282 and 0.475 for the
CCB, AID, CDM and MB methods, respectively.

From the analysis of these results, it is seen that MB presents outliers exceeding
0.8 seconds (see Figure 2.6) caused by the omission of several frames associated with
the steadiest phase. In these studies the transducer motion is too low to produce the
blurring effect, at least not along the full study. Then, the motion signal poorly represents
the cardiac pulsatility and does not present the characteristic quasi-periodic pattern (the
frames extracted do not represent any specific phase, see Figure 2.8). CCB circumvents
this issue by the adjustment of α as proposed in (2.2.13). As s1 shows high variation of
heartbeat periods, α is adjusted to values closer to 1 giving major weight to s0 data (which
resembles the signal used in AID).

In addition, we compare the number of heartbeats estimated by each method against
the ground truth. Here, it is evident that the methods using band pass filter around the
mean cardiac frequency (i.e. CCB and AID) delivered better results (see Table 2.3).
This is given by the low heartbeat frequency variation within a study. As extra systoles
may occur in a study from time to time, the cardiac frequency remains almost invariant
and the use of this information is fundamental to provide robustness to the method.
Methods like CDM and MB do not assume low variation of the cardiac frequency, making
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Figure 2.7: Bland-Altman plots comparing the heartbeat periods measured by the offline
electrocardiogram method (assumed as ground truth) and : (a) the CCB method pre-
senting RPC(%)= 0.23 sec (26%); (b) the AID method presenting RPC(%)= 0.36 sec
(41%); (c) the CDM method presenting RPC(%)= 0.67 sec (90%); (d) the MB method
presenting RPC(%)= 1.4 sec (170%). Each sample represents one heartbeat period in
one of the studies. The color indicates the amount of samples overlapped in the same
position of the diagram, horizontal solid line stands for the mean difference and dashed
line depict the limits of agreement (1.96× standard deviation of the differences). Plots (a)-
(d) contain respectively 6802, 6614, 10077 and 7651 samples corresponding to 61 studies.
RPC: reproducibility coefficient; AID: absolute intensity difference method; CMB: corre-
lation dissimilarity matrix method; MB: motion blurring; CCB: combined correlation and
blurring method.

them potentially capable of detecting any kind of cardiac variations. Nevertheless, these
methods would also be capable of detecting extremely shorts heartbeats (most of the times
physiologically meaningless) which would yield an incoherent phase gating. Particularly,
CCB method presents a better performance compared to the other methods (even against
AID) diminishing the number of frames omitted or oversampled for the extracted cardiac
phase. For the CCB, less than 6 beats per study are missed or overestimated presenting a
mean error of 1.492±0.977 heartbeats (mean ± SD) along all the studies. As consequence,
the proposed method presents a larger proportion of phase coherent data extracted from
the study for a specific cardiac phase.

From the different comparisons, AID and CCB reported the closest heartbeat period
detection mainly because the use of a band filter around the mean cardiac frequency of the
study. Their motion signals present low heartbeat period variations (as higher frequencies
were removed), which is physiologically expected. Thus, an accurate prediction of mean
heartbeat periods and number of heartbeats present in the study is obtained. However,
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Figure 2.8: Mean and maximum standard deviation of the phase detection error, εPD, for
each of the gating methods.

Id CCB AID CDM MB

Mean error 1.492 4.246 52.984 24.623
SD error 0.977 3.567 48.028 19.068

Maximum error 6 22 219 80

Table 2.3: Error in the number of heartbeats (frames in the longitudinal view) detected
by each gating method. The error in the i-th study is calculated as |BECG − BIB| where
BECG and BIB are the heartbeats estimated in the ground truth and in the image based
method, respectively.

note that AID is not phase consistent, i.e. the identified frames are not necessarily associ-
ated with the same cardiac phase, as can be shown in Figure 2.8. In turn, CCB underpins
this issue by combining the motion signal s0 (associated with frames correlation) with an-
other uncorrelated motion signal (associated with blurring). The resulting signal intensity
decreases at the steadiest phase frames while increases at the remaining phases frames.
Then, when minima are adjusted by the iterative harmonic scheme, we obtain a more
accurate steadiest phase identification.

2.3.5 Mean cardiac frequency estimation

Using the ground truth, we computed the mean cardiac frequency, fECG, as the
quantity of heartbeats detected over the study time duration. Then, we compared fECG

against fm calculated using (2.2.7) in terms of their absolute difference, i. e., εHF =
|fECG − fm| . The comparison shows an error of 1.109 ± 0.861 BPM (mean ± SD), and
always minor than 4.126 BPM. This allows estimating the mean cardiac frequency of the
patient with reasonable accuracy, only by using the IVUS image data.
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Figure 2.9: Longitudinal views of an IVUS study processed with the different gating
methods: (left column) standard longitudinal view; (right column) absolute pixel-to-pixel
difference versus the electrocardiogram (ECG) offline method.

2.3.6 Gating comparison

As a qualitative comparison, the corresponding longitudinal views after the gating
process with the different methods for a particular IVUS study are shown in Figure 2.9.
The endothelial layer gated by the offline ECG method clearly resembles the result of the
CCB method more than those obtained with other methods. This comparison is accentu-
ated when looking at the pixel-to-pixel differences between the ground truth (ECG) and
the different methods (see Figure 2.9, right column). This can be particularly appreciated
at the bifurcation presented in the middle section of the sequence, where delay or antic-
ipation of the branch origin occurs for other methods (CDM, AID and BM). Moreover,
a substantial reduction of saw tooth artifact is particularly appreciated CCB and AID
methods.

The distribution of the differences between the image based and the offline gating
method is not homogeneous. As shown in Figure 2.10 the maximum differences are located
at the middle part of the vessel where the bifurcation is located. This encourages the use
of features that correctly measure the motion at places where topological changes occur.
In fact, small differences are seen for the CCB method, where blurring information reduces
motion misidentification.
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Figure 2.10: Volume rendering corresponding to the absolute pixel-to-pixel difference of the
volumes gated by the image based gating method and the manual offline electrocardiogram
(ECG) gating. The study visualized is the same as in Figure 2.9.

2.3.7 Computational cost

The CCB method was implemented partially in MATLAB and C++ languages. The
signal si calculation is performed in C++ parallelized at frame level with OpenMP. Param-
eter α estimation (see equation (2.2.13)) and the iterative filtering scheme are performed
in MATLAB using parfor parallelization for α estimation.

For the execution of the method, we used a workstation with an Intel Xeon CPU
E5-2620 at 2.00 GHz processor and Kingston 99U5471-031.A00LF at 1333 MHz (latency
of 27 ns) RAM memory over Ubuntu 14.04.1 LTS. The method execution process was
parallelized into 12 threads for all the measurements reported in this section. As perfor-
mance measurement, we use the wall clock time because we are interested in showing that
the execution time is reasonable for clinical use. To diminish the operative system time
variations during the method execution, we run 5 times each study processing, and store
only the mean wall clock time from these executions.

The results show that the execution time is 20.63 ± 8.11 seconds (see Figure 2.11)
which in comparison to the acquisition time of the study (99.16± 37.79) represents 20%.
This overhead is found to be suitable for medical practice since it allows to perform image
gating during the diagnostic or therapeutic procedure. In a closer analysis, it is seen that
the time consuming tasks are the α estimation and signal computation (see Figure 2.11
and 2.12). Both tasks could be fully parallelized with a maximum of A and N threads,
respectively, where A is the number of α candidates to be tested in (2.2.13) and N is the
quantity of frames in the IVUS study. As reported in Section 2.2.4.1 and 2.3.1, A = 1000
and N = 2974.8± 1133.8 frames which allows a theoretical speed up of the methods until
two order of magnitude from the reported results. Finally, almost all the estimation time
for the value of α is spent in the iterative adjustment of p(i) (see Figure 2.12). This task
is was implemented in MATLAB and parallelized using parfor. Clearly, its performance
can be improved by reimplementing the task in C++ with OpenMP parallelization.

2.3.8 Limitations

Known limitations of this method, as well as for other methods using a low/band-
pass filters for the spectral filtering of a motion signal, are related to the treatment of
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Figure 2.11: Mean processing time of the 61 IVUS studies showing the time for: the signal
computation (see equations (2.2.2) and (2.2.3)), α estimation (see equation (2.2.13)), study
gating (Section 2.2.2 and 2.2.3) and total method execution time.
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Figure 2.12: Percentage consumed by each method subtask during the execution. The task
α estimation presented in Figure 2.11 here is subdivided in the tasks: iterative adjustment
of p(i) and other tasks for α estimation.

IVUS studies in patients with large heart rate variability, such as cardiac dysrhythmia, or
at locations with no vessel movement at all, such as infarcted areas of the heart.

2.4 Final remarks

A novel method to improve the IVUS gating by combining different image motion
features has been presented in this chapter. Particularly, the proposed strategy, called
Combined Correlation and Blurring (CCB), has shown to outperform other methods that
use the same image features separately for the 61 processed IVUS studies. The proposed
method is capable of identifying cardiac phases, heartbeats and mean cardiac frequency
along the studies in an accurate and robust manner for a wide range of situations (severe
stenoses, stents, different coronary vessels and studies from 65 to almost 105 BPM). This
has been verified through direct comparison with the cardiac phase associated to the
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R-wave peak, retrieved from a manual offline ECG gating with scarce intra-inter observer
variability.

In terms of heartbeat detection and cardiac period estimation, the CCB method
showed more accurate results than the other gating techniques. The cardiac phase detec-
tion performed by the CCB method presents the smallest error between the image-based
gating methods, rendering the most accurate gating for IVUS study. From the comparisons
carried out in this work, it presents the lowest frame omission and/or oversampling at each
heartbeat, as direct consequence of the correct identification of the heartbeats along the
study.

In contrast to the time consuming manual offline ECG gating, it is worthwhile to
highlight that our method is fully automatic, independent from other studies or equipment
and it is applicable to pre-existing IVUS studies. Also, the computational overhead of this
method to the IVUS acquisition time is a 20%, allowing its use for medical practice during
diagnosis as well as during therapeutic coronary procedures. All these aspects permit the
direct application of the CCB method as a pre-processing stage for filtering, segmentation
or reconstruction methods, which would be greatly benefited from the increase of accuracy
and time consistency of the so-extracted cardiac phases from the IVUS study.



Chapter 3

Spatio-temporal registration

After the IVUS gating presented in the previous chapter, a new problem arises from
the so-obtained image volume data: the gated volumes are spatially inconsistent. To
correctly map one region of the vessel across different cardiac phases, e.g. to estimate the
deformation of the atherosclerotic plaque or the motion of a stent, a spatial registration
between the volumes corresponding to the different cardiac phases is required.

In this chapter, we address the registration problem in IVUS studies by proposing
a novel methodology based on a block matching variational approach. We identify the
key ingredients for the registration process (vessel wall specificity for transversal registra-
tion, longitudinal locality for comparison, maximum likelihood estimators for ultrasonic
imaging) and study their sensitivity to deliver an optimal cardiac phase registration.

3.1 Background

During the IVUS acquisition, the piezo-electric sensor records the cross-sections of
the vessel at a constant known pullback velocity. Although a spatial arrangement of
vessel cross-sections is available after an IVUS procedure, the heart contraction imprints
an undesired relative motion occurring between the transducer and the vessel (usually
referred to as cardiac dynamic component), misleading frame location during non-diastolic
phases as well as the position and rotation of the wall structures with respect to the
transducer. The transducer relative motion to the vessel can be decomposed in two spatial
components, the transversal (or in-plane) motion and the longitudinal (or axial) motion.
The former produces the translation and rotation of the vessel structures between two
different corresponding images, while the latter induces a proximal/distal displacement in
addition to the apriori known motion imposed by the transducer pullback. As consequence,
the reconstruction of the vessel wall is hindered for non-diastolic phases since vessel cross-
sections are not equally spaced in the longitudinal direction and the transversal motion
distorts the geometrical description of the vessel wall. This affects the processing of image-
derived quantities either for diagnosis or for setting input data for computational models
such as those used in CFD simulations or in tissue characterization (e.g. virtual histology,
elastographies or palpographies).

Early approches for IVUS study registration have focused only on the transversal
motion component. The goal of these works was the enhancement of vessel structures
alignment to improve elastography outcomes. The main problem for IVUS registration
is to deal with low signal-to-noise ratio of the ultrasound and the speckle noise charac-
teristics. Early works ([94, 158, 189, 225]) performed a rigid registration of two adja-
cent images using the underlying radiofrequency (RF) data of the IVUS study and block
matching strategies with different maximum likelihood estimators (MLE) such as sum of
absolute differences (SAD) ([94, 158, 189]), sum of square differences (SSD) ([158, 189])

29
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or normalized cross-correlation (NCC) ([158, 225]). Subsequent approaches focused on
IVUS image data which are available from traditional ultrasonic equipments. Several
works applied SAD ([85, 87]), SSD ([243]), NCC ([174, 355, 356]) and mutual information
([174]) as MLE to match tissue patches between different IVUS images. Although these
approaches delivered an improvement for registration, the MLE used were not suitable
for speckle noise tracking. This issue can be circumvented by using ultrasound specific
estimators as proposed in [324], which account for the log-compressed multiplicative noise
within the images. Other approches performed the transversal registration by aligning
the centroids of the lumen in the two images ([116, 134, 193, 194, 281, 297, 310, 356]).
To estimate the lumen centroid, a segmentation of the lumen is needed which is a time
consuming task difficult to automatize. To overcome this, some authors proposed to
approximate the lumen centroid as a gray intensity centroid ([134]) or the centroid of
a simplified lumen geometry ([116, 281]). Some cross-section registration methods may
present inaccurate results due to substantial variations in the lumen geometry (inaccuracy
in lumen estimation, sites of branching or stent boundaries) given that in these cases
the centroids alignment is not associated with the vessel wall alignment. Particularly,
[116, 134] estimated the rotation component of the rigid motion using a Fourier analysis,
resulting in a more robust approach. Non-rigid registration approaches were also developed
in [13, 14, 15, 83, 84, 85, 86, 87, 170, 273]. Amores et al. ([13, 14, 15]) proposed the use
1D correlograms to analyze local and global features of the image and its gradient field
to find the best correspondence between frames, although it requires lumen segmentation.
Kautozian et al. ([170]) presented a Markov random field discrete multi-labeling scheme
to match histological and IVUS image data. Other authors ([83, 84, 85, 86, 87, 273])
formulated an optimization problem to find the displacement field that maps the reference
frame to the target one. Finally, a comparison study between different transversal regis-
tration approaches (rigid transformation, affine transformation, B-spline-based non-rigid
free form deformation and daemons) was presented in [20], assessing their performances
to map calcified lesions.

In turn, the longitudinal motion component has usually been neglected. In [21], an
average axial displacement from 1.5 ± 0.8 mm in a 0.016 mm interframe acquisition was
observed. Due to the catheter migration, the cross-sectional region observed in systolic
phases is more proximal than expected (a mean offset of 93.75 frames) and, in the context of
elastography, the derivation of associated strains occurring in the arterial wall can become
extremely inaccurate because of the changes in the topological and tissue composition
at these sites. Contributions addressing the longitudinal registration were reported in
[7, 8, 218, 323]. In [218], a method for rigid longitudinal motion was proposed to align
each cardiac phase with the diastolic phase of the study. Non-rigid approaches based on
dynamic time warping (DTW) were proposed such as the extremes path search ([7, 8])
and minimal variance matching ([323]) methods.

More complete schemes that treat both motion components were presented in [193,
194, 310, 354, 355]. These works performed longitudinal prior transversal registration
of two cardiac phases of the study. The longitudinal registration in [193, 194, 310, 354]
requires user interaction to determine the frames at carina bifurcations (landmarks used
to pair the bifurcation frames) and assumes a linear fitting for the remaining frames. The
first non-rigid longitudinal registration method was proposed in [355] using a 3D graph
path finding process where the segmentation of the lumen and external elastic membrane
is a compulsory step.

In the present chapter we address the problem of transversal and longitudinal reg-
istration so that both motion components can be suitably compensated by using MLE
specifically tailored for ultrasound speckle noise (see [78, 324]). Transversal registration is
performed through the formulation of an optimization problem for which the rigid transver-
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sal motion identified is the one that maximizes a given cost functional depending on the
MLE. In addition, longitudinal registration is performed with a weighted MLE function
that allows to align two different IVUS cardiac phase sub-sequences. Three strategies are
considered to solve the problem. The first one is a strongly coupled (computationally
demanding) method in which both motion components (transversal and longitudinal) are
obtained simultaneously. The second and third strategies solve both motion components in
a decoupled manner (resulting in computationally cheaper procedures), either considering
first the longitudinal and then the transversal registration problems, or first the transversal
and just then the longitudinal. Preliminary results of a decoupled approach (which per-
forms longitudinal and then transversal registration with a normalized cross-correlation
function as MLE) were reported in [211, 213]. All strategies are compared in terms of
performance and accuracy on in-vivo patients, and descriptions of transducer longitudinal
displacement along the IVUS acquisition are discussed. The results obtained by these
strategies show that no segmentation of the vessel wall is required for the registration
process, which improves reproducibility.

3.2 Methodology

In this section, we introduce the mathematical framework for the registration pro-
cess. This is composed by the IVUS preprocessing, the longitudinal registration and the
transversal registration. Firstly, we define the region of interest (ROI) used during the
registration process. The subsequent stages deal with the longitudinal and transversal
components of the transducer motion.

Then, through the integration of these stages, three registration algorithms are pro-
posed. Two decoupled strategies are tested, namely solving first the longitudinal registra-
tion and then the transversal (DLT technique), and inverting the registration stages (DTL
technique). A fully coupled strategy is also considered. More details are given in Section
3.2.5.

3.2.1 IVUS preprocessing

The arterial wall is better characterized by the structures lying in the region between
the lumen and the external elastic lamina [192, 224]. However, the identification of this
region through any image segmentation procedure requires, to some extent, manual setting
and it is also time-consuming. Moreover, the development of robust and reproducible
computational methods to accomplish this task is still an open problem [169]. Therefore,
to analyze the sensitivity of the registration with respect to the vessel wall specificity, we
define two ROIs: (i) a manually segmented vessel wall region (VWR) and (ii) the full
image region (FIR) which does not require segmentation. The manual segmentation for
the VWR ROI is performed by a specialist to obtain an accurate and robust description
of the vessel wall, which is not guaranteed by automatic segmentation methods.

Let Jk be the k-th frame of the IVUS study ordered according to the original acqui-
sition sequence. The ROI for the k-th frame Jk(x, y), is defined as a binary mask Mk(x, y)
with the same size of an IVUS frame. Each value of Mk indicates whether the associated
pixel in Jk belongs to the ROI or not. Similarly, we define MDR(x, y) and MGW

k (x, y) as
the binary masks associated to the down-ring and the guidewire artifacts. These masks
contain 1s at the positions where the artifact is found and 0s at remaining locations. The
construction of the artifact masks is detailed in the Chapter A.

The FIR for the k-th frame is defined as

MFIR
k = ¬(MDR ∨MGW

k ). (3.2.1)
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where ¬ and ∨ are the logical operators NOT and OR respectively.
The VWR requires the elimination of regions outside the external elastic lamina

and inside the vessel lumen from the ROI defined above. For this task, the user manually
performs a segmentation of the EEM and lumen areas by picking points which are then
interpolated with a cubic spline curve. To avoid lack of pixels in the mask, especially
in cross-sections corresponding to healthy arterial tissues, the EEM curves are radially
displaced by 20 pixels. Then, we create a mask, MVW

k , where the area comprised between
the EEM and lumen has value of 1, and 0 otherwise. Thus, the VWR is defined as

MVWR
k = MFIR

k ∧MVW
k . (3.2.2)

where ∧ is the logical operator AND. The resulting masks for a given frame in an IVUS
study are shown in Figure 3.1.

Figure 3.1: Binary masks used for each region of interest (ROI): (top-left) original IVUS
image; (top-right) MFIR

k ; (bottom-left) MVWR
k ; (bottom-right) MVWR

k overlapped with
the original IVUS image.

3.2.2 Maximum likelihood estimator for block matching

For the development of a registration mechanism that effectively tracks the tissue
vessel displacements, we require a function capable of identifying the same tissue compo-
sition region in different images. This task is not trivial due to the speckle noise present
in the ultrasonic images.

Based on the assumption that the noise is coherent and correlated to the micro-
structures of tissues [3], some authors justify the use of normalized cross-correlation, sum
of absoute differences or sum of squared differences functions as appropriates maximum
likelihood estimator (MLE) for speckle tracking. However, this assumption assumes that
local speckle noise is only generated by local micro-structure factors, neglecting the con-
tribution of surrounding tissues, reflexions, proximal signal absorption, among others.
Modeling all the sources of speckle noise in an MLE is a challenging task, and for this
reason other authors have treated it simply as uncorrelated noise.

In this second approach, other authors suggest that the speckle phenomena is charac-
terized by a Rayleigh distribution [327]. Evidence for this assumption is well documented
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for low frequency ultrasound probes (< 20 MHz), although this distribution seems not
be as precise for higher frequencies [111, 313]. For this latter case, distribution such as
Rician [154], Nakagami [295], K [96, 157], Weibull [106] and Generalized Gamma (GG)
[222, 267, 303] have presented a better fit against experimental measures. Particularly,
we choose to employ the GG distribution because it has shown an accurate fit for high
frequency transducers similar to IVUS (28 MHz in the work of [267]).

Then, we developed three alternative MLEs to establish the best likelihood function
for IVUS registration: i) a normalized cross-correlation; ii) an estimator for Rayleigh
noise distribution; and iii) an estimator for GG noise distribution. To derive the MLEs
associated with each noise distribution, we introduce some useful notation. Let us define
an IVUS images u and a noiseless image v of the same vessel cross-section related as

u(s) = v(s) } ε (3.2.3)

where ε is the noise intensity in the images and } is the operator addition or multiplication
depending on the noise model. We look for the maximum log-likelihood estimator such
that maximizes the data entropy between the two noisy images (similarly as presented in
[324]). Recalling the log-likelihood function from information theory with the assumption
of conditionally independent noise at each pixel, it follows that

L(ε) = logP (u|v, ε)

=
∑
s∈Ω

logP
(
u(s)

)
, (3.2.4)

where Ω is the image domain containing all pixels and P (u(s)) is the probability for
intensity u(s) in image u, which in turn depends of image v and the error ε due to (3.2.3).
Hence, using the probability theorem to express the image intensity probability based on
the error probability density function (PDF), see [252] for more details,

P (u(s)) =
Pε(ε(s))

|uε(s)|
, (3.2.5)

where Pε(ε(s)) is the error intensity probability, uε(s) is the derivative of u according to
ε. Then, we formulate the maximum log-likelihood estimator as

L(ε) =
∑
s∈Ω

log

((du
dε

(s)
)−1

P
(
ε(s)

))
. (3.2.6)

Using this estimator, we derive the Rayleigh and Generalized Gamma MLE functions used
for the block matching registration.

3.2.2.1 Normalized cross-correlation estimator

The normalized cross-correlation is defined as follows

c(u, v) =
∑
s∈Ω

(u(s)− µu) (v(s)− µv)
σu σv

. (3.2.7)

where µi and σi are the mean and standard deviation of the intensity for the i image. This
function is widely used in the literature for texture tracking because the normalization of
u and v given by

û(s) =
u(s)− µu

σu
, v̂(s) =

v(s)− µv
σv

(3.2.8)
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allows invariance against additive (normalization of the mean intensity to zero) and mul-
tiplicative (normalization of the dynamic range of the image with its standard deviation)
constant valued differences.

The works of [320], [279] and [324] suggest that the normalized cross-correlation can
be interpreted as a MLE for additive Gaussian noise with mean E[u v].

3.2.2.2 Rayleigh noise estimator

Let us suppose a multiplicative Rayleigh noise over two IVUS images u1 and u2

of the same cross-section described by the noiseless image v, i.e., u1(s) = v(s) ε1(s) and
u2(s) = v(s) ε2(s) . Then, expression (3.2.3) is defined as

u1(s) = u2(s)
ε1

ε2

u1(s) = u2(s) ε(s),
(3.2.9)

where ε = ε1
ε2

. Given that the IVUS images are log-compressed to adjust the dynamic
range, we rewrite the previous expression as

log u1(s) = log u2(s) + log ε(s),

ũ1(s) = ũ2(s) + log ε(s),

ε(s) = eũ1(s)−ũ2(s),

(3.2.10)

where ũ1 and ũ2 are the IVUS images. As ε1 and ε2 follow a Rayleigh distribution noise
given by the PDF

Pεy(y) =
y

σ2
e−

y2

2σ2 , y > 0, (3.2.11)

then ε’s distribution is defined by the division of Rayleigh distributions. In [252] it is
shown that the PDF of a random variable z, defined as the ratio of two random variables
x and y with the same PDF (Pεy), is obtained as

Pεz(z) =

∞∫
−∞

|y|Pεy(z y)Pεy(y)dy. (3.2.12)

In our case Pεy(y) is Rayleigh distributed, then

Pεz(z) =

∞∫
0

|y| z
σ4

y2 e−
z2+1

2σ2 y2

dy, (3.2.13)

leading to the following PDF for the ratio of Rayleigh distributions

Pε(y) =
2 y

(y2 + 1)2
, y > 0. (3.2.14)

Using this noise model, we construct the associated MLE as proposed in (3.2.6) as
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follows

e(ũ1, ũ2) =
∑
s∈Ω

log

[
1

ε(s)−1
Pε
(
eũ1(s)−ũ2(s)

)]

=
∑
s∈Ω

log

[
eũ1(s)−ũ2(s) 2 eũ1(s)−ũ2(s)((

eũ1(s)−ũ2(s)
)2

+ 1
)2

]

= |Ω| log 2 + 2
∑
s∈Ω

[
ũ1(s)− ũ2(s)− log

(
e2(ũ1(s)−ũ2(s)) + 1

)]
,

(3.2.15)

Similar MLEs may be found in [78] and [324]. Then, we normalize the MLE and neglect
the constant contributions to obtain our similarity function

c(ũ1, ũ2) =
1

|Ω|
∑
s∈Ω

[
ũ1(s)− ũ2(s)− log

(
e2(ũ1(s)−ũ2(s)) + 1

)]
. (3.2.16)

3.2.2.3 Generalized Gamma noise estimator

Now, let us suppose a multiplicative noise over both images u1 and u2, following
a GG distribution. The relationship between the IVUS images ũ1 and ũ2 presented in
(3.2.10) still holds. Now, ε1 and ε2 are distributed by the PDF

Pεy(y) =
γ

αγ ν Γ(ν)
yγ ν−1 e−

(
y
α

)γ
, α, γ, ν, y ≥ 0 (3.2.17)

where Γ(x) =
∫∞

0 yx−1 e−y. As both images u and v are affected by multiplicative noise,
ε is distributed by the division of GG distributions. Following (3.2.12), we calculate the
PDF for ε as follows

Pεz(z) =

∞∫
−∞

|y| γ

αγ ν Γ(ν)
(z y)γ ν−1 e−

(
z y
α

)γ γ

αγ ν Γ(ν)
yγ ν−1 e−

(
y
α

)γ
dy

=

(
γ

αγ νΓ(ν)

)2

zγ ν−1

∞∫
0

y2γν−1 e−y
γ
(
zγ+1
αγ

)
dy

=

(
γ

αγ νΓ(ν)

)2

zγ ν−1 Γ(2 ν)

γ
(
zγ+1
αγ

)2 γ
=
γ Γ(2ν)

Γ(ν)2

z

(zγ + 1)2ν
,

(3.2.18)

obtaining the PDF for the ratio of GG distributions

Pε(y) =
γ Γ(2ν)

Γ(ν)2

y

(yγ + 1)2ν
, y ≥ 0. (3.2.19)

Using this noise model, we construct the associated MLE as proposed in (3.2.6) as
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follows

e(ũ1, ũ2) =
∑
s∈Ω

log

[
1

ε(s)−1
Pε
(
eũ1(s)−ũ2(s)

)]

=
∑
s∈Ω

log

[
eũ1(s)−ũ2(s)γ Γ(2ν)

Γ(ν)2

eũ1(s)−ũ2(s)((
eũ1(s)−ũ2(s)

)γ
+ 1
)2ν
]

= |Ω| log
γ Γ(2ν)

Γ(ν)2
+ 2

∑
s∈Ω

[
ũ1(s)− ũ2(s)− ν log

(
eγ(ũ1(s)−ũ2(s)) + 1

)]
,

(3.2.20)

Then, we normalize the MLE and disregard the constant contributions to obtain our
similarity function

c(ũ1, ũ2) =
1

|Ω|
∑
s∈Ω

[
ũ1(s)− ũ2(s)− ν log

(
eγ(ũ1(s)−ũ2(s)) + 1

)]
. (3.2.21)

Note that for the special case of ν = 1 and γ = 2, we retrieve the Rayleigh noise
similarity function (3.2.16). In fact, the Rayleigh distribution is a particular case of the
GG where ν = 1, γ = 2 and α =

√
2σ. The tunning of the additional parameters in GG

distribution may allow a better characterization of the noise.

3.2.3 Transversal registration

The transversal registration consists in finding the rigid motion that better aligns
the structures between two frames, say Jm and Jn. For the given frames Jn and Jm of the
IVUS study and the corresponding ROIs MZ

n and MZ
m, Z ∈ {FIR,VWR}, we define the

common ROI between these images as

MZ
n,m = MZ

n ∧MZ
m. (3.2.22)

Using this common ROI we identify the set RZ
n,m = {(x, y), MZ

n,m(x, y) = 1} and its

cardinality |RZ
n,m|. Then, we modify the MLE function presented in previous sections by

defining Ω = RZ
n,m.

Thus, we have to find the rigid motion that maximizes the similarity function be-
tween the two given frames. The rigid motion, called Ξ, is described by the horizontal and
vertical displacements, τx and τy, and a rotation around the center of the frame θ. Then,
Ξ that registers Jm to Jn is defined as

Ξnm = arg max
Ξ∗∈U

F (Jn, Jm)

= arg max
Ξ∗∈U

c(Jn, Jm(x(Ξ∗), y(Ξ∗)))|RZ ,
(3.2.23)

where U is the space of admissible rigid motions of the transducer and Jm(x(Ξ∗), y(Ξ∗)) is
the frame Jm after applying the rigid motion Ξ∗. Because of the acquisition sampling, the
space U is discrete. The translations and rotations only make sense for multiples of one
pixel and 2π

256 radians, respectively. Furthermore, the transducer is confined to the lumen,
which imposes bounds to the horizontal and vertical displacements. Thus, we characterize
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τx

θ
τy

normalized
F (Jn, Jm)

Figure 3.2: Streamlines associated to the vector field dF
dΞ across the space U for the

comparison of two IVUS frames using the Rayleigh noise estimator. These streamlines
show the gradient ascend capabilities from zones with low (in blue) to high (in red) F val-
ues. Similar results are obtained with normalized cross-correlation and gamma generalized
(GG) noise estimator.

U as

U =

{
Ξ = (τx, τy, θ); θ = i

π

128
, i = 0, . . . , 255;

τx ∈
[
τMIN
x , τMAX

x

]
⊂ Z; τy ∈

[
τMIN
y , τMAX

y

]
⊂ Z

}
. (3.2.24)

Expression (3.2.23) involves the maximization of a non-convex functional. The lack
of convexity arises from the presence of speckle noise and because of the partial (incom-
plete) matching of the aligned structures. Notice that, the space U is finite-dimensional,
enabling the computation of the cost functional F for each element Ξ ∈ U . For this
reason, a brute force algorithm simplifies the solution for the maximization problem.

In turn, the regularity of F over U allows the maximization through less expensive
strategies. As seen in Figure 3.2, the streamlines across F (using as velocity field dF

dΞ )
yield to the same area with the minimum values (colored in red), showing the functional
space adequacy for minimization by gradient methods. Also, the regularity of F enables
to use a gradient method without the need of a regularization terms. To deal with the
lack of convexity and multiple solutions, an heuristic method called multi-seed gradient
ascend (MSGA) is proposed. Here, multiple initializations are used to ascend and the
instance that reaches the highest value of F is retained as the solution for the maxi-
mization problem. A suitable trade-off between accuracy and performance is found for a
5-seed initialization procedure as described in Figure 3.3 (see also Section 3.3.2). Some
considerations about this approach are presented in the Appendix B.



38 Chapter 3. Spatio-temporal registration

7 seeds

dU (Ξc,Ξj) = 20, i 6= jΞc

τx

τy

θ

Figure 3.3: Initialization pattern over the space of admissible rigid motions, U , used for
the multi-seed gradient ascend (MSGA) method. The seeds are equidistant to the central
seed positioned at Ξc. The dashed box is aligned with τx, τy, θ axes of the U .

3.2.4 Longitudinal registration

During IVUS pullback, cardiac contraction strongly affects the longitudinal motion
of the transducer with respect to the vessel ([21, 235, 322]). For this reason, IVUS frame
sequence is not spatially ordered from distal to proximal positions. Also, the estimation
of each frame spatial location based on the pullback velocity is not possible for frames
acquired during cardiac contraction. To address this motion artifact, the study is gated
to properly identify the frames in each cardiac phase. From the gating process presented
in Chapter 2, P image sets are generated, where each set corresponds to a specific cardiac
phase (see Figure 3.4). Although the images within each set are longitudinally ordered,
the displacements between the frames may not necessarily be homogeneous because of
the large variability in the transducer motion. Particularly, the phase previous to the
cardiac contraction, hereafter referred to as steady phase, is assumed to present the most
homogeneous displacement field as a result of the reduced cardiac motion. Because frames
during the cardiac contraction present blurring due to the motion of the ultrasonic trans-
ducer [58, 214], we quantify vessel movement as the negative sum of the intensity gra-
dient along each image (proportionally inverse to the image sharpness). Then, from the
Ii, i = 1, . . . , P cardiac phases, we define the steady phase Ist as

Ist = arg min
i=1,...,P

Pmotion(Ii) = arg min
i=1,...,P

− 1

Ni

Ni∑
j=1

H∑
y=1

W∑
x=1

∣∣∇Iij(x, y)
∣∣ , (3.2.25)

where Iij denotes the j-th frame of the IVUS study in the i-th phase, Ni is the number of
frames for that i-th cardiac phase, and H and W are the height and width of the images
in the IVUS study.

As counterpart, we define the phase featuring maximal motion Imo as the maximum
of Pmotion (see Figure 3.5). Clearly, it will be denoted Ist

j and Imo
j the frames of the steady

phase and those in the maximal motion phase, respectively.
Assuming no motion by the cardiac contraction at the steady phase, the longitudinal

location of its frames along the catheter is characterized as

s(Ist
j ) = s0 +

j vp
fs

, (3.2.26)

where Ist
j is the j-th frame of the IVUS study in the steady frame Ist, s0 is the initial

position of the transducer over the longitudinal axis, vp is the pullback velocity in mm
s

and fs is the framerate of the study in frames
s .

The steady phase Ist, and the known spatial location of each frame Ist
j , j =

1, . . . , Nst, are used to perform a non-linear longitudinal registration of the remaining
phases, hereafter referred to as non-steady phases. The registration process consists in
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Figure 3.4: Gating process description. Given the IVUS study, longview presented in
(A), and phase identification signal (C), e.g. the electrocardiogram or a motion signal for
image-based gating, each frame is tagged accordingly to the cardiac phase at which it was
acquired (B). Finally, images sets with frames at a specific cardiac phases are obtained
(D, E, F).
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Figure 3.5: Function Pmotion evaluated at each cardiac phase Ii. The Ii phases were
retrieved from the image-based gating of an in-vivo IVUS study. For this gating, Ist = I13

and Imo = I1.

assessing the similarity of each non-steady phase frame against the steady phase frames.
The most similar steady phase frame is used to place the non-steady one. For the i-th
cardiac phase, the degree of similarity between the j-th frame Iij and Ist

k , k = 1, . . . , Nst,
is measured through a neighborhood likelihood estimator defined as follows

cw(Iij , I
st
k ) =

w∑
d=−w

φ(d, σG) c(Iij+d, I
st
k+d)|RZ

w∑
d=−w

φ(d, σG)

, (3.2.27)

where w is the longitudinal neighborhood width, d is the frame index within that neigh-
borhood, and φ is a Gaussian weight function with σG standard deviation. The parameter
w defines the domain used by the estimator c weighted by the value σG. Specifically, we
want to neglect the contributions from frames whose weights are smaller than a factor T
of the maximum weight value φ(0, σG). This would offer a weighting function of compact
support with low computational effort. Empirically, we set T = 10−1 to approximate cw.
Then, w is defined in terms of σG and T as

w(σG, T ) =
⌊
σG(−2 log(T ))

1
2

⌋
. (3.2.28)

Once we choose a suitable tolerance, the only parameter left is σG. As the value
of σG is increased, information from adjacent frames is more relevant. Then, σG should
be small enough to be representative of the local structures and large enough to incor-
porate information about the longitudinal structure to achieve robustness. In this way,
the function φ in (3.2.27) introduces a low-pass filter regularization in the longitudinal
motion and σG adjusts the low-pass frequencies to be included (the smaller the σG the
more frequencies pass through the filter). The setup of this parameter is studied in Section
3.3.4.

Finally, the position in space of the frame Iij , which belongs to a non-steady phase,
i.e. i 6= st, is defined as

s(Iij) = s(Ist
m), (3.2.29)

where
m = arg max

k=1,...,Nst

cw(Iij , I
st
k ). (3.2.30)
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Figure 3.6: Results of the longitudinal registration process with w = 3: Transducer dis-
placement along the longitudinal axis of the vessel for an in-vivo IVUS study.

Figure 3.6 shows the longitudinal registration of an in-vivo IVUS study according
to the proposed method. The estimated motion of the transducer resembles the motion
pattern observed in-vivo. In [21], the longitudinal displacements of the transducer were
studied for a group of 31 patients using angiographies and IVUS at coronary bifurcations.
The obtained longitudinal displacements are within the experimentally recorded ranges
reported in [21]. Furthermore, a specific position in the longitudinal axis is represented
by a set of frames in the different cardiac phases.

A formal definition for the set of frames located at the n-th frame position of the
steady phase, is given by

Xn = {Iij ; s(Iij) = s(Ist
n ), j = 1, . . . , Ni, i = 1, . . . , P}. (3.2.31)

3.2.5 Numerical strategies

The strategies described next, present three alternative longitudinal registration
schemes, two decoupled and another coupled with the transversal registration. As input
for these implementations, we provide the N sets of gated volumes from the original
IVUS study, i. e., Ii, i = 1, . . . , N . Then, the registration task is to transversally and
longitudinally register all phases Ii, i 6= st, against Ist.

For all the strategies, the preprocessing of the study is performed either using FIR
or VWR. The first decoupled implementation (DLT implementation), defines Xn sets
through the longitudinal registration of all phases, as described in Section 3.2.4 and, then,
performs the transversal registration in each Xn independently, as explained in Section
3.2.3. The second decoupled strategy (DTL implementation), performs the transversal
registration of each set Yj = {Iij ; i = 1, . . . , P} against Istj and, then, performs the lon-
gitudinal registration of all phases. The coupled strategy, aligns the cross-sections prior
to the calculation of the correlation presented in (3.2.30). Once the minimum is found it
provides not only the longitudinal coordinates, but also the transversal motion that aligns
the structures, leading to a fully coupled frame registration method.
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3.2.5.1 DLT implementation

The DLT implementation is composed of three serial and independent stages: the
preprocessing, the longitudinal and transversal registration. As input, the last stage re-
ceives the Xn sets from the longitudinal registration. Here for each one of these sets,
the non-steady frames are registered against the steady frame. Formally, we define the
transversal registration of the set Xn as

Ξnm = arg max
Ξ∗∈U

F (Ist
n , Jm)

= arg max
Ξ∗∈U

c(Ist
n , Jm(x(Ξ∗), y(Ξ∗)))|RZ ,

(3.2.32)

where Jm ∈Xn and Jm 6= Ist
n . Finally, the aligned set of frames located at the n-th frame

position of the steady phase, is given by

X DLT
n = {Jm(x(Ξ∗), y(Ξ∗)); Jm ∈Xn \ {Ist

n }} ∪ {Ist
n }. (3.2.33)

3.2.5.2 DTL implementation

The DTL implementation is also composed of three serial and independent stages:
the preprocessing, the transversal and longitudinal registration. The second step performs
the transversal registration of the j-th frame across all phases (Yj) against the frame in
Ist. Formally, we define the transversal registration of the set Yj = {Iij ; i = 1, . . . , P} as

Ξji = arg max
Ξ∗∈U

F (Ist
j , I

i
j)

= arg max
Ξ∗∈U

c(Ist
j , I

i
j(x(Ξ∗), y(Ξ∗)))|RZ ,

(3.2.34)

where Iij ∈ Yj and Iij 6= Ist
j . The transversally registered frames Ĩij = Iij(x(Ξji ), y(Ξji ))

are the inputs for the longitudinal registration in which the longitudinal position for each
frame Ĩij is given by

s(Ĩij) = s(Ist
n ), (3.2.35)

where
n = arg max

k=1,...,Nst

cw(Ĩij , I
st
k ). (3.2.36)

Finally, the aligned set of frames located at the n-th frame position of the steady phase,
is given by

X DTL
n = {Ĩij ; s(Ĩij) = s(Istn ), j = 1, . . . , Ni, i = 1, . . . , P} ∪ {Ist

n }. (3.2.37)

3.2.5.3 Coupled implementation

The coupled implementation is composed of two stages: the preprocessing and the
coupled longitudinal and transversal registration. The second stage, performs the transver-
sal registration prior the comparison presented in (3.2.27). In that manner, the position
in space of the frame Iij , which belongs to a non-steady phase and the applied transversal

rigid motion Ξij to that frame are defined as

s(Iij(x(Ξij), y(Ξij))) = s(Ist
n ), (3.2.38)
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where
n = arg max

k=1,...,Nst

cw(Iij(x(Ξij), y(Ξij)), I
st
k ), (3.2.39)

and

Ξij = arg max
Ξ∗∈U

w∑
d=−w

F (Ist
k+d, I

i
j+d). (3.2.40)

Note that the transversal registration performed in (3.2.40) is now coupled with the longi-
tudinal registration given by (3.2.39). Evidently, this implementation is computationally
more expensive. To reduce the computational cost, we confine the search space in (3.2.39)
to k ∈ [max(j− 11, 1); min(j+ 11, Nst) which represents longitudinal displacements of ap-
proximately 5.5mm forward and backward. According to [21], this range of displacement
encloses those observed in-vivo. The same assumption is taken into account for the de-
coupled implementation for an objective cost and accuracy comparison in the forthcoming
sections.

Finally, the aligned set of frames located at the n-th frame position of the steady
phase, is given by

X C
n ={Iij(x(Ξij), y(Ξij)); s(I

i
j(x(Ξij), y(Ξij))) = s(Ist

n ),

j = 1, . . . , Ni, i = 1, . . . , P} ∪ {Ist
n }.

(3.2.41)

3.3 Results

3.3.1 Acquisition of IVUS studies

The IVUS studies were acquired with the Atlantis™SR Pro Imaging Catheter at 40
MHz synchronized with an ECG signal and connected to an iLabTM Ultrasound Imaging
System (both by Boston Scientific Corporation, Natick, MA, USA), at the Heart Institute
(InCor), University of São Paulo Medical School and Śırio-Libanês Hospital, São Paulo,
Brazil.

The procedure was performed during a diagnostic or therapeutic percutaneous coro-
nary procedure. Vessels were imaged using automated pullback at 0.5 mm/s. Overall,
multiple runs were performed on 28 patients leading to 52 IVUS studies with synchronized
ECG signal. We analyzed images from different coronary arteries (left anterior descending
artery - LAD, 27 studies; left circumflex artery - LCx, 12 studies; right coronary artery -
RCA, 10 studies; and other coronary arteries, 3 studies) spanning different mean cardiac
frequencies (from 65 BPM to almost 90 BPM) including cases with severe stenoses and
deployment (22 studies) or not (30 studies) of stents.

After the procedure, a specialist performed a manual offline ECG gating of the
studies. Specifically, an operator marked the frame number at each R-wave peak in the
IVUS study aided by the synchronized ECG signal. Hence, images in a specific cardiac
phase (the R-wave peak phase) can be identified. Then, we use the criteria presented in
Chapter 2 to decompose the IVUS study in several cardiac phases.

3.3.2 Computational cost

The computational cost is proportional to the number of seeds used in the gradient
ascend method for transversal registration. For this reason, we analyzed the trade-off
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Figure 3.7: Initialization patterns over the space U . The dashed box is aligned with the
τx, τy, θ axes.

between computational load and maximization accuracy of (3.2.23) for seven different
patterns of initialization. To precisely define the initializations, let us define

‖Ξ‖U =

√
(τx)2 + (τy)

2 +

(
128 θ

π

)2

(3.3.1)

as the norm over U and the associated distance defined as dU (Ξ1,Ξ2) = ‖Ξ1 − Ξ2‖U ,
Ξ1,Ξ2 ∈ U . Then, seven pattern were tested to deploy the seeds along U , where a central
seed is positioned at (0, 0, 0) and the remaining seeds are distributed as presented in Figure
3.7.

The hardware for these tests consists of an Intel Xeon CPU E5-2650 v2 at 2.60GHz
processor and Samsung 1866 MHz (latency of 13 ns) RAM memory over Red Hat Enter-
prise Linux Server release 6.3. All methods were executed in their serial versions with high
CPU affinity for the measurements reported in this section. As performance measurement,
we use the mean wall-clock time averaged from five executions to attenuate operative sys-
tem time variations. Overall, we perform the registration of 52 bifurcation frames, each
frame belonging to a randomly selected bifurcation of a different study.

To assess the maximization accuracy of (3.2.23) obtained with each initialization, we
compared the MSGA solutions against the brute force search solution. The disagreement
between the brute force and the MSGA method (hereafter assumed as MSGA error) is
defined as follows

ε =

√√√√(τx − τ̂x
µτ̂x

)2

+

(
τy − τ̂y
µτ̂y

)2

+

(
req (θ − θ̂)

µθ̂

)2

(3.3.2)

where τx, τy, θ and τ̂x, τ̂y, θ̂ triplets are the rigid motion estimated with MSGA and brute
force method, respectively, req =

√
Al/π is the equivalent radius for the lumen in the

analyzed frame, Al is the area of the lumen in the analyzed frame and µτ̂x , µτ̂y , µθ̂ are

the means of τ̂x, τ̂y and req θ̂ for the 52 cases analyzed. The normalization applied by the
factors µ−1

·̂ equalizes the contribution of the three motion components to ε.
From the analysis (see Figure 3.8), it is confirmed that the accuracy improves as

more seeds are added to the initialization process. The 3-seed pattern has shown that
τx is the dimension that requires more initialization to minimize the optimization error
because of the local minima in the functional produced by the partial matching of the



3.3. Results 45

▼
❡❛
♥
✧

✶

s��❞

✸

s��❞s

✭✜①✮

✸

s��❞s

✭✜②✮

✸

s��❞s

✭✒✮

✺

s��❞s

✼

s��❞s

✶✺

s��❞s

✲✶✳✺

✲✶

✲✵✳✺

✵

✵✳✺

✶

✶✳✺

✷

✷✳✺

Figure 3.8: Standard deviation (whiskers) and mean (bars) of the multi-seed gradient
ascend (MSGA) error for the 7 initialization patterns along 52 bifurcation frames regis-
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Figure 3.9: Standard deviation (whiskers) and mean (bars) computational cost of the
proposed multi-seed gradient ascend (MSGA) initializations and the brute force method
for 52 bifurcation frames registrations.

structures registered. Note that the 7 seeds and the 15 seeds patterns present the same
error ε in terms of mean and standard deviation, although the computational cost of
15-seed doubles the one of the 7-seed pattern (see Figure 3.9). For these reasons, we use
the 7-seed pattern in the following analysis because it presents the better trade-off between
accuracy and computational cost.

Lastly, we assess the performance of the decoupled and coupled strategies. We do
not differentiate the two decoupled alternatives because their computational complexity
in terms of frames registrations and comparisons (quantity of transversal registration and
frame comparisons performed with the proposed MLE within a study) is the same and
its computational cost does not present significant variations. In this case, we choose
to parallelize the implementations to judge their potential use in medical practice. The
implementations coded in C++ compiled with GNU compilers were parallelized at frame
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Figure 3.10: Standard deviation (whiskers) and mean (bars) computational cost per study
of the parallelized decoupled and coupled strategies. The wall-clock times were estimated
using the 52 IVUS studies.

level with OpenMP. Each execution was parallelized across the 16 threads of the aforemen-
tioned processors. The registration was carried along the 52 studies using the FIR ROI,
σ = 0.4 and the MSGA with 7-seed pattern for both implementations. Results show that
the decoupled strategy is 134 times faster than the coupled strategy (see Figure 3.10) with
an execution time per study of 562± 233 sec and 75521± 35356 sec, respectively. As the
execution times suggests, the decoupled method is capable to assess longitudinal motion
during medical procedure whereas the coupled method must necessarily be regarded as an
offline method.

3.3.3 Validation of transversal registration

To validate our method, we construct a ground truth based on registrations per-
formed by medical image experts. Thus, two specialist perform the rigid registration of 30
distinguishable anatomical landmarks (each landmark is characterized by a pair of IVUS
frames at the same cross-section in different cardiac phases) such as bifurcations, extreme
points of stent or calcified regions. We study the intra- and inter-observer variability for
this ground truth in terms of Bland-Altman limits of agreement (LA) and intervals of
cross-correlation (ICC, only for inter-observer analysis).

The intra-observer variability (see Table 3.1) shows that manual registration (here
performed twice for each landmark) is a hardly reproducible task even for image experts
(p-value > 0.33 for the Bland-Altman mean). The identification at pixel precision of
landmarks within an image was not entirely successful (LA smaller than 11 pixels for
translations and 2.25 radians for rotations). Causes of these inaccuracies include the poor
SNR, polar-to-cartessian interpolation within the image and the blurring of landmark
structures provoked by heart contraction.

The inter-observer variability was estimated by comparing the average of the two
manual registrations performed by each observer at each landmark (O). Table 3.2 presents
a good agreement between the specialists in the identification of τx and θ (ICC of 0.93
and 0.87 with p-value of 2 · 10−10 and 3 · 10−7, respectively) and a low correlation in the
identification of τy (ICC of 0.49 with p-value of 4·10−2). The LA show lower inter-observer
than intra-observer variation.

Lastly, we extended the observations of one specialist (O
E
1 ) from 30 to 50 landmarks,

to obtain a bigger set for comparison against the proposed MSGA method. As result
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(see Table 3.2) it is seen that the specialist 1 presents a higher correlation against the
MSGA (ICC of 0.89, 0.94 and 0.93) than against specialist 2 (ICC of 0.93, 0.49 and 0.87).

Moreover, the LA are narrower in the case O
E
1 vs OMSGA for τy (LA < 2.3 pixels) while

τx and θ remain within the same limits as in O1 vs O2.

3.3.4 Validation of longitudinal registration

To complement the study of previous section, we now focus on the longitudinal
registration error. For this task, we identified Ist and Imo phases (as described in Section
3.2.4) for each IVUS study and performed the registration between the two phases. The
reason to perform the registration against Imo and not against other intermediate phase
is because the largest displacements and vessel deformations occur in this phase, turning
the registration more challenging and prone to bigger errors.

To construct a ground truth, an expert manually identified the frames corresponding
to 212 anatomical landmarks (such as carina bifurcation, calcium lesions or stent extremes)
across all IVUS studies in both cardiac phases. Using the expert identifications as the
registration ground truth, we define the longitudinal registration error in the i-th landmark
as

εi =
∣∣s(lst(i))− s(lmo(i))∣∣, (3.3.3)

where lj(i) is the manually identified frame of the i-th landmark in the cardiac phase j and
s(·) is the spatial position of frame (·) as described in Eqs. (3.2.26) and (3.2.29). Note that
s
(
lst(i)

)
is calculated with (3.2.26) without using any registration process while s

(
lmo(i)

)
is

estimated using the proposed strategies (see Section 3.2.5), and thus is responsible for the
error presented by each strategy. Additionally, we estimate the Bland-Altman mean (µBA)
and limits of agreement (LA) to assess conformity between the registrations performed by
the expert and the proposed implementations (see Tables 3.4, 3.6, 3.8).

The longitudinal error was calculated for the 52 IVUS studies described in Section
3.3.1 using the MSGA with 7 seeds for transversal registration (see Tables 3.3, 3.4, 3.5,
3.6, 3.7 and 3.8). The MLE for the GG noise distribution closely improves the MLE for
Rayleigh noise (that can be interpreted as GG with ν = 1 and γ = 2) when parameters are
adjusted to ν = 1.5 and γ = 1.5. The improvement from these two MLE strategies is about
7% in mean. To find the appropriate parameters for the GG, we performed a sensitivity
analysis over a subsample of 4 IVUS studies varying the parameters ν and γ in 0.5 units
from case to case. Experimental essays may improve the insight of the ν and γ values
specifics for different groups of tissues. It is important to note that as the noise is coherent
signature of the underlying material, leading that different materials will present specific
values that optimize their noise distribution. Related to the implementation strategies,
the results clearly show that DTL presents the smallest error (0.30 ± 0.63 for w = 3),
followed by the coupled implementation (0.40 ± 1.09 for w = 5) and lastly the DLT
(0.62± 1.76 for w = 5). Even more, the results are in agreement with the Bland-Altman
LA showing the same order for the narrower limits to zero. This strongly suggests that
prior alignment of the transversal planes is relevant for the longitudinal registration. Also,
the VWR mask renders less accurate registrations than FIR in all cases, which reflects the
importance of including the perivascular tissue for the frame registration task. In terms
of the neighborhood of frames used for the registration, it is seen that the inclusion of
frames provides robustness to the registration strategy, improving the performance when
compared to the one-to-one frame comparison, i.e., when w = 0. In terms of the µBA, it is
seen that the proposed strategies are not strongly biased regarding sub- or over-estimation
of the frame spatial position (in FIR cases is |µBA| < 0.2 frames of bias which is always
smaller than 10% of the LA).
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3.3.5 Longitudinal motion from in-vivo studies

To analyze the factors that contribute to the appearance of longitudinal motion, we
compare groups of IVUS studies using different criteria. Since we map the systolic frames
to the diastolic frames whose locations are known, we use this mapping as a non-linear
description of the longitudinal motion between the diastole and systole, i. e., the vessel
displacement between Ist and Imo. Then, we define the longitudinal motion in mm units
at the k-th frame as follows

dk =
∣∣s(Ist

k )− s(Imo
k )
∣∣. (3.3.4)

where s is the function of frame space location defined in (3.2.26) and (3.2.29). Then,
we define three longitudinal motion features: the fraction of the study with a pre-defined
motion (pd), the motion mean (µd) and the motion standard deviation (σd). The pd feature
is calculated as

pd =

∑N
k=1m

i(dk)

N
(3.3.5)

where mi(dk) is 1 if dk ≥ i otherwise is 0, and N is the amount of heartbeats in the study
such that contains the phases Ist and Imo. We decide to measure the rate that represents
the fraction of the study that spans with longitudinal displacement of i = 0.6 mm or more.
The use of 0.6mm as threshold for longitudinal motion is given by the fact that Ist frames
are spaced by ≈ 0.5 mm and errors of this magnitude are expected for the discretization
of s(Imo

k ). Then, we choose to add 0.1mm to avoid the oscillations of the discretization
error to guarantee the motion detection. The remaining features, µd and σd, are trivially
defined as the mean and standard deviation of dk ≥ 0.6 mm in the study.

In the first analysis, we grouped the studies by coronary arteries. Additionally, the
studies where separated by presence or not of a stent to avoid that longitudinal motion
is affected by stent deployment, which may interfere with coronary artery local effects.
According to the results reported in Table 3.9, a general reduction of motion was seen in
all the features for the cases in which there was stent deployment. A minor portion of the
study presented longitudinal motion and even in the locations where the motion persisted,
a reduction in the mean and standard deviation was observed. In the case with no stent
deployment, it was seen that as the longitudinal motion was less frequent (smaller values
of pd), the intensity of the motion also decreased (µd and σd). Particularly, LAD arteries
presented the smallest longitudinal motion, followed by the RCA and LCx. All these
results are consistent with those reported by [21] using different IVUS and AX techniques
for longitudinal displacement estimation.

In the second study, we choose 5 patients with multiple IVUS studies on different
arteries to assess whether the longitudinal motion is related to a specific patient, or not.
The analysis did not show a clear correlation between the patient and the longitudinal
motion. A study with a bigger patient population is necessary to evaluate this issue.

A last study is performed for patients before and after stent deployment to assess
the influence of the arterial longitudinal stiffening and the longitudinal motion. To vi-
sualize the longitudinal displacement provoked by the heart contraction, we subtracted
the pullback longitudinal displacement. As result, we observed (see Figure 3.11) that the
stenting procedure suppressed the longitudinal displacement at the stent location and its
surroundings. Also, the bifurcations outside the stent moved towards the stent center
as well as some of the motion patterns (e.g. Case 2 in the distal half). In terms of
quantitative indexes, Table 3.10 shows that the percentage of the vessel under motion
(according to pd estimator) decreases. Only the Case 5 shows the contrary, although as
its mean displacement (µd) suggests this motion is due to transducer pullback (which is in
≈ 0.5mm between cardiac cycles). Also, the displacements mean and standard deviation
(µd and σd, respectively) presented a decreasing trend after stent deployment.
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Figure 3.11: Longitudinal displacement estimated before and after stent deployment in 5
different patients. The bold × marks the bifurcation used for rigid registration of the stud-
ies. The black arrows depict the longitudinal displacement of the remaining bifurcation
due to stenting deformations in the vessel.

3.3.6 Longitudinal motion characterization

The insights given by the longitudinal motion before and after stent deployment,
suggest that the observed longitudinal motion is directly related to the longitudinal vessel
strain. As it is known, the estimated longitudinal motion represents the relative displace-
ment between the vessel wall and the IVUS transducer. If longitudinal motion were to be
dominantly determined by the transducer migration, the expansion of the lumen would
increase the longitudinal motion. Instead, the five cases presented in Figure 3.11 have
shown the opposite phenomenon (see Table 3.10). This behavior is compatible with the
hypothesis that longitudinal motion is connected to the longitudinal strain (i.e. the lon-
gitudinal displacement of the vessel wall), which was suppressed by the stent deployment.
Even more, the results reported in Table 3.9 show a reduction of longitudinal motion for
arteries with stent and similar results are reported by [21] with different IVUS and AX
imaging techniques. All this evidence is also compatible with the previous hypothesis.
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Pre-stent Post-stent
Case pd µd σd pd µd σd

(in mm) (in mm) (in mm) (in mm)

1 0.16 0.51 0.47 0.03 0.56 0.30
2 0.89 2.20 1.98 0.69 1.10 1.14
3 0.16 0.58 0.31 0.03 0.68 0.37
4 0.85 0.90 0.15 0.22 1.04 0.15
5 0.24 1.81 1.41 0.93 0.45 0.12

Table 3.10: Longitudinal motion features for 5 different cases before and after stent de-
ployment. The features were only computed along the vessel part where the stent was
deployed.

By assuming this hypothesis to hold, the presented method becomes more than
a mere longitudinal registration solution for IVUS. As a matter of fact, it allows the
estimation of longitudinal strain distribution along the vessel. With this data at hand,
and making use of proper tissue characterization methods, the longitudinal stress over
atherosclerotic lesions could be inferred once suitable constitutive models for the vessel
wall are available. Also, we could be able to predict areas more suceptible to stent fracture
which is a late adverse event related to local shear forces [75].

Finally, the suppression of the longitudinal motion at the stenting area may be a
temporal collateral effect associated to the angioplasty procedure. In fact, it is well known
that during angioplasty the arteries tends to contract, reacting to the balloon inflation
[121, 127, 311]. In a study by Togni et al.[311], implantation of a bare-metal stent does
not affect physiologic response to exercise proximally and distally to the stent. However,
sirolimus-eluting stents are associated with exercise-induced paradoxic coronary vasocon-
striction of the adjacent vessel segments, although vasodilatory response to nitroglycerin
is maintained. These observations suggest (drug-induced) endothelial dysfunction as the
underlying mechanism. To better characterize the absence of longitudinal motion in stent-
ing areas, longitudinal studies with pre-stent, post-stent and follow up IVUS acquisitions
need to be performed.

3.4 Discussion

Several authors base their registration strategies on the segmentation of the whole
arterial wall to obtain a more reliable representation of the vessel, although the outcomes
of the present study suggest that this task is ineffective and, moreover, does a disservice
to the registration. In contrast, the inclusion of perivacular tissue to the ROI aids the
identification of the location of the vessel cross-section. In that sense, the ROI FIR avoids
the segmentation task which is time consuming and, in some cases, questionable (e.g.
bifurcations or calcium rings). Circumventing this task is fundamental towards achieving
automation of the registration procedure, as in the present approach when using the
FIR mask. In this last point, studies with guidewire artifact may demand the artifact
segmentation (see Chapter A) which is the only not fully automatic task, although it is
far less time demanding than vessel wall segmentation.

The transducer motion model is such that the fully coupled and the DTL decoupled
method render similar results, being slightly better the latter technique. Both strategies,
substantially outperform the DLT strategy, pointing out the importance of performing
transversal registration prior longitudinal registration. Remarkably, the frames that ren-
dered better results with DTL than with the coupled implementation feature significant
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variation of the cross-section geometry between systole and diastole, e.g. bifurcations,
and other neighboring contours, which attained a major MLE value than the expected
(correct) frame. The use of transversal non-rigid registration may improve these cases,
although it is important to highlight that the registration error was acceptably low even in
these cases. The reason for DTL to slightly outperform the coupled implementation is that
successive frames of the same phase present a similar transversal motion from diastolic
phase, then DTL favors the longitudinal registration against near location frames which
in most cases present the correct solution. On the contrary, the coupled implementation
performs transversal registration against each one of the longitudinal candidate frames,
which gives the best alignment to near or far frames without favoring any in particular.
When the correct frame matches with low MLE value due to non-rigid deformations, the
coupled implementation may result in larger errors than the DTL.

Another interesting insight from the registration analysis was the poor reproducibil-
ity of registration results obtained from medical imaging experts. This is consequence of
the poor quality of ultrasound images which hinders the registration task for the human
inspection. In contrast, computational models, as proposed here, ensure reproducibility,
giving less uncertainty to the quality of the registration. Also, we demonstrated that
the tranversal error was competitive with the experts alignment and that mean longitu-
dinal error was smaller than a single frame. These results indicate that our registration
approach (particularly DTL) is less time consuming, offering reproducibility and high
accuracy, which makes it more convenient for medical practice than manual registration
by experts.

In Section 3.3.5, we have shown the capabilities of using the proposed method to
measure local longitudinal strains along the vessel, which were in agreement with pre-
viously reported observations ([21]). This application of the method may help for the
characterization of the vessel properties and for the better understanding of the vessel
deformation in different scenarios.

As final remark, note that the normalized cross-correlation and Rayleigh MLEs have
rendered larger errors for both registrations (transversal and longitudinal) than General-
ized Gamma MLE. The latter estimator models better the log-compressed multiplicative
noise which is the case of IVUS images. As result, the MLE is less sensitive to this noise
along the registration process, improving the similarity measurements across the vessel
structures.

3.5 Final remarks

Methods for longitudinal and transversal registration and longitudinal motion es-
timation were proposed in this chapter. Insights from applying the methodology before
and after stenting procedures suggests that the longitudinal motion is associated with the
longitudinal strain of the vessel wall, something that can benefit the construction of new
culprit plaque indicators adding physical magnitude.

From the proposed methods, it was shown that a decoupled strategy of transversal
prior longitudinal registration is the best option in terms of accuracy and computational
cost. To reduce even more the computational cost involved in the transversal registration
stage, the so-called MSGA method was developed and exhaustively tested. Also, it is
concluded that the best choice of ROI used for registration is the one that makes use of
both vessel wall and perivascular tissue, discarding the need for image segmentation.

Estimation of longitudinal motion across 52 IVUS studies showed that stenting pro-
cedures tend to suppress the local longitudinal motion and the overall motion within the
study. In arteries without stent, LAD arteries present the smaller amount of longitudinal
motion, followed by LCx and RCA.



Chapter 4

Denoising and optical flow

The mechanical characterization of biological tissue, as will be seen later, requires
information about the kinematics of the arterial wall (i.e. the displacements of the vessel
wall). The IVUS imaging modality is an excellent candidate to provide such information
because it captures a spatio-temporal description of the artery. As presented in the previ-
ous chapters, we sorted the study data in time and space, so we are capable to retrieve a
sequence along the cardiac cycle for each cross-section of the vessel. The remaining step
to endow the study with data describing the kinematics, is to determine the arterial wall
displacement along the cardiac cycle.

The optical flow (OF) is a well established and robust method for image tracking.
Many formulations and implementations for this technique have been proposed since early
the 80s. Actually, there is not a better method for this task, but a method that performs
better depending on the characteristics of the image sequence. For this, we present an ex-
tensive review of the state-of-the-art in Section 4.1 and identify the more suitable methods
for IVUS modality in Section 4.3.

The main drawback of OF when applied to IVUS images is that its capability to
retrieve accurate displacement fields degrades remarkably because of the low signal-to-
noise ratio (SNR) of the image sequence. Then, an effective denoising mechanism to
improve SNR is essential to obtain reliable results. In Section 4.2, we address this issue
contributing with a novel technique, called maximum likelihood variations, which is tailored
to diminish speckle noise.

Finally, we analyze the performance of the denoising process combined with optical
flow techniques using idealized (a ring geometry without image noise), in-silico (in-vivo
based geometries with and without noise) and in-vivo image sequences. The final remarks
in Section 4.5, summary the performance and insights of the proposed techniques and
present potential future research in these areas.

4.1 State-of-the-art in Optical Flow techniques

Optical flow techniques (OF) have been actively studied since the beginning of the
80s. Its many applications in human-computer interaction, engineering and medicine
increased the efforts of the computer vision community to render more efficient and ac-
curate methods to solve these tasks. For these reasons, a wide variety of OF solutions
are present in the literature which are optimal in different scenarios or for specific image
characteristics, and users must be careful to select the one that is more appropriate for its
own problem.

The first OF technique was introduced by Horn and Schunck [147]. The work
presents an estimation of the displacement field that registers two images based on the
minimization of the material derivative of the image intensities. As the problem is ill-posed

57
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due to the denominated aperture problem (only the normal iso-brightness component of
the flow can be estimated), a Tikhonov spatial regularization is proposed for the propa-
gation of the solution from areas of high gradient modulus to zones where the gradient
nearly vanishes. Other approximations, such us [201], do not make use of regularization to
avoid low confidence flows (i.e. zones where the aperture problem arises), instead the flow
in that locations is left as undetermined. As the outcomes suggest, the former methods
were denominated as dense flow approaches and the latter as sparse flow approaches.

The Tikhonov regularizer in the Horn-Schunck formulation restricts the identifica-
tion of discontinuous flows at the interfaces between objects with different trajectories. At
these regions, the quadratic variations of the flow are penalized due to the regularizer and,
as consequence, the discontinuities are over-smoothed. Several authors proposed different
alternatives to surpass this inconvenient. In [12, 16, 238], a regularizer in terms of the
curvatures allows an anisotropic diffusion of the flow leading to a discontinuous flow along
long object boundaries (the shorter the boundary, the less the discontinuity is preserved).
Other approaches, as proposed in [38, 241] impose a discontinuity penalization term and
an estimator of the discontinuities presence. [314] proposes a solution of the aperture
problem by considering objects in the scene with Lambertian surfaces and constant ve-
locity at the local region. Alternatively, [299] propose a regularization term based on the
theory of robust statistics to overcome the misspecification of the probability distribution
associated to the intensity discontinuities. A more general regularizer is presented in [288]
were Tikhonov and curvature approaches are special cases. The most popular solution,
used even in the most recent works, is the one proposed in [79]. In that work, the regular-
ization term is the L1 norm of the flow gradient, which penalizes less the discontinuities
in detriment of the functional regularity.

The flow discontinuity preservation was also tackled by identifying the objects
boundaries. In [133] an edge motion constraint equation is added to track potential dis-
continuities. Also, the OF at regions with major uncertainty is improved by a global
Bayesian decision using a maximum a posteriori criterion over different estimators. [260]
proposed to resolve the OF forward and backward between a pair of images and then
use the inconsistencies between the obtained fields to identify the occlusion regions. To
preserve the flow discontinuities, an anisotropic diffusion regularization is used, similar to
[16, 238]. Other authors suggest to segment the image in areas with homogeneous flows
and match the discontinuities with the areas boundaries. In [40], the image is partitioned
in patches where the flow is approched with a parametric model with local deformations.
In that manner, the discontinuities at the inter-patch boundaries are naturally represented
due to the lack of flow continuity constraints. In [220], a segmentation algorithm is coupled
with the OF, and in an extended cost functional a term relaxes the flow smoothness at
the segmentation boundaries and a second term increases the smoothness in the interior
of subdomains. In [254] a similar approach is presented where the OF is calculated by a
convex combination of the forward and backward flows. The obtained flow is more robust
against occlusions in the scene.

In addition to the spatial regularization, some authors proposed the temporal regu-
larization [37, 39, 40, 98, 344] assuming that the time between the images is small enough
to deliver a small motion variations of the objects.

All the previous approaches regularize the OF based on mathematical predictions
for border detection and, then, a diffusion process is imposed in the zones where flow
uncertainty increases, disregarding the material properties. These approaches were con-
ceived for general purpose and, because of that, there is no further knowledge about the
nature of the objects in the scene. In turn, the knowledge of the mechanical models
that describe objects behavior in the scene may improve this regularization leading to a
machanically compatible flow. In this field only few works such as [159, 160] and [112] have
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shown contributions. In [160], a Lucas-Kanade approach is used to estimate an sparse flow
over the domain, which is then imposed as constraint over an unstructured mesh where
the nodes, which compose the mesh that describes the domain of analysis, are attached
by springs. By minimizing the potential energy stored in the springs, where the spring
stiffness is related to the mechanical properties of the underlying material, regularized
displacements are obtained over the whole domain. [112] computes the flow only where
the intensity gradients are high enough, i.e., regions with no aperture problem. Here,
the mechanical properties are searched in terms of solid mechanics numerical simulation
such that the resulting displacement field minimizes the data term of the optical flow.
As we can see, no regularization term is used because the zones with aperture problem
are neglected, and also, a dense field can be derived in terms of the mechanical problem
although not enterily supported by image data.

In turn, several modifications have been suggested for the data term (represented
in Horn-Schunck method by the material derivative). The material derivative is valid for
OF identification as long as intensity remains constant on the surfaces between frames
and as displacements are small enough, such that the material derivative of the intensity
represents the image constancy between two images. The intensity constancy is usu-
ally violated due to noise or brightness variance of the surfaces. To tackle this issue,
[37, 38, 39, 46, 47, 344] propose different normalization functions over the data term
(and also the regularization term) which eliminate the contribution of outlier pixel values
(uncorrelated motion of a pixel caused by intensity constancy violation). Alternatively,
[180, 245] propose the addition of a data term based on the image gradients, increasing
the gradient constancy constraint to the model. In the latter, a confidence estimator of
the gradient is proposed in order to weigh the contributions of image and gradients data
terms. Other authors treat these issues in an over-constrained equation system similar to
[201], estimating the OF in the sense of total least square [333], least median of square
orthogonal distances [27] or weighted total least square [27]. In all the three previous
approaches, the outliers are identified and neglected for the OF calculation. For cases
with large displacements between the two images, the material derivative in the data term
is not enough, because it is simply a first order Taylor expansion for the OF problem
and lacks the high order information required. For this reason many OF methods employ
the denominated multiresolution scheme, proposed in [16, 247]. The method consists in
progressively estimating the frequencies of the displacement field using coarse resolutions
of the image, the coarser the resolution, the lower the frequency of the displacement that
is calculated. The final flow is estimated by superposition of all calculated displacements.
As an additional advantage, this method usually speeds up the convergence due to the
decomposition in smaller (and computationally cheaper) OF problems.

Other less popular approximations for the OF problem are the frequency domain
approaches. Few authors explore the capabilities of using a family of Gabor filters or
Fourier analysis to track objects in time [36, 109, 132]. As commonly seen in image
processing, the frequency domain eases the noise detection for diverse classes of noise and
distributions. Nevertheless, these methods do not yield accurate and robust flows such as
the time domain approaches.

Most renowned methods for general purpose OF are the ones developed by Farnebäck
[102, 103, 104], Weickert [46, 47, 48, 49, 50, 51, 334, 335] and Zach [348].

The Farnebäck method exploits the orientation tensor (linear transformation that
assesses the variation of the intensity in the direction of the applied vector) constructed
at each pixel from a local quadratic approximation. In this method, the optical flow is
obtained as the intensity invariant directions, i.e., the eigenvector with minor eigenvalue
modulus. Note that for this approach the aperture problem rises when the minor eigen-
value has a multiplicity M ≥ 2. To avoid a noisy representation of the field, the author
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proposes a parametric piecewise fitting for the representation of the field. In [102], it
is proposed to define motion coherent regions by an heuristic approach over which the
parametric fitting is applied. This method also features multiresolution characteristics to
efficiently identify large displacements in the image sequence.

With the Weickert method, several improvements for OF have been proposed. The
first contribution is the use of a nonlinear regularizer with the idea of reducing the flow dif-
fusivity in regions with small flow. The correct tuning of this method allows discontinuous
flows at the interfaces maintaining the well-posedness at constant intensity regions. The
second is the combined local-global approach in which the image gradients and temporal
derivatives are low-pass filtered to obtain a smooth and dense gradient field. In order
to preserve boundary discontinuities, low-pass filtering must be carefully selected, i.e.,
through setting a cut frequency as large as possible. It has been demonstrated that this
method presents a good performance when dealing with Gaussian noise. Additionally,
such contributions were combined with a multiresolution methodology for robustness in
large displacements scenarios.

The Zach method is methodologically simpler, although it delivers robust and dis-
continuous flows. The method uses the L1 norm over each term of the classic Horn-Schunck
formulation, i.e., a total variation with L1 norm (TV-L1). The discontinuity of the func-
tional derivative is treated by introducing a factor which smoothes the gradient near the
minimum of the cost functional, making it differentiable. In [348], a duality based approach
is proposed for an efficient minimization process. As simple as it is, this method has shown
to increase the robustness of Horn-Schunck technique for constancy intensity violations,
occlusions and noise within the image.

In the wider context of medical ultrasound, some authors have proven applicability
of OF to solve tracking problems. In early 2000, several works demonstrated its appli-
cability for tracking endocardial surface [17, 95, 223, 264] and cardiac valves [223] using
a 5 MHz ultrasonic probe. In these applications, OF assisted the initialization of the
segmentation contours in order to improve the initial prediction in a large displacement
context. [309, 349] conducted a carotid elastography with an ultrasonic biomicroscope at
40 MHz presenting reasonable displacements for the arterial wall. Also, recent applica-
tions for tracking muscle landmarks have been presented [167]. Even more, the increasing
attention for the OF in speckle polluted images (speckle tracking) has led to the creation
of benchmark synthetic tests in the literature [10].

Although the advance in such applications shows a maturity of the OF in speckle
scanerios, less applications are present for high frequency transducers where the speckle
noise degrades even more the image (lower SNR due to bigger number of scatters of the
ultrasound beam). Specifically in IVUS studies, OF has poorly been explored. In our
knowledge, only the works of Danilouchkine et al. [83, 84, 85, 86, 87] have used these
techniques for the assessment of the mean rotation of each IVUS frame. In the context
of the present thesis, it is important to remark that the use of OF techniques to quantify
the displacement field of arterial walls had been unexplored so far.

4.2 Despeckling of IVUS images

Ultrasonic image processing is a challenging task through its low signal-to-noise ratio
(SNR). Particularly, optical flow techniques rely on the brightness constancy constraint
which is far from being met in these conditions. However, we may circumvent this problem
in two different manners: (i) we improve the SNR with a denoising technique in order to
satisfy the brightness constancy constraint; or (ii) we develop new optical flow techniques
robust to such image noise.
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On the one hand, the former approach allows the use of mature optical flow tech-
niques whose performance has been improved since the 90s. On the other hand, the
latter approach allows the estimation of the flow over the raw data of the image, which is
more efficient in terms of computational cost because treats the noise at the same time it
estimates the optical flow.

Even though, we propose to explore the first approach as a preliminary work to in
the future address the approach (ii). The first approach requires for a denoising method
that can be improved by incorporating statistical information of the image noise. As
previously seen in Chapter 3, functions based on maximum likelihood estimator permit to
quantify similarity between two images with known noise involved. By endowing classic
denoising strategies [64, 282] with specific noise recognition capabilities, we may obtain
a tailored method to appropriately denoise IVUS images. This stands for the approach
(i) mentioned above, allowing the optical flow computation over denoised IVUS images.
Hence, the insight gained for IVUS noise characterization and the similarity functions used
for denoising can be key for the development of new optical flow methods as discussed in
(ii). The brightness constancy constraint is imposed by the data term, which approximates
the intensity variation of the pixels between two images connected by a mapping function
(the optical flow), i.e., ‖I0(x−w)− I1(x)‖ where I0 and I1 are successive images, w is the
flow between them, and ‖·‖ is a given norm. Instead of minimizing the absolute difference
of the pixel intensity, we propose to minimize a similarity function which considers the
specific IVUS noise statistics.

In this chapter, we propose a new denoising technique more appropriate for IVUS
noise, i.e., the solution for (i). A comparison against total variation method is performed
in order to evaluate the improvement of such approach.

4.2.1 Total variation method

Firstly proposed in [282], the total variation method allows the image denoising for a
wide spectrum of noise distributions. The method yields a denoised image by minimizing
the total variation against the original noisy image. Particularly, the use of norm L1 over
the total variation term (method known as TV-L1) leads to major discontinuities while
maintains the same level of denoising in the image. To formally define the TV-L1 method,
let us define Io(x, y) as the original image and Id(x, y) as the denoised image, then Id(x, y)
is estimated as follows

Id = arg min
Ĩ

∫
Ω

(
|Io(x, y)− Ĩ(x, y)|+ α|∇Ĩ(x, y)|

)
dΩ, (4.2.1)

where Ω is the image domain. Note that the functional defined in (4.2.1) is composed by
a data term that measures the sum of absolute differences between the images and by a
regularization term that imposes the continuity for the denoised image. The α parameter
is key for the expected outcome of the method, small values of α do not denoise the image,
while large values do not preserve image structures. For this reason the optimal value of α
must be small enough to preserve the structures of interest in the image and large enough
to deal with the maximum amount of noise. In this particular method the α parameter
has not physical or experimental association.

To efficiently minimize (4.2.1), [65] proposed the Primal-Dual method in which a
saddle point formulation of the functional is adopted. Convergence and numerical analysis
for this method is presented in [64]. The discretized scheme for this approach, considering
that Ω ⊂ Rm×n, is given by the following iterative procedure, for k = 0, 1, 2, . . ., until
convergence is achieved
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pk+1 =
pk + σ∇Ikd

max(‖pk + σ∇Ikd‖, 1)
(4.2.2)

Îk+1
d = g(Ikd − τ∇T pk+1, Io, α σ) (4.2.3)

Ik+1
d = Îk+1

d + β(Îk+1
d − Ikd ) (4.2.4)

where pk ∈ Rm×n×2, τ and σ are the step size associated to the numerical scheme, β is
the subrelaxation parameter for the minimization and g(x, y, z) is defined as

g(x, y, z) =


x− z if x > y + z
x+ z if x < y − z
y if |x− y| ≤ z

. (4.2.5)

In the study cases presented in forthcoming sections, we choose p0 = ∇Io and I0
d = Io as

initialization and β = 1 for subrelaxation.
As presented in (4.2.1), a linear penalization for discrepancies between Io and Id

is used, then noises that impose high intensities differences are successfully treated (e.g.
salt-and-pepper noise). On the contrary, noises with low intensity are reduced, in part, for
the contributions of the regularization term which tends to homogenize the local region
and smooth image discontinuities as α increases. Then, the sharpness and local mean
values of the image could be sacrificed to deal with low intensity noises.

An example of these scenarios is presented in Figure 4.1 where salt-and-pepper
noise and generalized gamma (GG) distributed noise illustrate the high intensity and low
intensity cases, respectively. In fact, the latter noise distribution presents low and high
intensity differences, however the former case shows that the high intensity contributions
are successfully treated by TV-L1. The multiplicative GG distributed noise is close to the
noise observed in IVUS images. As we can see, TV-L1 over smoothes the image, missing
the brighter region (which is characteristic of a calcified area). For this reason, we will
introduce a novel method for IVUS image denoising to deal with this problem.

4.2.2 Maximum likelihood variation method

From the TV-L1, we see that denoising methods behave appropriately as long as
noise manifests a high contribution in the penalization energy proposed in (4.2.1). In
that scenario, it is seen how the regularization term imposes smoothness to denoise the
places with such high penalization energies. Then, it would be desirable for penalization
contribution to be proportional to the probability of noise appearance at each place.

Then, we propose to coin a data term proportional to the noise probability of ul-
trasonic images. As previously discussed in Chapter 3, the generalized gamma (GG)
distribution seems to be the most likely noise distribution for high frequency ultrosonic
imaging. Thus, we derive the maximum likelihood estimator that compares one image,
Îo, with GG distributed noise versus a noiseless image, Îd, which represents the denoised
image. We know that

Îo(x, y) = Îd(x, y) ε(x, y) (4.2.6)

where ε(x, y) is a noise with GG distribution. As IVUS images Io and Id are log-
compressed, then

log
(
Îo(x, y)

)
= log

(
Îd(x, y) ε(x, y)

)
log
(
Îo(x, y)

)
= log

(
Îd(x, y)

)
+ log

(
ε(x, y)

)
Io(x, y) = Id(x, y) + ε̃(x, y) (4.2.7)
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Figure 4.1: Denoising of a synthetic image using TV-L1 method with τ = 0.01, σ = 1
8 τ :

(top) synthetic image; (middle, from left to right) image with pepper-and-salt noise and
denoised image using α = 1; (bottom, from left to right) image with multiplicative gener-
alized gamma distributed noise, image denoised using α = 1 and α = 0.5, respectively.

where ε̃(x, y) is distributed by Pε̃(y) probability density function derived from the GG
distribution Pε(x) as

Pε(ε)dPε, ε = eε̃ and dPε = eε̃dPε̃. (4.2.8)

Changing variables in the GG probability density function, we obtain that

Pε̃(ε̃)dPε̃ = Pε(ε)dPε

= Pε(e
ε̃)eε̃dPε̃

=
γ

δγ ν Γ(ν)
(eε̃)γ ν−1 e−

(
eε̃

δ

)γ
eε̃dPε̃

Finally, we obtain the log-compressed GG distribution as follows

Pε̃(y) =
γ

Γ(ν)
eγν(y−log δ)−eγ(y−log δ)

, γ, δ, ν > 0. (4.2.9)
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Figure 4.2: Probability density function for log-compressed noise in IVUS (green line)
versus the data term value in (4.2.12) (blue line). Parameters used both functions are
γ = 12.75, ν = 0.014 and δ = 1.53.

Using this model of noise, we construct the associated MLE as proposed in (3.2.6),

e(Io, Id) =
∑

(x,y)∈Ω

log

[
Pε̃(Io(x, y)− Id(x, y))

]
=

∑
(x,y)∈Ω

log
γ

Γ(ν)
eγν(Io(x,y)−Id(x,y)−log δ)−eγ(Io(x,y)−Id(x,y)−log δ)

= |Ω|
(

log
γ

Γ(ν)
− γν log δ

) ∑
(x,y)∈Ω

[
γν(Io(x, y)− Id(x, y))− 1

δγ
eγ(Io(x,y)−Id(x,y))

]
.

(4.2.10)

Discarding the constant contributions, we create a pixel-wise function for comparison given
by

c(Io(x, y), Id(x, y)) = γν(Io(x, y)− Id(x, y))− 1

δγ
eγ(Io(x,y)−Id(x,y)). (4.2.11)

Then, we modify the data term in cost functional (4.2.1) using the negative function
of (4.2.11) to measure the discrepancies between IVUS images in an appropriate manner.
The new optimization problem is given by

Id = arg min
Ĩ

∫
Ω

(
− c
(
Io(x, y), Ĩ(x, y)

)
+ α|∇Ĩ(x, y)|

)
dΩ. (4.2.12)

Note that the integration of the data term leads to (4.2.10) negated, up to a constant
factor. As seen in Figure 4.2, as the difference between the original image and the restored
image has higher probability to be given by the noise distribution (Pε̃), the smaller is
the penalization value in the data term. Assuming a smooth variation of |∇Id(x, y)|,
the Euler-Lagrange equations that minimize the cost functional (4.2.12) (see details in
Appendix C.1) are the following

γν − γ

δγ
eγ (Io(x,y)−Id(x,y)) − α ∆Id(x, y)

|∇Id(x, y)|
= 0 in Ω (4.2.13)

∇Id(x, y) · n = 0 in ∂Ω (4.2.14)

where ∂Ω is the boundary of the image domain and n is the unit normal vector pointing
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Figure 4.3: Denoising of a synthetic image using MLV method with α = 40, γ = 3.2,
ν = 0.22, δ = 3.67: (top) synthetic image; (bottom, from left to right) image with
multiplicative generalized gamma distributed noise and image denoised, respectively. The
image dynamic range is normalized between [0,1] for the current parameters.

outwards to that boundary. To deal with the non-linearities introduced by the exponential
term, we use a fixed-point iteration scheme with sub-relaxation (the latter to avoid over-
shooting problems). The discrete linear system of equations is given by

In+1
d (x, y) = β Ind (x, y)− (1− β)

[
γν − γ

δγ e
γ (Io(x,y)−Ind (x,y))

4α

∣∣∇h Ind (x, y)
∣∣+

Ind (x+ 1, y) + Ind (x, y + 1) + Ind (x− 1, y) + Ind (x, y − 1)

] (4.2.15)

using a finite difference discretization with spatial spacing ∆x = ∆y = 1 pixels, and the
gradient operator is discretized as∣∣∇h Ind (x, y)

∣∣ =

√(
Ind (x+ 1, y)− Ind (x, y)

)2
+
(
Ind (x, y + 1)− Ind (x, y)

)2
. (4.2.16)

The proposed method, called Maximum Likelihood Variation method (or simply
MLV), was applied to the synthetic image of the previous section (see Figure 4.3). It is
seen that the 4 different regions are preserved after the denoising process. As the noise
characteristics are embedded in the data term, the method search for the more probable
intensity that degraded by speckle noise yields the observed intensity. Then, image areas
with higher noise probability are easily recovered. Complementary, image areas with lower
noise probability are recovered due to the regularization term and the surrounding intensity
values. In the TVL1 denoising, it was seen that the brightest region was merged with the
surrounding regions due to the brightness increase provoked by the TVL1 smoothing.
On the contrary, MLV correctly identifies the noise components and reduces the image
intensity variations due to smoothing.
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Figure 4.4: Synthetic image polluted with generalized gamma distributed noise α = 1.5,
γ = 1.5 and ν = 0.8. The red, blue and magenta areas depict the regions of interest
representing the intima, calcified and adventitia, respectively.

4.2.3 Parameter setup

The parameters that characterize the MLV method are divided in two groups, the
noise distribution parameters and the smoothing and relaxation parameters. For the first
group, we choose a reparametrization in terms of more meaningful parameters for the
denoising process. Thus, we replace γ, ν and δ by the following parameters

a = γ ν, b =
γ

δγ
, c = γ, (4.2.17)

that allows to rewrite the Euler-Lagrange equation (4.2.13) over the domain, simply as

a− b ec (Io(x,y)−Id(x,y)) − α ∆Id(x, y)

|∇Id(x, y)|
= 0, (4.2.18)

where a, b and c model the weight of linear penalization, the weight of the exponential
penalization and the exponential growing rate for the differences between Io(x, y) and
Id(x, y), respectively.

Most applications using IVUS images (for example medical visualization of the ves-
sel), demand a reduction of the speckle noise, recovering homogeneous intensity regions for
each tissue. Then, we search the values of a, b, c and α such that minimize the intensity
variations in the speckled image over regions that contain constant intensity in the original
image (see Figure 4.4). 1

To achieve this, we minimize the following denoising error

εHd =
1

|R1|
∑
x∈R1

(x− µ1)2 +
1

|R2|
∑
x∈R2

(x− µ2)2 +
1

|R3|
∑
x∈R3

(x− µ3)2 (4.2.19)

where R1, R2 and R3 are the set of pixels over the intima-media, adventitia and calicum
regions presented in Figure 4.4, µi is the mean intensity of Ri and |Ri| is the amount of
pixels in Ri. For the set of parameters given by

PMLV = {(α, a, b, c);α = 1, 2, . . . , 20; a, b, c = 0.1, 0.2, . . . , 2} (4.2.20)

PTV L1 = {(τ, α);α = 10i, i = −5, . . . , 0; τ = 10i, i = −5, . . . , 0} (4.2.21)

1The specific application of optical flow will not necessarily require the absolute denoising of the image
because the noise is related with the echogenic tissue and may aid its tracking. For such reason, we present
a second parameter setup in the Section 4.4.2 where we find the optimum parameters in the sense of an
optical flow global error.
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Figure 4.5: Best denoising in terms of error εHd over the regions depicted in Figure 4.4:
(left) the proposed MLV method presenting εHd = 0.191; (right) the TV-L1 method pre-
senting εHd = 0.284. The image without denoising features an error of εHd = 0.496.

we compute εHd for MLV and TV-L1 methods2. The minimum error was achieved using
α = 4, a = 1.1, b = 1, c = 0.5 for MLV and τ = 0.01, σ = 1

8τ , λ = 0.01 for TV-L1 yielding
to εHd = 0.191 and εHd = 0.284 respectively (see Figure 4.5). The method reduced the noise
to 38.40% (ratio between εHd after and before denoising) in the specified ROIs whereas
the TV-L1 method reduced to 57.26%, showing better performance for the proposed MLV
method.

4.3 Optical Flow methods

Next, we present the most popular optical flow methods to estimate flow between a
pair of frames. The application of these methods to image sequences is by processing each
pair of images at a time or by treating time as another spatial dimension (for example
in Weickert 3D methods). This may lead to some difficulties in the parameter setting,
e.g. the step in time is uncorrelated with the spatial spacing, which impacts in a set of
critical parameters that cannot be properly adjusted. From the methods presented next,
the Weickert method has been implemented by the author, while the Zach and Farnebäck
methods were used from OpenCV library.

4.3.1 Horn-Schunck method (classic approach)

Let us define the image intensity function as I(x, y, t). Then, the classical optical
flow approach introduced by [147] is defined as the vector field w that minimizes the
following cost functional

E (w) =

∫
Ω

[(
∇I ·w +

∂I

∂t

)2
+ α

∥∥∇w
∥∥2

F

]
dΩ (4.3.1)

where ‖·‖F is the Frobenius norm and w = (u, v) is the velocity intensity field, hereafter,
the image flow. The first term is the material or total time derivative of the image
intensity and the second term is a Tikhonov regularization of the first order derivatives.
The functional without regularization term is ill-posed (usually referred in the literature
to the aperture problem) because multiple solutions across iso-bright lines satisfy that
optimization. Then, regularization provides the well-posedness of the problem imposing
smoothness over w, which in several scenarios is desirable.

2Both set of parameters where chosen to enclose the error minimum value and their spacing was such
that no significant variations of error (minor than 0.01) occur among adjacent values
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In that sense, the optical flow tracks iso-bright particles between two images, con-
straining the regularity of the solution vector field w. Thus, some deficiencies of this
method must be highlighted:

• the displacements of the particles must be infinitesimal so they can be tracked by
the method;

• the method assumes that the particles (structure underlying at each pixel) remain
with the same intensity (or at least suffer small intensity variations) which is im-
probable in images with noise;

• the method can not estimate spatial discontinues within flow field w due to the
constraint imposed by the regularization term.

Several modifications for this OF method have been proposed to circumvent these
deficiencies. The next sections present those which we adopted to deal with IVUS se-
quences.

4.3.2 Farnebäck method

The Farnebäck method approximates the intensity field in the images with local
quadratic polynomial expansions and then estimates the local displacement. The expan-
sion is defined over a neighborhood of P × P pixels, denoted by η, satisfying

I(x) ≈ x ·Ax + b · x + c (4.3.2)

where A is a symmetric matrix. The values of A, b and c are optimally calculated in the
sense of weighted least squares to fit the x pixels of a neighborhood. Then, the optical
flow between I1 and I2 is formulated as

I2(x) = I1(x−w) = (x−w) ·A1(x−w) + b1 · (x−w) + c1

= x ·A1x + (b1 − 2A1w) · x + w ·A1w − b1 ·w + c1

= x ·A2x + b2 + c2 (4.3.3)

where w is the optical flow and suffixes 1 and 2 stand for polynomial coefficients defined
in images 1 and 2, respectively. From (4.3.3), we obtain the following identities

A2 = A1 (4.3.4)

b2 = b1 − 2A1w (4.3.5)

c2 = wTA1w − bT1 w + c1 (4.3.6)

and, if A1 is non-singular, we can estimate the optical flow from (4.3.5) as

w = −1

2
A−1

1 (b2 − b1). (4.3.7)

Obviously the identity 4.3.4 is hardly satisfied due to the polinomial assumption of the
intensity signal, noise and image sampling. For these issues, the assumption is relaxed to

A(x) =
A1(x) + A2(x)

2
(4.3.8)

that replaces A1 in (4.3.7).
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To improve the robustness of the solution given by (4.3.7), neighborhood informa-
tions are incorporated by applying a weighting function w(n) proportional to neighbor
distance. Then, all local flows d(x) must minimize the following cost functional∑

n∈η
w(n)

∥∥A(x + n)w(x)− 1

2
(b1(x + n)− b2(x + n))

∥∥2
. (4.3.9)

Further details of the method and its minimization strategy can be found in [102, 103,
104, 105].

Note that the size of the local neighborhood, P , determines the structures size that
the method is capable to track. As P increases the image is approximated with smoother
surfaces, yielding more robust algorithm but a more blurred optical flow. An efficient
implementation involves the use of a hierarchical scheme of separable convolutions [105].
In such convolutions, a Gaussian kernel of standard deviation σ smoothes the input images.
The σ parameter has a similar effect to P , blurring the obtained flow but producing a
more robust algorithm.

4.3.3 Zach method

The Zach method proposes a TV-L1 formulation for the optical flow cost functional,
i.e.,

E (w) =

∫
Ω

[∣∣I0(x)− I1

(
x + w(x)

)∣∣+ α
∣∣∇w(x)

∣∣]dΩ. (4.3.10)

The minimization of the current formulation presents a major challenge than the classical
Horn-Schunk approach because data and regularization term are not continuously differ-
entiable. To face such difficulty, the [64] strategy is applied as we explained before in
Section 4.2.1. For this, the cost functional (4.3.10) is linearized as

E (w) =

∫
Ω

[∣∣∇I1 ·w + I1 − I0

∣∣+ α
∣∣∇w

∣∣]dΩ (4.3.11)

where spatial indexation of I and w has been dropped for the sake of readability. Adi-
tionally, an auxiliary field s = (r, t) is introduced and the following convex approximation
of (4.3.11) is adopted to solve the optimization problem,

Eθ(w) =

∫
Ω

[∣∣ρ(s)
∣∣+

1

2θ
|w − s|2 + α

∣∣∇w
∣∣]dΩ (4.3.12)

where ρ(w) = ∇I1 ·w + I1 − I0.
To minimize (4.3.12), we perform 2 alternating updating steps:

1. For fixed s, solve

w = arg min
w̃

∫
Ω

[ 1

2θ
|w̃ − s|2 + α|∇w̃|

]
dΩ (4.3.13)

where the solution is given by

w = s− θ div P, (4.3.14)
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where P ∈ R2×2 is composed by row vectors p1 and p2 that satisfy

∇(θ div p1 − r) = |∇(θ div p1 − r)|p1 (4.3.15)

∇(θ div p2 − t) = |∇(θ div p2 − t)|p2 (4.3.16)

and are obtained by solving by the following iterative fixed-point scheme

pk+1
1 =

pk + τ∇(div pk1 − r
θ )

1 + τ∇(div pk1 − r
θ )

(4.3.17)

pk+1
2 =

pk + τ∇(div pk2 − t
θ )

1 + τ∇(div pk2 − t
θ )

(4.3.18)

with τ ≤ 1/8 and p0
i = 0.

2. For fixed w, solve

s = arg min
s̃

{
1

2θ
|w − s|2 + |ρ(s)|

}
(4.3.19)

where the solution is given by

s = w +


θ∇I1 if ρ(w) < −θ|∇I1|2
−θ∇I1 if ρ(w) > θ|∇I1|2
−ρ(w)∇I1 |∇I1|2 if |ρ(w)| ≤ θ|∇I1|2

. (4.3.20)

The steps are sequentially repeated until convergence of the w field is achieved.
Further details of the method and its minimization strategy can be found in [64,

256, 348].

4.3.4 Weickert method

The Weickert method was developed by successive improvement over a half of decade
[46, 47, 48, 49, 50, 51, 334, 335]. Here, we present an implementation which makes use
of the 2D formulation of the problem, adopting the strategies of combined global-local,
non-linear weights and multi-resolution. As result the method manages to deal with the
restrictions aforementioned to the Horn-Schunck formulation allowing to estimate finite
size flows with certain discontinuity preservation.

4.3.4.1 Combining Global-Local (CGL)

This strategy is based on the assumption that a local neighborhood around a pixel
presents a similar flow. Obviously, this is only valid when the image spatial resolution is
higher than the structures in the image. By doing so, we obtain increased robustness of
the flow against pixel interpolations and noise. The implementation is performed by the
convolution product between the differential operators in the developed data term, i.e.,

E (u, v) =

∫
Ω

[
Gρ ∗

(∂I
∂x

)2
u2 +Gρ ∗

(∂I
∂y

)2
v2 +Gρ ∗

(∂I
∂t

)2
+ 2Gρ ∗

(∂I
∂x

∂I

∂y

)
u v

+2Gρ ∗
(∂I
∂x

∂I

∂t

)
u+ 2Gρ ∗

(∂I
∂y

∂I

∂t

)
v + α

∥∥∇w
∥∥2

F

]
dΩ. (4.3.21)

Note that only image differential operators have been modified by the CGL strategy.
For the sake of simplicity, we embed the Gaussian convolution process in the differential
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operators ∇ρ and
∂ρ
∂t , rewriting the previous functional as follows

E (w) =

∫
Ω

[(
∇ρI ·w +

∂ρI

∂t

)2
+ α ‖∇w‖2F

]
dΩ. (4.3.22)

4.3.4.2 Non-linear functions

The smoothing imposed by the regularization term hinders the estimation of discon-
tinuous flows, mainly at the object boundaries. This restriction can be relaxed (although
not completely avoided) by diminishing the regularization for outliers values (usually asso-
ciated with such objects boundaries). Then, a weight function proposed by [67] is applied
to the functional,

E (w) =

∫
Ω

[
ψ

((
∇ρI ·w +

∂ρI

∂t

)2
)

+ αψ
(
‖∇w‖2F

)]
dΩ (4.3.23)

where

ψ(x) = 2κ2

√
1 +

x

κ2
. (4.3.24)

4.3.4.3 Multi-resolution technique

The multi-resolution scheme solves the optical flow iteratively from coarse (or low
frequency) to fine (or high frequency) resolutions between the two images (image source
and target, respectively). At each iteration, the scheme estimates the flow component for a
given spatial scale and then it is applied to the source image. Let us define Im(x, y, t), m =
0, . . . ,M as the volume compose by both images I(x, y, t) at the m resolution level. In our
notation, m = 0 is the coarsest resolution of H

2M−m
× W

2M−m
pixels and m = M represents

the original full resolution with H ×W pixels. Then, we calculate Im as

Im(x, y, t) =

2M−m∑
r=1

2M−m∑
s=1

I
(

(x− 1) 2M−m + r, (y − 1) 2M−m + s, t
)

2M−m 2M−m
(4.3.25)

where each pixel of the coarse resolution is the mean value of a subregion of the original
images.

In the coarse resolution each pixel represents a set of finer scale pixels, and the
associated infinitesimal displacements in an m resolution level, are displacement of 2M−m

pixels at the 0 resolution level. From the point of view of the original image, the estimated
displacements are no longer infinitesimal. Thus, we iteratively solve the optical flow from
coarse to fine resolutions using the obtained displacement of each iteration to warp the
source image. In that manner, each iteration removes a set of low spatial frequencies of the
displacement between images and advances to the next finer scale to process the higher
frequencies.

The warping process takes the source image, I(x, y, 0), and applies a deformation
using the flow obtained at the previous iteration (i.e., at the previous resolution), wm−1,
generating the image Im(x+wm−1, 0) = I(x, 0) used in the next iteration. As I and wm−1

are defined over a discrete domain, we use bilinear interpolation to obtain the values of
Im at the center of each pixel. The images Im can be interpreted as a version of I after
removing the displacements described by wm−1.

The optical flow formulation to estimate the increments of flow (according to the



72 Chapter 4. Denoising and optical flow

functional (4.3.1)) at m+ 1-th resolution is given by

E (δwm) =

∫
Ω

[(
∇Im · δwm

j +
∂Im

∂t

)2
+ α

∥∥∇(wm + δwm)
∥∥2

F

]
dΩ, (4.3.26)

where δwm is the optimization variable, wm+1 = wm + δwm and Im is the warped
representation of the original image after applying the mapping given by the displacement
field wm−1. Also, the differential operator changes to track the corrections performed by
the warping process. In this case ∇ and ∂(·)

∂t are the differential operators between the
source image after the warping process and the original target image (not warped) defined
over the domain Ω. Thus, the operators only assess the variations due to the current high
frequencies of the displacement, that is, the one-pixel variations occurring in the resolution
level m.

4.3.4.4 Functional minimization

The obtained formulation for the Weickert strategy to obtain the increments of flow
at a scale m, is presented as the minimization of the following cost functional

E (δwm) =

∫
Ω

[
ψ

((
∇ρIm · δwm +

∂ρI
m

∂t

)2
)

+ αψ

(∥∥∇(wm + δwm)
∥∥2

F

)]
dΩ. (4.3.27)

The minimization is performed by solving the associated Euler-Lagrange equations (see
details in Appendix C.2) given by[

ψ′1 φ
m
ρ

(
δwm

)
∇ρIm

]
− α div

(
ψ′2∇(wm + δwm)

)
= 0, in Ω[

∇(wm + δwm)
]
n = 0, in ∂Ω (4.3.28)

where

φmρ (w) = ∇ρIm ·w +
∂ρI

m

∂t

ψ′1 = ψ′
((
∇ρIm · δwm +

∂ρI
m

∂t

)2
)

ψ′2 = ψ′
(∥∥∇(wm + δwm)

∥∥2

F

)
ψ′(x) =

1√
1 + x

κ2

.

Note that the Neumann boundary condition in (4.3.28) can be rewritten as (∇δwm) n = 0
because (∇wm) n = 0 by construction (previous resolution increments already satisfy the
boundary condition).

4.3.4.5 Numerical scheme

The numerical scheme used for solving (4.3.28), applies a Jacobi scheme for space
discretization. The convergence of the explicit formulation converge faster with a Gauss-
Seidel approach, conversely the paralellization of the Jacobi alternative proves to be more
efficient and scalable. Additionally, we incorporate relaxation in the iterative process to
accelerate convergence.

In such manner, we derive the following numerical scheme to estimate the increment
of flow (according with the multi-resolution scheme presented in Section 4.3.4.3) at the
spatial position x, as
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δun+1 = (1− β) δun + β δûn+1,

δvn+1 = (1− β) δvn + β δv̂n+1, (4.3.29)

where β is the relaxation factor and

δûn+1 =

α
∆x2L

n
u − ψ′1(Gρ ∗ (∂I∂t

∂I
∂x) +Gρ ∗ (∂Idx

∂I
dy ) δvn)

ψ′1Gρ ∗ ( ∂I∂x)2 + α
∆x2

∑
y∈N

ψ′2,y+ψ′2,x
2

,

δv̂n+1 =

α
∆x2L

n
v − ψ′1(Gρ ∗ (∂I∂t

∂I
∂y ) +Gρ ∗ (∂Idx

∂I
dy ) δun+1)

ψ′1Gρ ∗ (∂I∂y )2 + α
∆x2

∑
y∈N

ψ′2,y+ψ′2,x
2

, (4.3.30)

Lnu =
∑

y∈N
ψ′2,y+ψ′2,x

2

(
uy + δuny − ux

)
,

Lnv =
∑

y∈N
ψ′2,y+ψ′2,x

2

(
vy + δvny − vx

)
, (4.3.31)

where N are the neighbor pixels, called y, to x and all image gradients are evaluated at
x. In our particular case, we use the four closest neighbors in the Cartessian directions.
The ψ′i operator is the derivative of the function ψ introduced in Section 4.3.4.2, and is
defined as

ψ′1 = ψ′
((
∇ρI · δw +

∂ρI

∂t

)2
)

ψ′2,x = ψ′
(∥∥∥∇(wx + δwx)

∥∥∥2

F

)
Note that we avoided the multi-resolution indexation for ψ′, I, w and δw to ease the
already complex notation, but it must be remembered that equations (4.3.29) are for one
multi-resolution step only. After obtaining the flow increments, w is updated as w + δw
and I is warped with the new flow w as detailed in Section 4.3.4.3.

To solve the non-linear system (4.3.29), we use a fixed point scheme. To remove the
non-linearities, we fix the values of ψ′i functions at the current known solution δwn. The
remaining linear system is solved with the proposed set of equations. Then, we update
the value of ψ′i functions using the new solution δwn

x from the linear system and repeat
until a convergence criterion is satisfied.

For the image differential operators, we use finite difference approximations of sixth
order in space (stencils are presented in Table 4.1) and first order in time (performed by
forward differences) approximation. Also, we compute the forward differences not at the
center of the pixel but at the shared vertex with the forward neighbors (in space and time),
which results in a more robust estimation at the expense of losing locality.

4.3.5 Comparative assessment for displacement field estimation

Our main goal is the use of an optical flow method to estimate the displacement field
between two images degraded by speckle noise. Usually, the previously described methods
are validated in terms of flow orientation because flow is not used as a mapping function
between frames as in our case. For this reason, we assess the vector orientation as well as
its modulus for the Farnebäck, Zack and Weickert methods in a simple 2D example where
the displacement field is known.
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Figure 4.6: Case of study for the comparison of the optical flow methods. (Top) Images 1
and 2 of the sequence, before and after radial expansion (inflation), respectively; (bottom)
displacement field between images 1 and 2, the color of the arrows stands for the magnitude
of the displacement in pixel units.

The case of study is a ring subjected to inflation (see Figure 4.6) where the dis-
placement field is known. Using the ring image before and after the inflation, we calculate
the flow with each of the proposed methods. To perform a fair comparison, we optimize
the parameters for each method to minimize the L2 error against the ground truth of the
displacement field. The optimization for the choice of parameters is achieved by brute
force over a discretized parameter space, similar to that performed in Section 4.2.3.

As presented in Figure 4.7, the Weickert and Zach methods yield accurate flows
with mean errors of 2.59 ± 1.14% and 2.00 ± 1.39% (mean ± SD) over the displacement
field, respectively. The bigger errors with both methods are localized along the intensity
discontinuities where errors due to interpolation are expected in image processing and
acquisition stages. Overall, the methods do not degrade the solution above 6.46% and
11.64% (maximum error in the flow in Figure 4.7) for Weickert and Zach methods respec-
tively. The Fanebäck method fails to deliver a correct solution in the outer layer of the
ring due to the lack of intensity variation (as result of the small strains in this area). The
two other methods circumvent this difficult by the diffusive action of the regularization
term which fills the uncertainty flow zones using the flow from neighbor areas.

As the main outcome of this study, we choose to work with the Weickert method for
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Figure 4.7: Relative error between estimated flow and the ground truth for the ring case.
Flows estimation obtained after parameter optimization: (top-left) Farnebäck method
with neighborhood size P = 7 and σ = 1.5 for Gaussian smoothing; (top-right) TV-L1
method with τ = 0.001, α = 10 and θ = 0.5; (bottom) Weickert method with α = 0.2,
ρ = 8, β = 0.5; all methods use multi-resolution scheme 2-folding the image resolution 3
times, i. e., M = 3, (thus capturing displacements up to 15 pixels) and convergence was
achieved when absolute error variation between successive steps was smaller than 10−5.

the IVUS applications due to its more reduced error range, as well as because of the avail-
ability of in-house code and its potentiality for customization (changes to the non-linear
weight functions, regularization term, or even the data term formulation). Nevertheless,
the differences when compared to Zach are small, and further analysis and applications
could shed light on the right choice.

4.4 Performance analysis for IVUS tracking

To analyze the capabilities of the denoising strategy combined with the optical flow
method, we create synthetic images corresponding to spatial configurations of arterial
walls before and after a deformation process. To simulate a realistic deformation process,
we use an in-house numerical solver for solid mechanics [22, 41] that numerically solves,
using the finite element method, the equilibrium equations for an homogeneous, isotropic,
hyperelastic and incompressible solid bodies. The equilibrium equations for this problem
are introduced in Section 5.4.1, where only one constitutive parameter, c, defines the
hyperelastic behavior of each piece of arterial tissue.

The synthetic images are scales to a fixed lattice of 512×512 (480×480 only for the
synthetic ring case). Additionally, each node of the mesh that discretizes the domain is
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Figure 4.8: Scheme of the ring geometry and mechanical properties for the synthetic ring
case.

enriched with an intensity value. Then, for a given spatial configuration of the mesh (e.g.
before or after deformation), the intensity field of the mesh is projected over the image
lattice using bilinear interpolation functions to generate the corresponding synthetic image.

As follows, different synthetic examples aim to analyze the optical flow using the
proposed methodology. Firstly, an idealized synthetic ring without image noise is presented
to perform a sensitivity analysis of the parameters in the OF method. Secondly, a synthetic
vessel cross-section based on an in-vivo geometry (with and without image noise) is used
to evaluate the capabilities of our method to retrieve the displacement field in presence
of physiological conditions. Finally, the methodology is applied over an in-vivo pair of
images showing the obtained displacement fields, where we discuss the variations over the
flow and the possible correspondence to biological materials.

4.4.1 Synthetic ring sequence

Before applying our method to a synthetic or in-vivo model of an artery, we analyze
the sensitivity of the parameters in order to establish the correct ranges for each one of
them. As byproduct, we highlight some characteristics of the model such as flow magnitude
loss and over smoothing due to improper parameter setting.

For this purpose, we create a sequence of a ring composed of two concentric material
layers. To generate an image sequence with physical coherence, we solve the mechanical
problems at given pressure levels. Zero tangent displacements on three luminar vertexes
(location of the vertex are depicted with blue dots in Figure 4.8) are prescribed to avoid
rigid motions. The constitutive parameters and pressure values are reported in Figure 4.8.
The resulting displacement field wT will be used as ground truth to assess the capabilities
of the OF method. Finally, we project the ring mesh before and after the deformation over
an image lattice of 480 × 480 pixels, obtaining the synthetic images presented in Figure
4.9.
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Figure 4.9: Synthetic image sequence for the ring example: (left-top) frame before the de-
formation; (right-top) frame after the deformation; (bottom) radial displacement between
initial and final frame (in pixels).

The displacement field observed in the synthetic images is higher than the one
observed in coronary arteries under physiological pressure values. This example is carried
out to test the multi-resolution capabilities of the method when large displacements are
involved and also to evidence more clearly the losses in flow magnitude given by diffusion
(from the regularization term or CGL’s Gaussian convolution).

An important factor is to estimate the optimal regularization weight α. As α in-
creases, the problem is better posed although image term data is ignored in favor to
smoother solutions. Another parameter that has a similar role is the ρ for the CGL
coupling of local neighbors. As this factor increases, we indicate that there is a larger
neighborhood of pixels which share the same flow, and, therefore, smoother flows are
privileged. Sensitivity of the error in displacements and strains to parameters α and ρ is
presented in Figure 4.10. As aforementioned, lower values of α turn the problem into an
ill-posed problem (α < 0.05) where the flow is not successfully recovered. For α ≥ 0.15,
we obtain flows with mean errors of 1.5− 6% and maximum error below 16%. Also larger
values of α start to degrade the quality of the solution because of the poor contribution of
the image data term. The CGL strategy shows low sensitivity for the displacements and
improves the estimation of strains by increasing the coupled neighborhood (increase of ρ).
Conversely, the use of larger values of ρ degrades locality of the solution.

Even more, the regularization undermines the estimation of the correct flow in the
inner perimeter of the ring. As the regularization increases, we penalize spatial variations
of the flow, as if we indicate the viscosity of the flow. Such artificial viscosity does not
allow to develop the velocity profile estimated by the data term. This phenomenon can
be seen in Figure 4.11 where the solution for low values of α recovers a more accurate
description of the flow at the inner perimeter of the ring.

The non-linear weights have no significant contribution in our problem. In Figure
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Figure 4.10: Sensitivity analysis of relative errors in displacements and strains with respect
to parameters α and ρ. The values for the remaining parameters are β = 0.5, κ2 = 0.5,
M = 3 and tolerance of 1 · 10−5 using absolute error between the last two iterations. The

relative error is obtained as
|w −wT |
|wT |

for the displacements and
‖ε− εT ‖F
‖εT ‖F

for the strains.
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Figure 4.11: Example of error decrease by the relaxation of the regularization term: (top)
errors for α = 0.6 and ρ = 8; (middle) errors for α = 0.2 and ρ = 8; (bottom) sensitivity
of maximum inner radial displacement error to the parameters α and ρ. The values for
the remaining parameters are β = 0.5, κ2 = 0.5, M = 3 and tolerance of 1 · 10−5 using
absolute error between the last two iterations. w and ε are the displacement vector field
and strain tensor field respectively, and suffix (·)T stands for the ground truth data.
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Figure 4.12: Mean relative error in the displacement field and strain field for different
values of κ2 (parameter for the non-linear weights). Whiskers mark the mean standard

deviation for the entire image. The relative error is obtained as
|w −wT |
|wT |

for the displace-

ments and
‖ε− εT ‖F
‖εT ‖F

for the strains.

4.12 it is shown that the optical flow error is not significantly sensitive to variations in κ
parameter (less than 2% of error for 10−3 ≤ κ ≤ 1). Hence, the use of values smaller than
κ2 = 10−3 (the smaller κ, the less penalized the discontinuities) degrades the optical flow
estimation.

The multi-resolution parameter shows an important contribution for the flow es-
timation. For the current case, the sensitivity analysis demonstrated that using M ≥ 2
allows an estimation with displacement errors below 3%. Note that M = 2 means that the
coarser image pixels represent the mean of 4 pixels in the finer image, the next scale repre-
sents 2 pixels and the finer scale represents 1. With this value of M , solving infinitesimal
displacements (i.e. 1 pixel) at each scale yields to an effective estimation of displacements
of up to 7 pixels. As seen in Figure 4.9, the current case presents displacements up to 5.6
pixels. This is why values of M ≥ 2 estimate them correctly with only mild oscillations
due to down sampling and interpolation errors involved in the multi-resolution scheme.

4.4.2 Synthetic artery sequence based on in-vivo scenario

A more realistic synthetic case was generated based on an in-vivo geometry and
tissue distribution of the vessel obtained from an IVUS image (see Figure 4.14). Firstly,
we manually segment the vessel wall and we separate 3 areas of materials based on the
acoustic impedance of the tissues (presumably fibrotic, lipidic and calcified tissues). The
segmentation was employed to construct the vessel mesh using the softwares Salome v7.8.0
and Netgen, as shown in Figure 4.14.

Based on several experimental works that measure coronary artery elasticity in ex-
vivo conditions [28, 44, 71, 90, 168, 188, 319, 331], we summary the physiological ranges
for each coronary tissue in Table 4.2. From such ranges, we choose two synthetic sets of
parameters denominated stiffer and compliant cases. From such sets of parameters, we
solve the mechanical problem for a transmural pressure difference of 5.3 kPa, generating
two image sequences, called the stiffer and the compliant sequences (see Figure 4.15).
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Figure 4.13: Mean relative error in the displacement field and strain field for different
multi-resolution levels (M). Whiskers mark the mean standard deviation for the entire

image. The relative error is obtained as
|w −wT |
|wT |

for the displacements and
‖ε− εT ‖F
‖εT ‖F

for the strains.

Fibrotic Lipidic Calcified

Ex-vivo ranges 500− 2300 5− 400 4000− 18000
Stiff case 600 100 12000
Compliant case 500 10 4000

Table 4.2: Values of constitutive parameter c (in kPa) for coronary artery tissues.

4.4.2.1 Noiseless images

Using the sensitivity analyses presented in the previous section, we select the OF
parameters as α = 0.05, β = 0.5, ρ = 2, κ2 = 0.5 and M = 2 to solve both cases. Note
that α is smaller than in the previous case because the flow gradients magnitudes are
smaller. To estimate a suitable α, we compute the optical flow with the lowest α that
still converges to a solution and that does not present any sort of artifact (e.g. spatial
oscillations). Also, as ρ presented a small sensitivity in the previous example, we choose
to use a smaller value which allows to capture more local behavior of the flow.

As shown in Figures 4.16 and 4.18, the obtained flow is in agreement with the
ground truth in terms of displacement vector orientation and modulus. All errors are
smaller than a pixel in both cases, even in the second case where the flow magnitude
increased from 1.7 to 2.6 pixels in the calcium area. Also, it must be noticed that greater
errors (all those grater than 50%) are localized over the boundary, where the projection
and interpolation mechanisms used to generate the image may have a strong influence.
In the second scenario (the compliant case), the choice of a smaller value for ρ helped
to localize de error. In terms of the error in the strain field, they are localized over the
boundaries of the domain and in the calcium interface at the top-right direction. This is
explained by the fact that the strain over boundaries is defined exclusively in the interior
of the domain. In turn, at the interface between two different components, the strains
are discontinuous because of the jump in the material property (see Figures 4.17 and
4.19). This is why the OF method is less accurate on those internal interfaces. Although
the strain moduli disagree with the ground truth, the strain distribution is maintained,
which is key to identify different materials in the scene. This last observation will be later
explored in Chapter 6 for demarcation of tissue territories.
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Figure 4.14: Synthetic artery generation based on in-vivo IVUS images: (top) IVUS
image with segmented lumen (red), external elastic lamella (blue), lipid pool (yellow) and
calcified region (white); (bottom) mesh generated for the mechanical problem and for the
optical flow strategy, the blue dots depict the nodes with boundary conditions.
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Figure 4.15: Synthetic sequences based on in-vivo IVUS images: (top) stiffer case sequence;
(bottom) compliant case sequence. Each image of the first column presents the artery
deformation in false-color3using the color bands green and magenta for the image before
and after deformation, respectively. The second column shows the displacements (in pixels,
1px = 16µm) obtained from the mechanical problem which establishes our ground truth
for optical flow estimation.

4.4.2.2 Speckled images

The images from the previous stiff and compliant cases are now polluted with statis-
tically appropriate US noise. For this, we apply a speckle noise modeled by a generalized
gamma (GG) distribution with parameters α = 1.5, γ = 1.5 and ν = 0.8 (values that
outperform the registration process with GG MLE operator presented in Section 3.3.3)
over each synthetic image of the sequences. These sequences are denoised with the MLV
method presented in Section 4.2.2 and then the optical flow is estimated.

Previously, in Section 4.2.3, we derived the optimal denoising parameter in the sense
of intensity homogeneity for a statistically known speckle noise. Analogously, we search
for the optimal set of denoising parameter such that it minimizes the a posteriori optical
flow estimation errors. In this analysis, we use a parameter space discretization given by

P =
{

(α, a, b, c);α ∈ {1, 2, 4, 8, 16, 32}, a, b, c ∈ {0.1 · i, i = 1, . . . , 25}
}

(4.4.1)

and we minimize the mean absolute error in terms of the optical flow solution computed
as

εofd = ‖w −wT ‖L2 . (4.4.2)

Using a sequence of the speckled compliant case, we found the optimal set of parameter

3The false-color visualization creates a composite RGB image showing images 1 and 2 overlaid in
different color bands. Gray regions in the composite image show where the two images have the same
intensities. Magenta and green regions show where the intensities are different.
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Figure 4.16: Stiff case displacements for the synthetic artery model. (Top-left) Displace-
ment field, wT , obtained by solving the mechanical problem (ground truth); (top-right)
displacement field, w, obtained by solving the optical flow (OF) of the sequence (bottom-
left) absolute error of the OF displacement field against the ground truth (in pixels);
(bottom-right) relative error of the OF displacement field against the ground truth.

for α = 8, a = 1.5, b = 1.4 and c = 0.1 with an error εofd = 0.305 pixels. As shown in
Figure 4.20, the larger errors are placed on the left-top region of the artery as occurs in
the noiseless case (see Figure 4.18 but more spread. For the same sequence and using the
optimal set of parameter in the sense of pixel homogeneity (α = 4, a = 1.1, b = 1 and

c = 0.5), an error of εofd = 0.342 pixels is obtained and the bigger errors are spatially
distributed with similar patterns as the presented in Figure 4.20.

To gain insight about the denoised optical flow performance when using the optimal
parameters in the sense of optical flow error εofd , we generate 10 sequences for each case,
stiff and compliant, and with different noise instances (all instance have the same statistical
distribution, GG distribution with parameters α = 1.5, γ = 1.5 and ν = 0.8). Then, we
apply the denoising method with the parameters that optimize the sensitivity analysis
(α = 8, a = 1.5, b = 1.4 and c = 0.1) and performed a pixel-wise mean of the relative and
absolute displacement errors. As presented in Figure 4.21, the errors localize again in the
same places as in the noiseless cases, i.e., at the top-left and at the bottom left areas, and,
again, all errors are below 1 pixel obtaining a sub-pixel precision level for the method (even
in the presence of noise). The mean absolute error of the displacements obtained across
the 10 sequences was 0.34±0.07 and 0.38±0.06 for the stiff and compliant cases and from
the relative error plots of the displacements it is seen a mean error of 36.52 ± 7.1% and
31.19± 5.15% for the stiffer and the compliant cases, respectively. Looking at the relative
errors of the strains, it is seen that errors above 300% localize in the calcified tissue while
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Figure 4.17: Stiff case strains for the synthetic artery model. (Top-left) Norm of the
strain field, ‖εT ‖F , obtained by solving the mechanical problem (ground truth); (top-
right) norm of the strain field, ‖ε‖F , obtained by solving the optical flow (OF) of the
sequence; (bottom) relative error of the OF strain field against the ground truth. The
norm ‖·‖F stands for the Frobenius norm.

the remaining tissues present errors around 100%. To interpret this observation, consider
that calcified tissue undergoes smaller deformations due to its high elastic module, and
thus relative errors are more sensitive than in more compliant materials.

Note that the statistically analysis of different noise instances in the compliant se-
quence shows a mean absolute error of 0.38± 0.06 when using the optimal parameters in
the sense of OF and 0.35± 0.03 when using the optimal parameters in the sense of homo-
geneity. Obviously, the sensitivity analysis can be conducted using more noise instances
than just one to improve the parameter optimization, although this will be meaningful
when using experimentally supported noise values for the IVUS speckle, which exceeds
the focus of the current work. Although, this insight allow us to infer that the use of
the optimal parameters in the sense of homogeneity is as good as the one obtained by
OF error minimization. This last is understandable because we consider an statistically
homogeneous speckle across all tissues when really each tissue has its own statistical set
of parameters [3, 293, 327]. This consideration implies that noise is not correlated with
the tissue, then its presence is not useful for tissue tracking and, conversely, it degrades
the intensity assumption of the optical flow.
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Figure 4.18: Compliant case displacements for the synthetic artery model. (Top-left)
Displacement field, wT , obtained by solving the mechanical problem (ground truth); (top-
right) displacement field, w, obtained by solving the optical flow (OF) of the sequence
(bottom-left) absolute error of the OF displacement field against the ground truth (in
pixels); (bottom-right) relative error of the OF displacement field against the ground
truth.

4.4.3 In-vivo artery sequence

By applying the gating and registration methods presented in Chapters 2 and 3
respectively, we extract frames of vessel cross-sections that present atherosclerotic lesions
from a sequence of IVUS images. Particularly, we choose 2 lesions with low to no calcium
shadows neither stent deployment, to avoid hidden tissue and conditions of low wall pul-
satility, respectively. To maximize tissue displacements, the optical flow was estimated
between end-diastolic and systolic frames.

The in-vivo results showed larger displacements than the reported in the synthetic
cases (compare Figure 4.22 against Figure 4.16 or 4.18). Note that the displacements
in synthetic cases rely on experimental ex-vivo measurements of elastic parameters in
tissues, while there is not certainty about the relation between material properties in-vivo
and ex-vivo. Then, the in-vivo tissue properties may differ from ex-vivo measurements.
Also, the observed displacements are coherent with a radial expansion of the lumen, which
is expected from a correct flow estimation.

The norm of the stain tensor distinguishes zones with different deformations, which
can be used to establish regions composed by different materials. Case 1 (1st column of
Figure 4.22) shows three areas with major strains at OA, OB and OC which may result
in 3 materials different from the background tissue. Case 2 (2nd column of Figure 4.22)
present a calcification at OC and a thin fibrous cap between OA to OB (supported by
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Figure 4.19: Compliant case strains for the synthetic artery model. (Top-left) Norm of the
strain field, ‖εT ‖F , obtained by solving the mechanical problem (ground truth); (top-right)
norm of the strain field, ‖ε‖F , obtained by solving the optical flow (OF) of the sequence;
(bottom) relative error of the OF strain field against the ground truth. The norm ‖·‖F
stands for the Frobenius norm.

the echogenical intensity in the IVUS image), and both tissues are clearly recognizable in
the plot of the strain tensor norm.

Besides, an ultimate application of the optical flow is as input for the character-
ization of material properties, it is important to highlight that the present strain field
is an image-based elastography of the tunicas intima and media. The advantage of this
elastography method is that no radio-frequency signals are required, allowing its processing
with traditional IVUS stations. Also, the gating and registration methods diminish the
common errors of elastography or palpography due to transducer migration and rotation.

4.5 Final remarks

By using a novel denoising strategy, we managed to employ optical flow techniques
on speckled images. Studies on synthetic images, following noise models and statistics
in concordance with the state-of-the-art knowledge, showed that the optical flow was
successfully estimated with subpixel precision and a correct flow pattern.

The proposed denoising method, namely maximum likelihood variations (MLV), fea-
tured promising capabilities to enhance the signal-to-noise ratio of the IVUS images. The
comparisons of MLV against the state-of-the-art method (TVL1) suggested an improved
performance of our method yielding larger speckle reduction in terms of image homogeneity
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Figure 4.20: Denoising and optical flow estimation using the best denoising parameters
(α = 8, a = 1.5, b = 1.4 and c = 0.1) in the sense of the error εofd . The image sequence
is generated using the compliant parameters set and the speckle noise is generated with a
generalized gamma distribution with parameters α = 1.5, γ = 1.5 and ν = 0.8. Optical
flow (OF) is computed with parameters α = 0.05, β = 0.5, ρ = 2, κ2 = 0.5 and M = 2.
(Top-left) First image of the generated sequence; (top-right) first image of the generated
sequence after denoising; (middle-left) absolute error of the OF displacement field against
the ground truth (in pixels); (middle-right) relative error of the OF displacement field
against the ground truth; (bottom) relative error of the OF strain field against the ground
truth. The norm ‖·‖ stands for the Frobenius norm.
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Figure 4.21: Mean errors along 10 different speckled sequences for the stiff (left column)
and compliant (right column) cases. The denoising and optical flow parameters were the
same as in Figure 4.20. (Top) Absolute error of the optical flow (OF) displacement field
against the ground truth (in pixels); (middle) relative error of the OF displacement field
against the ground truth; (bottom) relative error of the OF strain field against the ground
truth. The norm ‖·‖ stands for the Frobenius norm.



4.5. Final remarks 91

✶✺✵ ✷✵✵ ✷✺✵ ✸✵✵ ✸✺✵
✵

✶

✷

✸

✹

✺

✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵

✶✺✵ ✷✵✵ ✷✺✵ ✸✵✵ ✸✺✵
✵

✵✳✺

✶

✶✳✺

✷

✷✳✺

✸

✸✳✺

✹

✹✳✺

✺✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵

✶✻✵ ✶✽✵ ✷✵✵ ✷✷✵ ✷✹✵ ✷✻✵ ✷✽✵ ✸✵✵ ✸✷✵ ✸✹✵ ✸✻✵
✵

✵✳✺

✶

✶✳✺

✷

✷✳✺

✸

✸✳✺

✹

✹✳✺

✺
✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵
✶✻✵ ✶✽✵ ✷✵✵ ✷✷✵ ✷✹✵ ✷✻✵ ✷✽✵ ✸✵✵ ✸✷✵ ✸✹✵ ✸✻✵

✵

✵✳✺

✶

✶✳✺

✷

✷✳✺

✸

✸✳✺

✹

✹✳✺

✺

✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵

✶✻✵ ✶✽✵ ✷✵✵ ✷✷✵ ✷✹✵ ✷✻✵ ✷✽✵ ✸✵✵ ✸✷✵ ✸✹✵ ✸✻✵
✵

✵✳✵✺

✵✳✶

✵✳✶✺

✵✳✷

✵✳✷✺

✵✳✸

✵✳✸✺

✵✳✹
✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵
✶✻✵ ✶✽✵ ✷✵✵ ✷✷✵ ✷✹✵ ✷✻✵ ✷✽✵ ✸✵✵ ✸✷✵ ✸✹✵ ✸✻✵

✵

✵✳✵✺

✵✳✶

✵✳✶✺

✵✳✷

✵✳✷✺

✵✳✸

✵✳✸✺

✵✳✹

✶✻✵

✶✽✵

✷✵✵

✷✷✵

✷✹✵

✷✻✵

✷✽✵

✸✵✵

✸✷✵

✸✹✵

✸✻✵

O

A

B

C

O

A

B

C

Figure 4.22: Optical flow estimation for two in-vivo image sequences (one case per col-
umn). (1st row) First (diastolic) frame of the sequence; (2nd row) optical flow estimation;
(3rd row) modulus of the displacements (|w|); (4th row) Frobenius norm of the strain
tensor (‖ε‖F ). The denoising is performed with the optimal parameters in the sense of
homogeneity (α = 4, a = 1.1, b = 1 and c = 0.5) and optical flow is estimated with
parameters α = 0.01, β = 0.5, ρ = 2, κ2 = 0.5 and M = 4.
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and preservation of the original intensity values. In Sections 4.2.3 and 4.4.2, we estab-
lished a mechanism based on sensitivity analysis to derive a convenient set of denoising
parameters for noise with known statistical distribution. By improving noise models for
IVUS images, the MLV will be benefited with more appropriate noise penalization.

Related to the optical flow, it is important to highlight that the estimated flow was
directly interpreted as tissue displacement. This may not be the case in some scenarios.
Artifacts or scene objects, such as guidewire artifact, calcium shadows and nonuniform
rotational distortion (NURD), hide zones of tissue within the image hindering a direct
tissue tracking. However, impact of these objects can be reduced, e.g., the guidewire
can be removed before IVUS acquisition by the physician, NURD affected sections can
be reacquired and results over calcium shadows and NURD sections can be indicated as
invalids.

As the techniques presented in this chapter introduce novelty in arterial tissue track-
ing and featured better denoising than state-of-the-art techniques, further research will be
conducted specifically in two lines: (i) experimental characterization of the tissue depen-
dent speckle noise for IVUS; and (ii) optical flow in sequences.

For the first research line, the speckle generated over the synthetic images in Section
4.4.2 has to be improved using statistically different speckles for each kind of tissue. From
the works of [293, 327], it is known that the speckle statistics are related to the tissue
composition, but the lack of experimental data for vessel wall constituents (values of
GG distribution coefficients for each tissue) hinders a coherent noise generation. Then,
more experimental data to model the IVUS noise statistics is of paramount importance.
Particularly, controlled experiments with ex-vivo specimens, where histology and IVUS
data are registered, would allow the characterization of noise signature in each tissue. This
would open new research horizons in US images improving image-based segmentation and
speckle tracking (as a variation of OF that relaxes the intensity constraint) techniques.

As for the second research line, observe that we have estimated the flow between
two frames, and longer sequences can be decomposed in series of frame pairs to estimate
the flow at all instants. However, note that the sequence delivers a time coherent flow
pattern that would not vary drastically along the cardiac cycle. Thus, there is a temporal
consistency in the flow that can be exploited to estimate the sequence flow in a more
robust manner. Some approaches have been tested along the development of this work
but, yet, more research must be developed around this topic.

Finally, the optical flow coupled with the MLV method was capable to successfully
deliver an accurate displacement field, as well as the associated strain field, which endows
the IVUS study with kinematic information. As a matter of fact, such kinematic informa-
tion now attached to the IVUS images makes possible to address the problem of in-vivo
tissue characterization as will be seen in forthcoming chapters.
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Chapter 5

Anatomy and mechanical models

In the last decade, the technological advances in image acquisition equipments and
imaging techniques allowed the visualization of the arterial wall architecture at scales and
conditions that revolutionized the understanding of its behavior, organization, remodeling
and composition. At the same time, the sustained increase of computational power in low
cost equipments enabled the construction of complex mechanical models to perform realis-
tic fluid-structure interaction simulations that integrate physiological conditions, detailed
vessel wall structures and complex hemodynamics phenomena [22, 41].

In this chapter, we present state-of-the-art knowledge about the anatomy of the
arteries with special focus on the coronary arteries. Also, we detail the atherosclerotic
plaque composition that is utmost important to model a stenotic arterial wall. By detailing
the underlying composition and organization of the wall in coronary arteries, we derive
constitutive models and make assumptions for each constituent material supporting such
hypotheses with experimental findings reported in the literature.

Also, we introduce the equilibrium equations for the arterial wall that will allow the
characterization of the wall constituents to be performed in Chapter 6.

Finally, we detail the pipeline followed to create a geometric model of the arterial
wall from an IVUS image. To appropriately instantiate the presented models, we report
the ranges for the physiological and constitutive model parameters in coronary arteries.

5.1 Arterial wall anatomy

The arterial wall is conformed by different types of vascular cells embedded in the
denominated extracellular matrix (ECM).

The ECM is composed by several macromolecules (such as elastin, collagen, fi-
bronectin, laminin) immersed in a hydrated gel endowed with intertwined glycosamino-
glycans/proteoglycans (GAGs/PGs) chains. The collection of these components creates
an organized structural network for scaffold, connectivity, locomotion and control of the
in-housed cells [9]. The specific infrastructure of the ECM enables the degradation, pro-
liferation and migration mechanisms necessary for the remodeling and maintenance of the
wall. Mechanically, the collagen and elastin fibers are the principal ECM components that
resist tensile forces while glycosaminoglycans and elastin resist compressive forces. The
GAGs/PGs chains also contribute to the viscoelastic behavior of the vessel wall, principally
in the elastic arteries (e.g. the larger arteries). Their principal function is to maintain
shape and sustain the stress generated by pulsatile forces [258]. For these reasons, the
distribution and quantities of such components are of paramount importance to model a
correct mechanical response. In fact, GAG/PGs content tends to increase in hypertension,
aging, atherosclerosis and thoracic aortic aneurysms and dissection [151, 268, 272, 346],
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evidencing that such components are important contributors to arterial morphogenesis,
homeostasis and pathogenesis.

The vascular cells, such as endothelial, smooth muscle and fibroblast, establish the
dynamic functionality of the vessel. The endothelial cells are the interface between the
vessel wall and the blood. This interface controls the passage of diverse substances (im-
munologic cells, chemical signal, nutrients, water, among others), sense and mechanotrans-
late (into chemical signals) shear forces imposed by the blood viscous drag and control the
vasomotor tone by releasing vasoconstrictors or vasodilators based on hormonal or me-
chanical stimuli [4, 269, 276]. The smooth muscle endows the vessel with muscular active
capabilities to vary its basal diameter, being capable to contract or relax in response to
neural, chemical or mechanical stimuli. Particularly, chemical stimulus can be triggered
by the endothelial vasodilators or vasoconstrictors. Such interdependence between these
cells allows to act in a wider (and also more complex) range of scenarios along different
parts of the arterial wall. Due to the variation of the vessel diameter, smooth muscle cells
regulate the blood pressure and blood flow distribution [11] orchestrated by local stimuli,
the endocrine system or the autonomic nervous system. Lastly, the fibroblast cells are the
source of many of the ECM constituents and so are essential for the maintenance of normal
tissue architecture. They also synthesize a variety of proteolytic enzymes and inhibitors,
which enables them to control the assembly and turnover of the ECM [221]. Fibroblasts
display different phenotypes according to their anatomical site and the underlying ECM
state (mechanical and chemical conditions of their environment).

The quantities and distribution of these constituents vary with several factors such
as age, type of artery and health condition. For example, the medial layer in a healthy
middle aged human consists of approximately 23% elastin, 30% collagen, 43% smooth
muscle, and 4% GAGs/PGs by dry weight (in ascending thoracic aortic, [152]) and in a
murine (rodent) consists of approximately 26% elastin, 50% collagen, 21% smooth muscle,
and 3% GAGs/PGs (in common carotid artery, [31]). Is important to highlight that the
architecture and composition of the arterial tunica media do not vary substantially among
mammals [339, 340], the structure increases the amount of material layers (as we see later,
the denominated lamellar unit) to resist bigger or smaller efforts, hence the percentage of
materials remains the same.

5.1.1 Arterial wall architecture

The arterial wall is composed by three distinctively concentric layers denominated
as tunicas (see Figure 5.1). In each of these layers, material is organized in specific con-
figurations to provide distinctively functions. Their sizes and proportions vary depending
on the vessel size, type (elastic or muscular) and anatomical locus.

The tunica intima is the inner most layer which defines the lumen of the vessel. As
principal functions, it controls the passage of nutrients, chemical signals and immunologic
cells and acts as a mechanotransducer for blood viscous forces. It is mainly composed by
endothelial cells collagen and elastin.

The tunica media is the middle layer and is composed by several concentric units
denominated lamellar units. These units present smooth muscle cells arreanged circum-
ferentially which allows to control the vascular tone for contraction and dilatation of the
lumen. This mechanical active capability is key for regulating pressure and blood flow
under different systemic states.

The tunica adventitia is a diffusive layer that is the interface between the vessel
and the connectivity tissue. The layer offers scaffold for the tunica media and also houses
fibroblast cells that maintain and remodel the ECM constituents in healthy and specially
in pathological conditions.
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Figure 5.1: Fluorescence microscopy of a human left vertebral artery detailing the tunica
intima, media and adventitia (from left to right). Immunohistochemical staining of the
arterial wall reveals elastin (green) localized in the internal elastic lamina, cell nuclei (blue,
DAPI stain), collagen fibers (red). Reprinted from [276] with permission from Elsevier.

Next, we present the composition of each layer to understand the disposition, func-
tion and relationship among the vessel components.

5.1.2 Tunica intima

The tunica intima is composed by three layers: endothelium, basement membrane
and subendothelium. Additionally, the endothelial layer is coated by a hair-like glycocalyx
layer. In what follows, we detail the composition and main characteristics of each of these
constituent layers.

Glycocalyx

The glycocalyx is a polymeric network localized at the apical surface of the endothe-
lium. It acts as a permeable barrier for the macromolecules and regulates leukocytes and
thrombocytes adhesion using different kinds of enzymes and proteins. In that manner it
controls the homeostasis of the plasma and vessel wall. Another important role are its
mechanical sensor capabilities. Due to its fuzz-like geometry, the glycocalyx senses shear
forces from the luminar area. One example is the adhesion of leukocytes that exert this
kind of forces, and the glycocalyx reacts by releasing nitric oxide to free the leukocyte.
Nevertheless, the response may not be purely local to such forces because the anchorage of
the glycocalyx to the endothelial cytoskeleton allows to communicate such forces to other
components of the wall, as presented in Figure 5.3. This is the case of the blood flow where
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Figure 5.2: (Left) Microscopy depicting the cross-section of a capillary vessel with it
glycocalyx layer; (right) microscopy image of the glycocalyx. Reprinted from [276] with
permission from Elsevier.

shear stress is sensed by the glycocalyx and, then, can be acknowledged by several vessel
wall components due to chemical (cytokines) or mechanical signals. Several authors have
proposed association between certain patterns of wall shear stress or glycocalyx thickness
and atherosclerotic plaque development [69, 82, 177, 190, 206, 350]. The link between
these associations is that the wall shear stress determines the renewal and degradation
of the glycocalyx layer [276], e.g., high cholesterol diet has been shown to reduce the
glycocalyx thickness in murine carotid artery [317]. In this scenario, the glycocalyx could
be an important actor in the genesis and progression of the atherosclerotic plaque.

Endothelium

The endothelium is a single cell thick layer of endothelial cells that acts as interface
between the blood and the cardiovascular tissues. Within its numerous physiological
functions, we can mention the control of vasomotor tone, blood cell trafficking, hemostatic
balance, permeability, proliferation, survival, and innate and adaptive immunity. Also,
it is of paramount importance for sensing and reacting to mechanical stimuli triggered
by local hemodynamic conditions. As previously presented, the glycocalyx transmits the
shear forces exerted by the blood flow over the endothelial cell surface. Nevertheless, as
illustrated in Figure 5.3 this is not the only mechanism to sense such forces [227, 271].
There are three principal groups of mechanosensors working directly with the endothelial
cells: the membrane structures (ion channels, glycocalyx, prima cilia, tyrosine kinase
receptors, caveolae, G proteins and endothelial cytoskeleton), cell-cell adhesion complexes
and cell-matrix adhesion complexes.

The biochemical signals, the vessel wall state and the local hemodynamic condi-
tions (sensed by the previously mentioned mechanisms) determine the endothelial cells
phenotype. This behavior varies at different organs, vessels or even between neighboring
endothelial cells. Even though, two main phenotypes can be considered: a quiescence and
an active one. The former stimulates vasodilation, inhibits leukocyte adhesion, platelet ag-
gregation and exhibits anti-inflammatory, anti-coagulant, anti-adhesive, anti-proliferative
and anti-oxidant characteristics. In turn, the latter one generally consists of some combi-
nation of increased cell adhesiveness, shift in hemostatic balance to the procoagulant side,
secretion of inflammatory mediators and change in cell survival/proliferation [276]. The
healthy endothelium presents phenotypic heterogeneity along the cardiovascular tree due
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Figure 5.3: Diagram depicting the principal mechanotransducer in the cell and actors in
the communication and stimulus reaction processes: (A) ion channels; (B) glycocalyx;
(C) cell-cell adhesion complexes; (D) cell-matrix adhesion complexes; (F) intracellular
cytoskeletal components; (G) cell nucleus senses the mechanical signals and modulate
an appropriate response; (H) changes in inter-cellular space is cell-type specific, influ-
encing the concentration of signaling molecules/ proteins that bind cell-surface recep-
tors. Reused from https://www.mechanobio.info/what-is-mechanobiology under creative
commons attribution-noncommercial-ShareAlike 4.0 International License with permission
from MBInfo.

to the changes in the hemodynamic conditions, vessel topology and structure [6]. Con-
versely, dysfunctional endothelium (associated with pathological cases) present a preva-
lence of quiescent phenotype [4, 5]. Phenotypic heterogeneity is likely to provide at least
2 evolutionary advantages: (1) it allows the endothelium to comply to the diverse needs
of the underlying tissues throughout the body; and (2) it provides the endothelium with
the capacity to adapt to different microenvironments [6].

Basement membrane

The basement membrane is a thin lamina endowed by an underlying reticular con-
nective tissue which anchors the endothelium to the vessel wall. It is mainly composed by
elastin and collagen arranged in a network of fibers. Additionally to its supporting role,
the membrane aids in the angiogenesis inhibition, endothelial cells migration and stores
diverse types of cytokines (e.g. growth and degradation enzymes).

Subendothelium

In some elastic arteries (such as coronary arteries), an extra thin layer separates the
basement membrane and the internal elastic lamella. It is composed by different types of
collagen and dispersed smooth muscle cells. It plays an anti-thrombotic role that is related
to the presence of an anti-thrombogenic type of collagen (collagen VIII) in its structure.
In elder patients (71.5± 7.3 (mean ± SD) years old), the mechanical contribution of this
structure plus intima components is relevant for the load bearing capacity and mechanical
strength when compared to the media and adventitia layers. [145, 276].
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5.1.3 Tunica media

The media tunica is composed by concentric layers of smooth muscle cells and fenes-
trated elastic lamellae which are grouped in the denominated lamellar units. In the large
vessels, the relation between the total number of these lamellar units and the vessel radius
is nearly proportional. The tension per aortic lamellar unit is nearly constant, regardless
of vessel diameter or media layer thickness [340]. In fact across mammalian species the
load per lamellar unit features small variability of capacity to bear load (1.1 N/m to 3.1
N/m) [340], which seems to be an optimal trade-off (due to natural selection) for the tissue
to bear the load without degrade its integrity while maintaining an adequate compliance
for a constant diastolic blood flow in arterioles. The most inner and outer tunicas re-
ceive a special denomination: the internal elastic lamella and the external elastic lamella.
Respectively, they separate the tunica media from tunica intima and adventitia.

Internal and external elastic lamellae

The elastic lamellae are fenestrated membranes of elastin fibers. They restrict the
migration of smooth muscle cells while its fenestrae (voids in the membrane) enhance the
transport of water, nutrients and electrolytes between the different vessel layers. Two
elastic lamellae can be highlighted due to their localization in the tunica media: the
internal elastic lamella (IEL) that separates the tunicas media and intima; and the external
elastic lamella (EEL) that separates the tunicas media and adventitia. The latter lamella
is thicker than the former and van Gieson’s stain imaging showed the EEL to be fibrous
instead of forming a continuous band [283].

The deterioration of the IEL has been focus of studies aimed to understand its role in
the atherosclerosis genesis and progression. Particularly, aging and other pathologies, such
as atherosclerosis, have shown to increase the fenestrae area diminishing the stiffness of the
lamella [122, 178] and its barrier capabilities. Also, [216] reports that thickening of IEL
and disappearance of EEL are encountered in areas with frequent stenoses development.

Lamellar units

The lamellar units play a fundamental role in active and passive mechanical behavior
of the vessel wall. A set of these units are piled concentrically forming the tunica media as
displayed in Figure 5.4. The amount of lamellar units in the tunica is associated with the
pressure load that the vessel supports from the blood in the lumen [341]. The principal
components of these units are: the smooth muscle cells (SMC), collagen fibrils, elastin,
micro-fibrils and GAGs/PGs chains.

Most lamellar units contains a single layer of SMCs embedded in the so called
interlamellar matrix (largely composed by GAGs/PGs chains) that separates the cells to
the elastic lamellae at both sides. Even though, the SMCs are anchored to the lamellae
by a bundle of micro-fibrils denominated oxytalan (Ox) fibers. In fact, the union between
SMC and Ox is considerably strong, remaining its bond stable even in stretched and
disrupted specimens from dissected aortas [93]. The SMC can alternatively be anchored
in its longitudinal ridges by elastin protrusions of the lamellae (see Figure 5.5). A basal
lamina-like envelop the SMC leaving only small parts (if any part at all) of the cells
being directly exposed to the ECM. This lamina-like layers could often be seen to connect
adjacent SMCs, bridging the gaps separating them. These three prescribed anchorages of
the SMC allow the reduction of the vessel wall and luminar areas when SMC contracts
longitudinally (active response). Also, they present a passive viscoelastic response to
traction forces due to luminar pressure rate increments [142, 186]. Usually, SMC are
presented as contractile cells, although there is a spectrum of phenotypes, ranging from
the quiescent (contractile) to a proliferative (synthetic) phenotype. Synthetic SMCs are
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Figure 5.4: Photomicrographs of the left common carotid artery cross-section correspond-
ing to an adult, male, Japanese white rabbit. From the internal elastic lamella until the
unorganized tissue, concentric layers of lamellar units are depicted. Reprinted from [215]
with permission from Wolters Kluwer Health, Inc.

capable of synthesizing large quantities of ECM, exhibit higher growth rates and higher
migratory activity than contractile SMCs and are essentials when vessel remodeling or
repair is needed [270].

From the elastic lamellae numerous streaks of elastin protrude, conforming a complex
network in the lamellar unit (see Figure 5.6). This elastic network is connected to the
elastic lamellae only at a limited number of places and loosely envelope the smooth muscle
cells [93]. Closely to the elastic lamellae, the collagen is deployed in two families of fibers of
longitudinally symmetric directions [289]. The orientation of these collagen families varies
greatly across the cardiovascular system, from places such as the aorta thoracic artery
where they are oriented at 45 degrees with respect to the longitudinal axis to the common
illiac arteries where they are oriented circumferentially. Clearly, the orientation influences
notoriously the passive contribution of these fibers to pressure increments. Particularly,
healthy coronary arteries exhibit a circumferential orientation of its fibers, although due
to atherosclerotic lesions, these fibers adopt more longitudinal orientations [250].

5.1.4 Tunica adventitia

The tunica adventitia presents a less defined organization in comparison to the other
tunicas. It is composed by collagen, elastin, vascular cells and perivascular nerves, who
are embedded in the adventitial EMC. Collagen is wavier than in the tunica media and
does not necessarily present the same orientation. As seen in Figure 5.7, the elastin and
collagen fibrils are grouped in bundles with no particular architecture. The predominant
vascular cells in this region are fibroblast, myofibroblast and progenitor cells, but also
a resident populations of macrophages, T-cells, B-cells, mast cells, and dendritic cells
is present for surveillance and innate immune functions. Fibroblasts participate in the
maintenance and homeostasis of the vessel wall, but also they differentiate (as well as
resident progenitor cells) toward a migratory and contractile myofibroblast phenotype
during vessel inflammation [100, 130]. The resulting myofibroblasts migrate to the inflamed
tissue to produce cytokines, growth factors and proteases in pathologic conditions such as
tissue repair, fibrosis, pathologic organ remodeling, and cancer [100, 249, 259, 301].

Until few years ago, the adventitia functions were only thought to be the contribution
to the maintenance and homeostasis of the vessel wall and the passive structural support
for the blood vessel to prevent overstretch of the arterial wall under acute loading condi-
tions [332]; nonetheless, it is also a major site of immune surveillance and inflammatory
cell trafficking and harbors a dynamic microvasculature, the vasa vasorum, which main-
tains the medial layer and provides an important gateway for macrophage and leukocyte
migration into the intima [203]. Additionally, it is a stem/progenitor cell niche in the
artery wall that maintains both endothelial and mural cell progenitors that may be poised
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Figure 5.5: Lamellar unit detail. Simplified, schematic representation of two smooth
muscle cells (SMC) and two elastic lamellae (EL) with their interconnections. Bundle of
collagen fibers (Coll) are closely disposed to the elastic lamellae. Longitudinal surface
ridges (but not main cell body) of left smooth muscle cell are connected to both lamellae
via long, thin elastin protrusions. For sake of clarity, these protrusions have been depicted
far more regular and solid than they appear in human material. Right smooth muscle
cell is connected to lower elastic lamella via oxytalan fiber (Ox) that contains fibrillin and
type VI collagen (and, especially near smooth muscle cell, also some fibronectin). Thin,
fibronectin-positive basal lamina-like layer covers most of cell surface and, in addition,
bridges gap between cells. Next to basal lamina-like layers, larger deposits (D) containing
type IV collagen and heparan sulfate proteoglycan are found especially at indentations of
cell surface. Figure reprinted from [93] with permission from John Wiley & Sons.

Figure 5.6: Cross-section of the tunica media of a mouse aorta (1500×) depicting lamellae
and interlaminar elastic fibers. Reprinted from [276] with permission from Elsevier.
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Figure 5.7: (Left) Tunica adventitia of a common carotid artery in a rabbit, imaged using
multi-photon microscopy revealing elastin fibers (green) and tortuous collagen fibers (red),
bar = 50µm; (right) scanning electron microscope image of elastin (E) and collagen (C)
fibers in adventitia of a mouse aorta. Reprinted from [276] with permission from Elsevier.

to respond to arterial injury; and, also, connects the vessel with the surrounding tissues
exchanging signals and cells [59, 148, 203, 204, 253, 352].

5.1.5 Material behavior of vessel constituents

From the arterial architecture described in the previous section, the most mechani-
cally relevant constituents are the elastin (elastic fibers and lamellae), GAG/PGs, collagen
fibers and SMCs. For each specific artery in the cardiovascular system, the distribution,
orientation and quantity of these constituents varies and also does the size or even the
presence of each tunica. As the architecture describes, the distribution of these elements is
different for each tunica, leading to heterogeneous mechanical behaviors for the materials
across the wall.

The elastin resists tensile and compressive forces and endows arteries with exten-
sibility, elastic recoil, and resilience. Most of the elastin is deposited and arranged dur-
ing the perinatal period and its regeneration or synthesis after puberty is very limited
[88, 276, 326], thus potential reparative processes are generally ineffective [24, 173, 315].
Therefore, damage to the arterial elastin components from causes such as supraphysi-
ological loading during angioplasty or fatigue damage during aging cannot be properly
repaired [276]. Due to its deposition in early stages of life, it is assumed to be the main
responsible for arterial residual stresses (in collaboration with the GAG/PGs, [26]) and
axial pre-stretches [60, 124, 308, 351]. The former appear to maintain a nearly constant
transmural distributions of circumferential stress under physiological loads [76, 197, 266]
and, together with the latter, contribute significantly to arterial homeostasis [315]. In
healthy normotensive conditions, elastin stores most of the elastic energy at lower pressure
and axial load levels, endowing the artery with high flexibility [131] at this regime.

The GAG/PGs only represent 2 − 5% of the dry weight of a normal elastic artery,
even though, it brings an important mechanical contribution. Some of the PG are neg-
atively charged compounds that are heterogeneously distributed across the arterial wall
(presenting a greater concentration in the tunicas intima and media than in the adventitia)
[337, 347]. As result of this transmural heterogeneity of fixed-charge density, a Donnan
swelling pressure is provoked which contributes to the residual stresses within the arterial
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wall [26, 181, 209, 277, 278]. In turn, residual stresses play key roles in homeostasis as
well as adaptations to altered hemodynamics [150]. It is hypothesized that consequent
pressurized intralamellar spaces present tensed radial elastin fibers attaching SMC to the
elastic laminae, facilitating the transmural mechanosensing capabilities of such muscular
cells [277]. Hence, GAG/PGs (particularly Hyaluronan) sequesters considerable water
into the ECM, contributing to the compressive stiffness and viscoelastic behavior of the
arterial wall.

Collagen fibers are a key constituent that only resists tensile forces and, in contrast
to the elastin fibers, they are deposited and rearranged along the whole lifetime. Great
proportion of these fibers are in a wavy unloaded state at low strains in normotensive
conditions. As axial tensile forces are exerted to these fibers during the increase of strain,
they are progressively recruited1 bearing most of the load. This material is notoriously
stiffer than other ECM constituents (ultimate tensile strength in the range 50− 100 MPa,
[114]), endowing the mechanical response of the wall with a non-linear behavior [56, 136,
275]. As shown in Figure 5.1, the collagen is present in the three tunicas, being wavier
in the adventitia. This architectural characteristic prevents the overstretch of the arterial
wall under acute loading conditions [332]. Collagen fibers are organized in two families
helically wound along the arterial axis and symmetrically disposed with respect to such
axis. The angle between the families follows a distribution that varies between tunicas
and arteries [144]. In most arteries, the distribution presents two marked axis-symmetrical
modes that allow to simplify the characterization of collagen behavior to two families with
homogeneous orientation [143, 144]. The angulation of the fibers appears to be closer to
the axial direction in the adventitia, closer to the circumferential direction in the media
and in between in the intima, where a third and even a fourth family may arise in the
circumferential and axial directions (study performed in thoracic and abdominal aorta
and common iliac arteries) [290]. This fiber distribution promotes a different anisotropic
behavior in each tunica. Three hypotheses were proposed to explain the specific collagen
fiber orientations:

• The fibers are aligned so that, under the mean pressure and an axial pre-stretch, the
transmural gradient of the maximum principal Cauchy stress is minimized [113].

• The fibers are adapted during the remodeling process so that the artery layers have
optimal load-bearing capability. For this, the two families of collagen fibers are
aligned between the principal stretch directions as dictated by the ratio of the mag-
nitudes of the two largest principal stresses [128].

• The fibers are aligned so that the minimum of total potential energy (composed by
the sum of the elastic energy stored in the deformed body and the potential energy
of the applied forces) is optimized with respect to the angles of the fibers in the
tunicas media and adventitia [325].

Particularly, in [263] all three hypotheses were tested for common iliac arteries, recovering
the angles observed in previous experiments [290].

The smooth muscle has active and passive mechanical contributions. As previously
stated, active SMC endows arteries with the capacity to control the inner radius [315] and,
at homeostasis, they are partially contracted (such contraction level is usually referred as
basal tone). Along the cardiac cycle, they are cyclically stretched by 10% with a 25-50%
mean strain in the healthy arterial wall [219]. Peak force development of these cells
occurs at typically ≈ 90% of their distended passive diameter at 100 mmHg, and allows

1The term recruit stands for the moment at which the fiber is completely stretched and axial strains
occur in its structure.
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constriction up to 200 mmHg [276, 316]. Significant softening occurs when contractile
SMCs change to a synthetic state. For SMCs obtained from rat and rabbit thoracic aortas,
the normalized stiffness decreases up to 25% and up to 50% after phenotype transformation
[226, 236]. This is explained by the structural cell changes between phenotypes, i.e.,
few filament bundles (which enrich the cell with stiffness) and large amounts of highly
deformable organelles in the synthetic SMC. There is scarcity of data about quantification
of the viscoelastic behavior of these cells. Between the few works that addressed this
issue, [219, 237], conducted stress relaxation tests for SMCs in cultured rat aortic (with
no lesions) following rapid stretching with a strain rate of 10%/s. Normalized stiffness
measured in the rapid stretch phase was 12.7 ± 2.2 (kPa, mean ± SD, n = 11) and was
almost 4 times the stiffness obtained in the quasi-static tensile test. The strain rate in the
artery wall during pulsation is ≈ 10%/s.

5.2 Atherosclerotic plaque anatomy

The atherosclerotic plaque is an intramural accumulation of intracellular and extra-
cellular lipids, macrophages, T-cells, smooth muscle cells, proteoglycan, collagen, calcium,
and necrotic debris, in a vessel. The mechanisms that provoke its genesis and progression
are still active fields of research. Two hypotheses about the vascular inflammation that
initiates the lesion genesis have been proposed, namely the inside-out and outside-in.

In the inside-out hypothesis, the vascular inflammation is initiated and evolved due
to endothelial events and the associated humoral and phenotypic responses. The arterial
sites with low or oscillatory endothelial shear stress, located near branching points and
along inner curvatures in the cardiovascular system, are likely to present adaptive intimal
thickening [291, 305] where the rate of lesion progression remains higher there than at
other arterial sites. The low wall shear stress presents an association (yet not completely
understood) to the disease initiation due to the injury of the endothelial cells [70]. The
affected endothelial cells change from quiescent to active (pro-inflammatory) phenotype
in which cell adhesiveness and secretion inflammatory mediators are increased. As result,
monocytes homing to the endothelium start to adhere and eventually transmigrate into
the vessel wall [191]. Hence, low density lipids (LDLs) in the circulation accumulate
in macrophages on the intimal surface and transmigrate to the tunica intima, initiating
an inflammatory process [202]. Here, the LDLs molecules are modified by oxydation
and aggregation [307] stimulating the adaptive immune response (endothelial cells and
SMCs turns to active phenotype, chemoattractants and growth factors are released which
stimulate the monocytes homing, migration, and differentiation into macrophages and
dendritic cells [30]). The macrophages and dendritic cells present in the lesion serve as
deposit of intramural lipids and become foam cells due to mechanisms that are not fully
understood [30, 306]. In addition, groups of foam cells form xanthomas (harmless and
fully reversible if the stimuli that caused their formation dissipates) which, if located,
at sites with accumulation of acellular lipid-rich material, may develop into progressive
atherosclerotic lesions [30] due to the formation of necrotic cores.

Conversely, in the outside-in hypothesis, the vascular inflammation initiates in the
adventitia and advances toward the intima [298, 338]. As reported in [202], several studies
have shown increased vasa vasorum neovascularization [123, 135] and macrophage pres-
ence [233] in the adventitia after vessel injury but prior neointimal development. The
vascularization delivers a conduit for inflammatory cell transport into the vessel wall to
promote chronic inflammation and plaque neovascularization, while the adventitia and
perivascular tissue become highly populated with neutrophils, macrophages and apoptotic
cells [35, 292]. The fibroblasts also located at the adventitia, begin to proliferate, secreting
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Strain (%) CeFb (n = 12) HyFb (n = 9) Ca (n = 5)

1 183± 248 1740± 2630 871± 1720
4 594± 656 4110± 5140 2860± 5500
8 1680± 1870 10700± 13800 7220± 13300
12 3380± 3800 21100± 28600 13500± 24300

Table 5.1: Static circumferential modulus (in kPa) for human aortic plaque constituents
reported in [198].

extracellular matrix (ECM) and collagen proteins. Particularly, some fibroblasts differen-
tiate into myofibroblasts (see Section 5.1.4) and migrate inward to the intima to generate
a neointimal tissue [30]. Once in place, myofibroblasts deposit collagen until apoptosis
induced by the cytokine Transforming Growth Factor-β (this mechanism presumably reg-
ulates contractile remodeling by self-limiting excessive ECM deposition). Paradoxically,
TGF-β is a chemoattractant for myofibroblasts [205] which counteracts the previous regu-
lation processes. The fibroblasts that proliferate in the adventitia, self-regulate their own
synthesis mechanisms for collagen to avoid excessive local stiffening of the media [261].
As the myofibroblasts start the deposition of ECM materials, an orchestrated expression
of cytokine and inflammatory molecules (yet not completely understood) starts the in-
flammatory/wound healing process where chemoattractants for monocytes and leukocytes
induce the immune cells migration to the intima [156].

By either mechanism (or other yet unknown process), the atherosclerotic plaque
is generated in the tunica intima. In Figure 5.8, it is depicted such plaque in murines
featuring an heterogenenic composition. Three components are discriminated due to their
different mechanical behavior: the fibrotic tissue, the lipidic tissue (Lip), and the calcified
tissue (Ca). The fibrotic tissue can even be disaggregated in two additional categories: the
hypocellular fibrotic (HyFb) tissue which is mainly composed by ECM and collagen fibers;
and the cell rich fibrotic (CeFb) tissue similar to the former with the aggregation of smooth
muscle cells originated in the inner media [312]. As presented in Figure 5.8, the former
fibrotic tissue is reactive with haematoxylin, erythrosine, safran (HES) staining showing
an orange tonality, while the latter appears as a pale blue in both HES and oil red-O
(ROO) staining. The Lip is reactive with the ROO staining appearing in red tonalities,
and calcifications are inert to HES and ROO, leaving a white trail in the interior of the
plaque. In the case of the plaque 1, a Lip region (lipid pool) next to the tunica media
is contained by the HyFb tissue (fibrotic cap) that is only isolated from the lumen by a
layer of CeFb tissue. The plaque 2 is less organized. Most of the lesion is composed by
HyFb tissue with Lip inclusions. At the center of the lession a calcification is presented
and, again, the inner most region features CeFb tissue. In both cases, the tunicas media
and adventitia do not present neither HyFb, CeFb, Lip nor Ca tissue deposition, although
the media is considerably thinner in presence of diseased intima (in mean it retracts from
200µm to 80µm in human coronaries [330]). Even though, the lamellar units seem to
preserve their healthy structure.

Mechanical tests of the previous constituents (see Figure 5.9) were reported in [198]
and [331]. The experiments showed that the cellular component (myofibroblast or SMC)
of the fibrotic tissue greatly modifies the stiffness of the region. In fact, HyFb may reach
circumferential modulus higher than calcified regions while CeFb is substantially softer
than Ca tissues (see Table 5.1). In terms of the necessary stress for rupture, Ca tissue
fails at the smaller levels of stress closely followed by the CeFb. The HyFb has the highest
load bearing capacity, which seems to justify the biological purpose of the fibrous cap as
lipid pool container.
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Figure 5.8: Histology of the murine aorta with: (left) a trichrome, haematoxylin, erythro-
sine, safran (HES) staining the nucleus, cytoplasm and fibrosis in blue, pink and yellow,
respectively; and (right) an oil red-O (ROO) staining of lipid deposits in red and a smooth
muscular cells (SMC) staining using an anti-α-actin antibody for the evaluation of SMC
proliferation and fibrous cap formation. Top and bottom row images depict the plaque 2
and 1, respectively. Reprinted from [312] with permission from Elsevier.
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Figure 5.9: Stress-stretch relation for human aortic plaque constituents: (left) Cauchy
stress versus stretch ratio and (right) rupture points for cell rich fibrotic (CeFb), hypocel-
lular fibrotic (HyFb) and calcified (Ca) tissues. Reprinted from [331] with permission from
Elsevier.
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Figure 5.10: Cross-sectional slice of an arterial vessel. Description of the spatial domain
Ωs and boundaries ∂Ωs = ∂ΩW

s ∪ ∂ΩE
s ∪ ∂ΩA

s of the slice.

5.3 Mechanical models for the arterial wall

In this section, we present the elements needed to construct mathematical models
for the arterial wall based on continuum mechanics. Let us consider the domain of a
vessel cross-sectional slice as a body for which we identify in the Euclidean space its
spatial configuration denoted by Ωs with boundary ∂Ωs = ∂ΩW

s ∪∂ΩE
s ∪∂ΩA

s , where ∂ΩW
s

represents the interface between the vessel and the blood, ∂ΩE
s the external surface, and

∂ΩA
s =

⋃2
i=1 ∂ΩA,i

s stands for the set of 2 cross-sectional (non-physical) boundaries at the
axial extremes of a vessel slice (see Figure 5.10). The coordinates at this configuration are
denoted by xs. A material configuration, used as a reference configuration, is denoted by
Ωm, with coordinates xm. In the context of hemodynamics, Ωs stands for the configuration
at which mechanical equilibrium is achieved for a given load condition (diastolic, systolic
or any other loaded state of the arterial wall). Residual stresses are neglected. Therefore,
we assume that the material configuration is always load- and stress-free.

The displacement field from the reference to the spatial configuration is denoted by
u. Then, we can characterize the deformation mapping from Ωm onto Ωs and its inverse
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by the following expressions,

xs = χm (xm) = xm + um, (5.3.1)

xm = χs (xs) = χ−1
m (xs) = xs − us, (5.3.2)

where subscripts m and s denote the descriptions of the fields in the material and spatial
configurations, respectively. Thus, the displacement vector field it is given by

us(xs) = (um(xm))s = um
(
χ−1
m (xs)

)
. (5.3.3)

The gradients of these mappings result

Fm = ∇mχm = I +∇mum, (5.3.4)

fs = ∇sχs = ∇sχ−1
m = I−∇sus, (5.3.5)

where ∇m and ∇s denote the gradients with respect to material and spatial coordinates,
respectively. Observe that [F−1

m ]s = fs and [f−1
s ]m = Fm.

Further, biological tissues are assumed to behave as incompressible materials, which
is mathematically represented by the following kinematical condition

det Fm = 1. (5.3.6)

In a general case the load state of the arterial cross-section can be characterized as
follows: a Neumann boundary condition given by the forces exerted by the blood flow over
∂ΩW

s , i.e. a traction tWs , and by the tethering tractions tA,is acting over ∂ΩA,i
s , i = 1, 2.

Equivalently, we group the tethering tractions into tAs , which is defined over the whole
∂ΩA

s . We consider that no load from external tissues tEs = 0 is acting on the external
surface ∂ΩE

s . It is important to recall that the traction due to hemodynamic forces tWs
constitutes a follower load, and can be split into normal and tangential components by
tWs = tW,ns ns+ tW,ts where tW,ns = tWs ·ns is the normal component of the traction and tW,ts

is the tangent vector which can be characterized as tW,ts = Pst
W
s , with Ps = (I− ns ⊗ ns)

being the projection operator to the plane with unit normal vector ns. For the application
presented in this manuscript, the tangent contribution is considered to be tW,ts = 0, hence
disregarding the shear forces imprinted by the blood flow on the vessel wall. Additionally,
we remove rigid motions by constraining orthogonal displacements with respect to the
boundary at 3 points over ∂ΩW

s (the same points as in 4.14).
The mechanical problem in variational form is presented considering the incompress-

ibility as an additional constraint. Then, an independent variable (the pressure in the solid
domain) emerges as a Lagrange multiplier to accommodate this kinematic constraint.

Next, we provide the statement of two variational formulations of mechanical equi-
librium which are required for the problem addressed in the present work, and whose
difference is rather subtle: the known domain. In the so-called preload problem, the given
domain is the domain at which the body is at equilibrium (the spatial domain), and the
unknown domain is the reference domain used to define the constitutive equations (the ma-
terial domain). In the so-called forward problem, the given domain is the material domain,
while the unknown data is the spatial domain. Further details regarding linearization and
numerical schemes for these two problems can be found in [22, 41].

5.3.1 Preload problem

Given the equilibrium configuration Ωs and the load acting on the spatial configu-
ration, the variational equations that govern this problem are those corresponding to the
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mechanical equilibrium expressed in the spatial domain. Hence, the problem reads: given
the loads tW,ns and tAs , find (us, λs) ∈ Us × Ls such that σs satisfies∫

Ωs

[−λs div ûs + σs · εs (ûs)] dΩs =

∫
∂ΩWs

tW,ns ns · ûs d∂ΩW
s +

2∑
i=1

∫
∂ΩA,is

tA,is · ûs d∂ΩA,i
s ∀ûs ∈ Vs, (5.3.7)

∫
Ωs

[1− det F−1
s ]λ̂s dΩs = 0 ∀λ̂s ∈ Ls, (5.3.8)

where εs(û) = 1
2(∇sû + ∇sûT ) is the strain rate tensor in the spatial configuration,

Ls = L2 (Ωs) and Us =
{
us ∈ H1 (Ωs) , us satisfies essential b.c.

}
are, respectively, the

linear space for pressures and the linear manifold associated to kinematically admissible
displacements, and Vs =

{
ûs ∈ H1 (Ωs) , ûs satisfies homogeneous essential b.c.

}
is the

space of kinematically admissible variations. Also, σs can be related to the second Piola-
Kirchhoff stress tensor Sm through

σs =
1

det Fs
Fs(Sm(Em))sF

T
s . (5.3.9)

where the Piola-Kirchhoff stress tensor is a function of the Green-Lagrange deformation
tensor Em = 1

2

(
FT
mFm − I

)
via a constitutive equation (see Section 5.4).

5.3.2 Forward problem

When the material (load- and stress-free) configuration Ωm is known, the variational
equations (5.3.7)-(5.3.8) can be evaluated in terms of this reference domain, yielding what
we define as the forward problem. In fact, the variational equations that govern the
equilibrium problem expressed now in the material domain Ωm are written as follows:
given the material description of the loads, tW,nm and tA,im , find (um, λm) in Um ×Lm such
that

−
∫

Ωm

λm
(
F−Tm · ∇mûm

)
det Fm dΩm +

∫
Ωm

(Sm(Em)) · Ė (ûm) dΩm =

∫
∂ΩWm

(
tW,nm F−Tm nW0 · ûm

)
det Fm d∂ΩW

m +
2∑
i=1

∫
∂ΩA,im

(
tA,im · ûm

)
|F−Tm nA,i0 |det Fm d∂ΩA,i

m

∀ûm ∈ Vm, (5.3.10)∫
Ωm

(det Fm − 1)λ̂m dΩm = 0 ∀λ̂m ∈ Lm, (5.3.11)

where Ė(ûm) = 1
2 [FT

m(∇mûm)+(∇mûm)TFm], n0 is the unit normal vector in the material
configuration and Um,Vm and Lm are the counterparts of Us,Vs and Ls, respectively, with
functions defined in Ωm.

We emphasize that the inertial term could be easily incorporated in the solid prob-
lem. However, for coronary arteries the stresses associated to inertial forces can be safely
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neglected. This is easily justified by a straightforward non-dimensionalization of the equa-
tions (consider a cylindrical geometry), which shows that the non-dimensional number
αin, representing the ratio between inertial and circumferential stresses is of the order of
10−6. In fact, αin can be approximated by

αin =
ρ∆rih

T 2pi
, (5.3.12)

where ri denotes the inner radius, h the thickness, pi the internal pressure, ∆ri the inner
radius variation, ρ the density of the wall and T the time it takes to achieve the peak
pressure from diastole. Given the following values within the physiological range, ri =
0.4[cm], ∆ri = 0.2ri, h = 0.2ri, pi = 15 · 104[ dyn

cm2 ], ρ = 1[ gr
cm3 ] and T = 0.1[s], from

equation (5.3.12) αin = 4.267 · 10−6 is obtained.

5.3.3 The preloaded forward problem

The forward problem formulated above is the classical equilibrium problem in solid
mechanics when the material configuration is known, while the preload problem is a
non-traditional formulation of the very same problem when the equilibrated (deformed)
configuration is known. Therefore, both mechanical problems are governed by the same
equilibrium equation, and the difference simply lies in the data for the problem, and
therefore in the corresponding linearized expressions.

The preload problem stated above is a mandatory step towards characterizing the
mechanical state, i.e. the stress state, of the arterial wall in a, for instance, geometry
obtained from medical images (e.g. the end-diastolic geometry) with a given baseline
hemodynamics loads (e.g. the end-diastolic pressure). The material configuration is
required because it is used to define constitutive equations, without which the forward
problem cannot be properly formulated. In our case, such baseline geometry is obtained
from IVUS study, while the baseline hemodynamics loads (the blood pressure) are esti-
mated from patient specific data. Just after solving the preload problem, the baseline
mechanical state, that is the stress state due to the preload pressure (i.e. pressure at
diastole), is adequately determined and the forward problem can be solved to determine
the equilibrium configuration for other hemodynamics loads occurring during the cardiac
cycle. In that manner both problems are synergically coupled to solve a forward problem
from an adequately preloaded configuration.

Note that, given a set of loads for the vessel, the preload problem is solved only once
and, then, the forward problem is solved for each load in the set.

5.4 Constitutive models

As previously introduce, the arterial wall contains passive (e.g., elastin fibers, colla-
gen fibers, GAGs/PGs) and active (e.g. SMCs) structural components. The extracellular
matrix composed mainly by GAGs/PGs and elastin is assumed to be an isotropic neo-
hookean material (see Section 5.4.1) because such components do not present any particu-
lar orientation. In the works of [277, 278] such model assumption for the GAGs/PGs were
tested and fitted with biaxial data from murines showing an excellent agreement at phys-
iological pressure levels. In several works such as [144, 145, 280], the isotropic assumption
for the elastin was included in the arterial wall models which fitted with biaxial data from
human arteries (coronaries included).

On the other hand, the collagen and SMCs feature marked anisotropy in the tunica
media, because of their alignment over the circumferential-axial plane. As the SMCs are
circumferentially oriented, collagen fibers are organized in two families helically wound
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along the arterial axis and symmetrically disposed with respect to such axis. In our
applications, we neglect the SMCs as an independent contribution, although its passive
component is embedded within the model for tunica media. In turn, the tunica adventitia
lacks of SMCs and the present and less organized collagen fibers are disposed more axially
than in the media. For these layers, we use a particular modification of the neo-hookean
material introduced in [280], that will be described in Section 5.4.2.

The main components of the atherosclerotic plaque, i.e., fibrotic, lipidic and calcified
tissues, are also modeled as isotropic neo-hookean materials (see also Section 5.4.1). In
[331], it is shown that fibrotic tissue in illiac plaque presents a quasi isotropic behavior.
Different from the fibrotic tissue, the lipidic and calcified tissues do not display such
contribution of SMCs neither oriented fibers that endow their structures with anisotropic
behavior, what suggests that an isotropic hypothesis for these materials is reasonable.

5.4.1 Neo-Hookean material model

This model is suitable for materials under large deformations where the stress-strain
relationship behaves as non-linearly elastic, isotropic and independent of strain rate. Also,
the model assumes an ideal elastic material at every strain level which, in physiological
ranges, is satisfied by many biological tissues. The stress-strain relationship for a neo-
hookean material derives from the strain energy function

ψ =
c

2
(I1 − 3) (5.4.1)

where c is the material parameter that characterizes the stiffness of the material and I1 is
the first invariant of the Cauchy tensor, i.e.,

I1 = tr(Cm) (5.4.2)

with Cm = FT
m Fm. Using the strain energy function, we can obtain the material descrip-

tion of the second Piola-Kirchhoff stress tensor (and the σm through (5.3.9)) as

Sm(Em) =
∂ψ

∂Em
. (5.4.3)

5.4.2 Neo-Hookean material model with collagen fibers

For fiber-reinforced materials, the strain energy function of the previous model is
complemented with energy terms that contribute specifically to the energy storage of
strains at given directions (the fiber family directions). Particularly, in [144] it is proposed
to model fibers contribution as an exponential term that is nullified until a certain thresh-
old condition is surpassed. This allows to model the collagen recruitment process2 where
the threshold condition is the stretch at which the fibers are completely unrolled (usually
denominated as recruitment stretch). A later model, [280], introduced a local dispersion
for each family of fibers which improves the representation of the fiber spatial distribution.
Thus, the strain energy function is defined as

ψ =
c

2
(I1 − 3) +

k1

2 k2

∑
i=4,6

δi

(
ek2[(1−ρ)(I1−3)2+ρ (Ii−λ0

i )
2] − 1

)
(5.4.4)

2A collagen fiber is denominated as recruited when it is completely unrolled and further stretches impliy
in strains of the fiber and therefore in potential energy which is stored in the tissue.
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being

δi =

{
1 Ii > λ0

i

0 otherwise
, (5.4.5)

Ii = ai · (Cmai), i = 4, 6, (5.4.6)

where k1 and k2 characterize the stiffness of the collagen fibers, λ0
i is the recruitment

stretch (set to 1 unless it is reported otherwise), ρ ∈ [0, 1] is the mixture parameter between
isotropic and anisotropic behavior of the fiber families and ai, i = 4, 6 are the vectors that
indicate the orientation of the fibers at the material configuration. Analogously to the
previous model, Sm and σm are derived from (5.4.4) through the relations (5.4.3) and
(5.3.9).

5.5 Coronary arteries settings

5.5.1 Model and physiological parameters

Our focus in the following chapter is the characterization of constituents over the
major coronary arteries, i.e., the right (RCA), left main (LM), left anterior descending
(LAD) and left circumflex (LCx) coronary arteries. Then, we specify the anatomical vari-
ations and physiological ranges previously presented to the case of such coronary arteries.

Those arteries exhibit a luminar diameter that ranges between 1.5 − 5.5mm [330]
along their length. Specifically for each artery, diameter is 2.0 − 5.5mm (mean 4mm)
for LM; 2.0 − 5.0mm (mean 3.6mm) for LAD; 1.5 − 5.5mm (mean 3.0mm) for LCx; and
1.5−5.5mm (mean 3.2mm) for RCA. In healthy LAD arteries, ratios of adventitia, media,
and intima thicknesses to total wall thickness are 0.4± 0.03, 0.36± 0.03, and 0.27± 0.02,
respectively [145], although due to atherosclerotic lesions remodeling can greatly alter such
ratios. In fact, the tunica media underlying healthy intima ranges 125 − 350µm (mean
200µm) while for diseased intima it ranges 16− 190µm (mean 80µm) [329]. The variance
in the tunica intima is even more dramatic because it is the location of the inflammation
process, reaching even to full blockage of the lumen by progressive thickening of such layer.
The thickness in the adventitia does not suffer apparent alterations, and in both cases it
ranges 300− 500µm [329].

The collagen fibers present also characteristic patterns for these arteries. In [145], a
similar model to the proposed in Section 5.4.2 was used to fit circumferential and longitudi-
nal stress-stretch responses of 13 (ex-vivo) human LAD specimens without stenosis. It was
reported that the angle between the fibers and the circumferential direction is 60.3±18.2,
20.61± 5.5 and 67.0± 8.5 degrees. Some evidence has been reported that such angle may
vary remarkably (almost 60 degrees) due to remodeling [119, 250], while other works [91]
suggest smaller variations (below 10 degrees). In the following chapter, we will fix the fiber
angles for each layer within the ranges reported in [145], assuming that the remodeling
does not affect the fiber orientation. The three hypothesis described in [263] can be used
to estimate the fiber orientation when remodeling, based on fluid-structure interaction
between the blood and the vessel wall, happens. Even though, the fiber re-orientation due
to vessel remodeling is out of the scope of this thesis.

As previously described in Section 4.4.2, the plaque components present a Young
modulus in the ranges: 500 − 2300 kPA for the fibrotic tissue; 5 − 400 kPa for the li-
pidic tissue; 4000 − 18000 kPa for the calcified tissue. As reported in Table 5.1, fibrotic
hypocellular tissue (HyFb) may feature even bigger values within the fibrous cap, pre-
senting a stiffness close to the one of calcified tissue. For the proposed constitutive model
presented in Section 5.4.2, experimental fitting was performed in [145] with a population
of 13 non-stenotic ex-vivo specimens of human LAD. In Table 5.2, the mean and standard
deviation among the 13 specimens for each parameter are reported. Such ranges will be



114 Chapter 5. Anatomy and mechanical models

Tunica c (kPa) k1 (kPa) k2 θ (degrees) ρ

Intima 55.8± 21.18 263.66± 490.95 170.88± 125.47 60.3± 18.2 0.51± 0.14
Media 2.54± 1.26 21.60± 7.12 8.21± 3.27 20.61± 5.5 0.25± 0.09
Adventitia 15.12± 9.23 38.57± 32.53 85.03± 58.94 67.0± 8.5 0.55± 0.18

Table 5.2: Constitutive parameter (mean ± standard deviation) for tunicas intima, media
and adventitia as reported in [145]. The parameter θ corresponds to the opening angle
of the fiber family with respect to the circumferential axis. The recruitment stretch was
λ0 = 1 in all cases for this study.

used to define the parameters of the tunica media and adventitia. In the same study, it
is reported an axial in situ stretches of 1.044 ± 0.06 (mean ± SD) with respect to the
load-free length. This prestretch in the coronary arteries diminishes with the aging [145]
leading to more compliant and less stressed tissues at advanced ages.

As the coronary vessels branch immediately after the beginning of the aorta, blood
pressure is almost the same as the aortic central pressure. Then, we may assume inner
pressure loads between 80− 120mmHg for normotensive patients and 90− 140mmHg for
hypertensive patients.

5.5.2 Model geometry

Using IVUS studies, we derive a geometrical model for a frame of interest (see Figure
5.11). Firstly, the intima-media area is segmented from the image. The segmented surface
is extruded 0.1mm in the axial vessel direction. Then, the volume is divided in media and
intima tunica, where the media has homogeneous thickness and is the outer layer. An
adventitia layer of 300− 500µm thickness is added as an outer layer. If further materials
must be detailed in the lumen (for example calcium inclusions, lipid pool areas), we employ
the CAD tools in the software Salome 7.8.0 to split the corresponding volumes. The
resulting volume is meshed using Netgen 1D-2D-3D embedded in Salome 7.8.0 software
and, also, groups of elements, faces and nodes are created to define their constraints and
constitutive parameters. The obtained mesh is finally exported in UNV format to our
in-house numerical solver.
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Figure 5.11: Pipeline for geometric model generation: (top-left) segmentation of the
intima-media area over the IVUS image; (top-middle) extruded volume of the intima-media
area; (top-right) separation of the tunicas intima and media and addition of the adventitia;
(bottom) final mesh with groups of elements representing the adventitia (dark-red), media
(red), fibrotic tissue (light-orange), lipidic tissue (light-yellow) and calcified tissue (gray),
and yellow triangular faces depict boundary ∂ΩW

m where the blood pressure is prescribed
as the load.





Chapter 6

In-vivo estimation of
biomechanical parameters

Previous chapters developed the required inputs in terms of image data and models
for the data assimilation strategy that will be described in this chapter. This data assim-
ilation process aims to search for the biomechanical parameters of an arterial model such
that the deformation of the vessel under physiological conditions obtained from numerical
simulations matches the observed displacements retrieved from medical images. To estab-
lish a methodology to achieve this, while integrating all the previous chapters elements, is
the ultimate goal of this thesis.

For the data assimilation process, it is employed a reduced order unscented Kalman
filter (ROUKF) because it is computationally efficient and easily adaptable for model al-
terations. The efficiency is even more exploited in HPC environments because the iterative
steps of the method are embarrassingly parallel. In turn, alterations to the arterial wall
model are almost independent to the ROUKF since it is decoupled from the numerical
simulation as it will be seen in Section 6.3.

The chapter is structured as follows. In Section 6.1 the state-of-the-art for parameter
estimation and data assimilation techniques for biological tissues is scrutinized. In Section
6.2, a self-contained derivation of the ROUKF method is presented. In Section 6.3, the
instantiation of the ROUKF for vessel wall characterization is detailed, linking this chapter
with the IVUS image processing techniques and the anatomical insights exposed in Chapter
5. In Section 6.4, the methodology is tested in three cases with increasing model complexity
towards in-vivo characterization. Finally, the outcomes of this chapter are discussed in
Section 6.5.

6.1 State-of-the-art in parameter estimation techniques

The current imaging techniques and diagnostic equipments provide large amounts
of data about patient condition, which is the basis for diagnosis and therapeutic risk
assessment. Nevertheless, the measurement of several physical quantities or patient specific
histology is forbidden in-vivo due to the invasiveness, local accessibility for the equipment
or even the resolution of interest. In those cases, we can rely on indirect observation
strategies, e.g., measure the displacement of a tissue and infer which are the underlying
constituents that best match the observed behavior. Within these indirect methods we
have the parameter estimation techniques, which can be classified in two groups: direct
parameter estimation and data assimilation.

Direct parameter estimation derives a non-measurable physical quantity from a mea-
surable quantity. This is the case of most elastography/palpography techniques, in which
from direct displacement observation of tissues allow the quantificaton of local deformation
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and stress [62, 63, 89, 248, 296]. Another example is the case of the tissue classifiers, which
based on the acoustic impedance response of the materials, allow to determine the tissue
composition [172, 239, 287].

Data assimilation techniques make use of measurable quantities to adjust a physical
model that represents the in-vivo scenario. In that manner, these techniques permit not
only to derive specific quantities or constituents, but to study the physical phenomena of
the scenario and, even, modify the scenario itself (e.g. simulation of therapeutic procedures
or risk scenarios). In turn, measurement errors can be filtered by the physical model being
a quid pro quo benefit: the measurements instantiate the model and the model filters the
measurements. Such techniques can be classified in two categories: variational approaches
and sequential filtering approaches.

In the variational approach, a cost functional that measures the difference between
the observed measures and the model prediction is constructed. The cost functional de-
pends on the parameters of interest (among other parameters that may be necessary)
to render a prediction of the measured variable of the model. Then, the estimated pa-
rameters are those such that minimize the cost functional. Several methods available
in the literature can be applied to solve such problems. An affine-scaling interior-point
Newton method for nonlinear programming with box constraints [80] can be used when
an analytical derivative of the functional with respect to parameters is available. Also,
Levenberg-Marquardt-Fletcher methods [110] can be employed for least-squares type func-
tionals. A more popular approach is to solve the Karush-Kuhn-Tucker (KKT) necessary
conditions [22, 32, 97, 179, 210, 255, 294] involving the solution of an adjoint problem.
As these optimization problems are usually non-convex, large-scale trust-region method
is a convenient solution for global convergence. Many works have successfully applied
such approach. In [179], the viscoelastic parameters of large arteries were estimated using
in-silico generated displacement of the vessel wall. Similarly, [210] explored the estima-
tion of the vessel compliance in a 1D model using a 3D fluid-structure interaction (FSI)
model to generate the measured displacement of the vessel wall. Using medical data of
internal pressure and inner radius of the arteries, [304] used also 1D models to assess
the constitutive parameters according to [144] model. The works of [97, 255] formulate
the inverse problem from 3D FSI models and analyze the sensitivity in the identification
of Young modulus to noise in the measurements of arterial wall displacements. In the
latter, data assimilation is performed from flow velocity as well. The main problem of this
approach is the amount of evaluations to the cost functional (or its derivative) that must
be performed in order to solve the inverse problem (usually ranging from 102 to 103 [185]).
Even more, the use of more realistic models such as 3D FSI models or complex heteroge-
neous anisotropic solid models are required to render sufficiently accurate displacements,
turning the problem extremely challenging in terms of computational cost. For such
scenarios, [185] proposes reduced order strategies to solve the Navier Stokes equations in
combination with a domain parametrization technique that lowers both the geometrical
and computational complexity, leading to faster evaluations of the cost functional. It
also presents a Bayessian approach for the inverse problem optimization that lowers even
more the computational cost. Other approach is taken in [32], applying model reduction
techniques based on a proper orthogonal decomposition to accomplish the solution of 3D
FSI in a computationally efficient way. Efficient implementations for solid mechanics prob-
lems have also been proposed in [25, 353] using a virtual fields method and a constitutive
equation gap functional, respectively.

In turn, the sequential filtering approach (also known as filtering methods) are nat-
urally less computationally demanding and embarrassingly parallel which is their main
appealing factor for this kind of problems. Given a set of observations for our model
of interest, the method makes a prediction for each observation and, then, corrects it
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based on the discrepancies between the model estimation and the observed data. For
each prediction-correction step, several variations of the parameters are tested in order to
perform a suitable correction based on the prediction statistics. Several methods based
on the Kalman filter have been developed to deal with linear and non-linear dynamic
problems. In [66, 229, 230] a non-linear extended Kalman filter (EKF) with collocation
feedback is applied to identify the Young modulus of different regions of a heart model.
The observations used varied between the myocardium velocity [229], displacement [230]
and velocity of the heart boundaries [66]. The stability of such methods was studied [229]
and in terms of accuracy it is reported that Kalman filtering is optimal for linear systems
only, while extended algorithms based on linearized operators may lead to efficient, albeit
non-optimal, filtering procedures. [195] also applied EKF to estimate parameters of a
reduced order Navier-Stokes model (through an orthogonal decomposition of the velocity
field) and fluid concentrations by using observations from electrical impedance tomogra-
phy. In more recent works, [228] presented a reduced order Kalman filter based on the
unscented transform (abbreviated as ROUKF) that offers an interesting alternative to the
EKF method. This new approach does not require neither linearization nor tangent oper-
ator of the non-linear model, which eases its implementation. Interestingly, the ROUKF
features a higher order approximation of the system states statistics delivering more ac-
curate outcomes than EKF. In [33, 34], ROUKF was successfully applied for estimation
of Young modulus in arteries with tests in-vivo and in-vitro, showing a simpler and more
efficient implementation than EKF.

Based on the efficiency, low computational cost and adaptability (e.g. test different
constitutive models) of the sequential approach, such as ROUKF, we choose to implement
that strategy for the estimation of biomechanical parameters in coronary arteries.

6.2 Kalman filters

In this section, we expose a self-contained presentation of the Kalman filters, be-
ginning with a linear static system until reaching the formulation for non-linear dynamic
systems. The following notation and theoretical development are based on the works of
[34, 165, 300, 343].

As a first step, we introduce the least squares approximation of a variable based on
a set of noisy observations. This would ease the presentation of the correction step for
the Kalman filter which uses an equivalent procedure. Afterwards, we present the classic
Kalman filter for linear dynamic problems. Following that, we introduce the unscented
and reduced order version of the filter to tackle non-linear problems with efficiency and
accuracy.

6.2.1 Weighted least-square approximation

Let us suppose we have an unknown n-vector variable X to estimate and k obser-
vations zi, i = 1, . . . , k of the linear combination of its components. In turn, each of these
observations may present a variable error vi due to the lack of precision of the observation
tools. Thus, we formalize this as follows z1

...
zk

 =

 H1,1x1 + . . .+H1,nxn
...

Hk,1x1 + . . .+Hk,nxn

+

 v1
...
vk

 (6.2.1)

or in compact notation as
Z = HX + V. (6.2.2)
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where Z is the observation vector, V is the error measurement vector assumed as Gaussian,
zero-mean, uncorrelated and white noise and H is a linear observation operator. As
demonstrated by [117], the most probable value of the variable, X̂, will be given by

X̂ = arg min
X

J (X) = arg min
X

‖Z −HX‖2L2
(6.2.3)

denominated the best fit in the sense of least-squares. The minimizer for the least-square
cost functional J is given by

X̂ = (HTH)−1HT Z = H−L Z (6.2.4)

where H−L is the left inverse observation operator and only exist if k ≥ n and H is full
rank. Note that we need at least the same number of observations than elements xi to
estimate, and also, n of these observations must be linearly independent to ensure that all
xi are uniquely determined.

Usually not all observations have the same confidence, sensors may present differ-
ent quality or according to experimental conditions some observations are more reliable
than others. Then, we may assume that the error in each observation is zero mean and
independent with a known variance E(v2

i ) = σ2
i and define the covariance matrix as

R =

σ
2
1 · · · 0
...

...
0 · · · σ2

k

 . (6.2.5)

Defining the observation confidence as the inverse of its variance, we can weigh the obser-
vations and recast the optimization problem as

X̂ = arg min
X

J ∗ = arg min
X

(Z −HX)TR−1(Z −HX) (6.2.6)

where the best estimate is given by

X̂ = (HTR−1H)−1HTR−1 Z. (6.2.7)

Note that R cannot be singular, which implies that every observation must be assumed
at least with a small quantity of uncertainty.

In many scenarios, more observations could be added to the minimization procedure
over time but the present formulation would need to recompute all matrices, making it
inefficient in time-dependent scenarios. Then, we formulate a recursive approach as

X̂k = X̂k−1 + Kk (Zk −HkX̂k−1) (6.2.8)

Zk = HkX + Vk (6.2.9)

where Kk is denominated as the estimator gain matrix and (Zk−HX̂k−1) is the correction
term. Note that the correction term is an estimate of the discrepancies with the previous
step and the estimator gain matrix weighs such discrepancies in order to correct the
previous estimative X̂k−1, with some optimality criteria. Then, we have to choose an
optimality criteria to construct a Kk. Let us analyze the mean error of estimator (6.2.8),
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E(X − X̂k) = E(X − X̂k−1 −Kk (Zk −HX̂k−1))

= E(X − X̂k−1 −Kk (HkX + Vk −HkX̂k−1))

= E(X − X̂k−1 −KkHk (X − X̂k−1)−KkVk)

= (I−KkHk)E(X − X̂k−1)−KkE(Vk)

this implies that for an initial estimate X̂0 with E(X − X̂0) = 0 then E(X − X̂k) = 0,
which means that (6.2.8) is an unbiased estimator regardless the Kk used. Thus, we focus
in the construction of a gain matrix Kk that minimizes the variance of the estimation
error, obtaining not only a zero-mean error estimator but a close to zero as well. For this,
we formulate the following optimization problem

Kk = arg min
K̃

Tr Pk(K̃) (6.2.10)

where Tr Pk is the trace operation of Pk and, in turn, Pk = E[(X− X̂k)(X− X̂k)
T ]. Also,

Pk can be defined recursively in terms of Pk−1 as

Pk = E[(X − X̂k)(X − X̂k)
T ]

= E
[(

(I−KkHk)(X − X̂k−1)−KkVk

)(
(I−KkHk)(X − X̂k−1)−KkVk

)T ]
= (I−KkHk)E[(X − X̂k−1)(X − X̂k−1)T ](I−KkHk)

T

− (I−KkHk)E[(X − X̂k−1)V T
k ]KT

k −KkE[Vk(X − X̂k−1)T ](I−KkHk)
T

+ KkE[VkV
T
k ]KT

k

]
where Vk and (X − X̂k−1) errors are independent and zero-mean, then

Pk = (I−KkHk)E[(X − X̂k−1)(X − X̂k−1)T ](I−KkHk)
T + KkE[VkV

T
k ]KT

k

= (I−KkHk)Pk−1(I−KkHk)
T + KkRkK

T
k .

(6.2.11)

By using the identity
∂ Tr(ABAT )

∂A
= 2AB if B = BT and (6.2.11), we find the minimizer

for Kk from (6.2.10) such that satisfies

∂Jk
∂Kk

= 2(I−KkHk)Pk−1(−HT
k ) + 2KkRk = 0 (6.2.12)

where by simple algebra is obtained the minimizer

Kk = Pk−1H
T
k (HkPk−1H

T
k + Rk)

−1. (6.2.13)

Finally, we obtain the system of equations for the recursive weighted least-square
approximation to update the estimative X̂k given a new observation Zk,

Kk = Pk−1H
T
k (HkPk−1H

T
k + Rk)

−1

X̂k = X̂k−1 + Kk (Zk −HkX̂k−1)
Pk = (I−KkHk)Pk−1(I−KkHk)

T + KkRkK
T
k .

(6.2.14)
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6.2.2 Kalman filter

Let us assume that we have to estimate X that is no longer constant but varies
along time according to the following discrete dynamic system

Xk = AXk−1 +Wk

Zk = HkXk + Vk
(6.2.15)

where A is the linear forward operator and Wk is the model error vector which is assumed
to be Gaussian, zero-mean, uncorrelated and white error. First, we analyze how the mean
and variance of the variable X behaves as time evolves, which is key in the Kalman filter
formulation. For a given estimate of X at an instant k, the mean is defined as

Xk = E[Xk]

= E[AXk−1 +Wk−1]

= AE[Xk−1] + E[Wk−1]

= AXk−1

(6.2.16)

obtaining that Xk = AXk−1. Analogously, the covariance is estimated as

Pk = E[(Xk −Xk) (Xk −Xk)
T ]

= E[(AXk−1 +Wk−1 −AXk−1) (AXk−1 +Wk−1 −AXk−1)T ]

= AE[(Xk−1 −Xk−1) (Xk−1 −Xk−1)T ]AT

+ AE[(Xk−1 −Xk−1)W T
k−1] + E[Wk−1(Xk−1 −Xk−1)T ]AT

+ E[Wk−1W
T
k−1]

(6.2.17)

given that (Xk−1 −Xk−1) and Wk−1 are uncorrelated and E[Wk−1] = 0, then

Pk = AE[(Xk−1 −Xk−1) (Xk−1 −Xk−1)T ]AT + E[Wk−1W
T
k−1]

= A Pk−1A
T + Qk−1

(6.2.18)

where Qk−1 is the covariance matrix of the model error.
Now, suppose that our best initial estimative at k = 0 is given by a mean state of

X, i.e., E[X0] = X̂0. Differently from the static case, we can use the forward operator to
propagate the estimate from the previous time instant X̂k−1 to the current time instant
X̂k satisfying that X̂k = E[Xk]. Note that such estimate is achieved using knowledge of
A regardless Zk. Exploiting this fact, we can assemble a methodology such that at each
time step, a prediction based on previous observations is performed, i.e.,

X−k = E[Xk|Z1, . . . , Zk−1], (6.2.19)

denominated the a priori estimate, and then, correct such prediction based on a new
observation Zk, i.e.,

X+
k = E[Xk|Z1, . . . , Zk], (6.2.20)

denominated the a posteriori estimate.
The prediction step in which we update previous state estimate and its covariance,

is given by

X̂−k = A X̂+
k−1

P−k = A P+
k−1 AT + Qk−1.

(6.2.21)
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Similarly as presented in (6.2.14), the correction step based in the newest estimate is given
by

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1

= PXZ,k (PZ,k)
−1

X̂+
k = A X̂−k + Kk(Zk −HkX̂

−
k )

P̂+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k .

(6.2.22)

where PXZ,k is the cross covariance between Xk and Zk and PZ,k is the covariance of Zk,
in fact

PXZ,k = E[(Xk − X̂−k )(Zk − Ẑk)T ]

= E[(Xk − X̂−k )(HkXk −HkX̂
−
k )T ]

= E[(Xk − X̂−k )(Xk − X̂−k )T ]HT
k

= P−k HT
k

(6.2.23)

PZ,k = E[(Zk − Ẑk)(Zk − Ẑk)T ] + Rk

= E[(HkXk −HkX̂
−
k )(HkXk −HkX̂

−
k )T ] + Rk

= HkE[(Xk − X̂−k )(Xk − X̂−k )T ]HT
k + Rk

= HkP
−
k HT

k + Rk.

(6.2.24)

The iterative and sequential use of these two steps to update the system state based
on incremental observations is the denominated Kalman filter. Some important highlights
of the method detailed in [300]:

• If Wk and Vk are Gaussian, zero-mean, uncorrelated and white, then the Kalman
filter is the solution of (6.2.15);

• If Wk and Vk are zero-mean, uncorrelated and white, then the Kalman filter is the
best linear solution of (6.2.15);

• If Wk and Vk are correlated or colored, then the Kalman filter can be modified to
solve (6.2.15).

Note that if the forward operator A = I, i.e., the system is static, we obtain the recursive
weighted least-square introduced in the previous Section.

6.2.3 Unscented Kalman filter

Next, we generalize the previous system (6.2.15) for the case that the forward and
observation operators are nonlinear, i.e.,

Xk = f(Xk−1, tk−1) +Wk

Zk = h(Xk, tk) + Vk
(6.2.25)

where f(·) is the nonlinear forward operator, h(·) if the nonlinear observation operator
and tk is the time at the step k. Note that the operator f does not longer propagate the
mean as previously shown in (6.2.16), in fact,

Xk = E[Xk]

= E[f(Xk−1, tk−1) +Wk−1]

= E[f(Xk−1, tk−1)]

(6.2.26)
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where E[f(Xk−1, tk−1)] 6= f(E[Xk−1], tk−1) since f is not linear to Xk by hypothesis.
Then, we have to find a method to propagate the mean and covariance of our state X
from a time k − 1 to k.

The unscented transform offers a mechanism to sample a PDF (with known mean
X and covariance PX) in M points {Xi, i = 1, . . . ,M} such that: (i) {Xi, i = 1, . . . ,M}
mean and covariance are the same as the PDF; given a nonlinear operator g, the mean
and covariance of the points {Y i = g(Xi), i = 1, . . . ,M} are a third-order approximation1

of the mean and covariance of y = g(x). The sampling points Xi are denominated as
sigma-points and exist several different sets such that satisfy the third order propagation
of the PDF statistics. Particularly, we choose the spherical sigma-points [162, 164] because
they offer stability for the Kalman filter and only require N +1 samples of the PDF where
N is the number of components of the state vector.

The computation of the spherical sigma-points is performed as follows:

1. Choose a weight w(0) ∈ [0, 1). In this thesis, we always choose w(0) = 0 although
other values of w can be used to improve the approximation of the fourth and higher
order of the mean and covariance [161, 163].

2. Compute the weights w(i) =
1− w(0)

N + 1
, i = 1, . . . , N + 1.

3. Initialize the 1-element vectors

σ
(1)
0 = 0 (6.2.27)

σ
(1)
1 = − 1√

2w(1)
(6.2.28)

σ
(1)
2 =

1√
2w(1)

(6.2.29)

4. Recursively expand the σ vectors for j = 2, . . . , N

σ
(j)
i =



[
σ

(j−1)
0

0

]
i = 0

 σ
(j−1)
i

− 1√
j(j + 1)w(1)

 i = 1, . . . , j

 0j−1
j√

j(j + 1)w(1)

 i = j + 1

(6.2.30)

where 0j is a column vector of j zeros and σ
(j)
i are recursively defined vectors.

5. Compute the sigma points as

X(i) = X +
√

Pσ
(n)
i , i = 0, . . . , N + 1. (6.2.31)

As we choose w(0) = 0, X(0) is ignored and we effectively obtain N + 1 sampling
points.

1The reader is directed to [300] Section 14.2.1 and 14.2.2 for such demonstrations. In the reference, the
third order approximation of the mean and covariance of the unscented transform are compared to the
Taylor expansion of the nonlinear function g showing the equality of the first fourth terms of the series.
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Then, we define the two steps for the unscented Kalman filter by introducing the unscented
transform in the steps defined for the linear Kalman filter. The prediction step is obtained
as

X̂
(i)
k−1 = X̂+

k−1 +
√

P+
k−1 σ

(n)
i , i = 0, . . . , N + 1

X̂
(i)
k = f(X̂

(i)
k−1, tk−1)

X̂−k =
N+1∑
i=1

w(i)X̂
(i)
k

P−k =

N+1∑
i=1

w(i)(X̂
(i)
k − X̂

−
k ) (X̂

(i)
k − X̂

−
k )T + Qk−1.

(6.2.32)

In turn, the correction step is modified as

X̂
(i)
k = X̂−k +

√
P−k σ

(n)
i , i = 0, . . . , N + 1

Ẑ
(i)
k = h(X̂

(i)
k , tk)

Ẑk =

N+1∑
i=1

w(i)Ẑ
(i)
k

PXZ,k =

N+1∑
i=1

w(i)(X̂
(i)
k − X̂

−
k ) (Ẑ

(i)
k − Ẑk)

T

PZ,k =

N+1∑
i=1

w(i)(Ẑ
(i)
k − Ẑk) (Ẑ

(i)
k − Ẑk)

T + Rk

Kk = PXZ,k P−1
Z,k

X̂+
k = X̂−k + Kk(Zk − Ẑk)

P+
k = P−k −KkPZ,kK

T
k .

(6.2.33)

The expression P+
k = P−k − KkPZ,kK

T
k is mathematically identical to definition of P+

k

presented in (6.2.22) for linear systems. Its derivation can be found in [300] Section 10.5.2.
Here, we need this expression because there is no explicit form for the operator h(·).

6.2.4 Reduced-order unscented Kalman filter (ROUKF)

Suppose that we are interested in estimating only a subset θ ⊂ Xa of M parameters,
where Xa is the state vector. Henceforth, we simply call as parameters the states that we
want to estimate. Thus, we write Xa as

Xa =



x1
...
xN
θ1
...
θM


=

[
X
θ

]
(6.2.34)

We are only interested in an accurate prediction and correction of the parameters, then, we
only propagate the mean and covariance of these components resulting in the computation
of M + 1 sigma-points. Note that, for each sigma-point we must apply the nonlinear
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forward operator that, as shown in the next sections, it is several orders of magnitude
more expensive in terms of computations than the whole Kalman filter iteration. As
M + 1� N +M , we obtain a significant reduction of the computational effort.

Further optimizations can be performed by the following simplification. First, we
decompose the covariance matrix P as

P = LU−1LT (6.2.35)

where U is a M ×M matrix and L is a (N + M) ×M skinny matrix. As we assume
only uncertainty over the parameters (because are the ones that we want to estimate), the
initial P+

0 features the following structure

P+
0 =

[
0 0
0 Pθ

]
=

[
LX0
Lθ0

]
U−1

0

[
(LX0 )T (Lθ0)T

]
(6.2.36)

where supra-indexes X and θ indicate the states affected by each matrix. Then, the
computation of the sigma points in the prediction step is decomposed as follows

X̂
(i)
0 = X̂+

0 + LX0

√
U−1

0 σ
(n)
i = X̂+

0 , i = 1, . . . ,M + 1

θ̂
(i)
0 = θ̂+

0 + Lθ0

√
U−1

0 σ
(n)
i , i = 1, . . . ,M + 1

(6.2.37)

where the sigma-points maintain the estimate for the states X and only sample across the
dimensions of the parameters θ. By using such decomposition, the covariance matrices
are rewritten as

P−k = LkP
−1
w LTk + Qk−1

PZ,k = {HL}kP−1
w {HL}Tk + Rk

PXZ,k = LkP
−1
w {HL}Tk

(6.2.38)

where

Lk = X̂
(∗)
k Dw(σ(∗))T

{HL}k = Ẑ
(∗)
k Dw(σ(∗))T

Pw = σ(∗)Dw(σ(∗))T .

(6.2.39)

The matrices σ(∗), X̂
(∗)
k , Ẑ

(∗)
k are the M × (M + 1) matrices whose columns are the vectors

σ(i), X̂
(i)
k , Ẑ

(i)
k with i = 1, . . . ,M + 1, respectively. Dw is the diagonal (M + 1)× (M + 1)

matrix with values Dii = wi, i = 1, . . . ,M + 1, i.e., the sigma-point weights. Then, a new
expression for P+

k is derived as

P+
k = P−k −KkPZ,kK

T
k

= P−k −PXZ,kP
−1
Z,k(PXZ,k)

T

= LkP
−1
w LTk + Qk−1 − LkP

−1
w {HL}Tk ({HL}kP−1

w {HL}Tk + Rk)
−1(LkP

−1
w {HL}Tk )T

= Lk(P
−1
w −P−1

w {HL}Tk ({HL}kP−1
w {HL}Tk + Rk)

−1{HL}kP−1
w )LTk + Qk

= Lk(Pw + {HL}TkR−1
k {HL}k)−1LTk + Qk.

(6.2.40)

At the last step, we apply the Woodbury matrix-inversion lemma which states

Lemma 6.2.1 (Woodbury matrix-inversion lemma). Let M1,M12,M21,M2 be matrices
with M1, M2 and M2 −M21M

−1
1 M12 invertible, then M1 −M12M

−1
2 M21 is invertible
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and verifies

(M1 −M12M
−1
2 M21)−1 = M−1

1 + M−1
1 M12(M2 −M21M

−1
1 M12)−1M21M

−1
1 . (6.2.41)

Then we define Uk as

Uk = Pw + {HL}TkR−1
k {HL}k (6.2.42)

obtaining a reduced expression for P+
k as

P+
k = LkU

−1
k LTk + Qk. (6.2.43)

Also, Kk is rewritten in terms of the decomposed matrices as follows

Kk = PXZ,kP
−1
Z,k

= LkP
−1
w {HL}Tk

(
{HL}kP−1

w {HL}Tk + Rk

)−1

= LkU
−1
k UkP

−1
w {HL}Tk

(
{HL}kP−1

w {HL}Tk + Rk

)−1

= LkU
−1
k

(
Pw + {HL}TkR−1

k {HL}k
)
P−1
w {HL}Tk

(
{HL}kP−1

w {HL}Tk + Rk

)−1

= LkU
−1
k

(
{HL}Tk + {HL}TkR−1

k {HL}kP−1
w {HL}Tk

)(
{HL}kP−1

w {HL}Tk + Rk

)−1

= LkU
−1
k {HL}TkR−1

k

(
Rk + {HL}kP−1

w {HL}Tk
)(
{HL}kP−1

w {HL}Tk + Rk

)−1

= LkU
−1
k {HL}TkR−1

k .

(6.2.44)

Using the expressions derived for all operators due to the decomposition P = LULT ,
we introduce the two step for the reduced-order unscented Kalman filter (ROUKF). The
prediction step is obtained as

X̂
(i)
k−1 = X̂+

k−1 + LXk−1

√
U−1
k−1 σ

(n)
i , i = 1, . . . ,M + 1

θ̂
(i)
k−1 = θ̂+

k−1 + Lθk−1

√
U−1
k−1 σ

(n)
i , i = 1, . . . ,M + 1[

(X̂
(i)
k )

(θ̂
(i)
k )

]
= f

([(X̂
(i)
k−1)

(θ̂
(i)
k−1)

]
, tk−1

)
X̂−k =

N+1∑
i=1

w(i)X̂
(i)
k

θ̂−k =

N+1∑
i=1

w(i)θ̂
(i)
k

(6.2.45)

For the correction step, we remove the sigma-points re-sampling for the sake of perfor-



128 Chapter 6. In-vivo estimation of biomechanical parameters
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Figure 6.1: Synthetic artery domain composed of 5 regions.

mance. Thus, the correction step is obtained as

LXk = X̂
(∗)
k Dw(σ(∗))T

Lθk = θ̂
(∗)
k Dw(σ(∗))T

{HL}k = Ẑ
(∗)
k Dw(σ(∗))T

Uk = Pw + {HL}TkR−1
k {HL}k

X̂+
k = X̂−k + LXk U−1

k {HL}TkR−1
k

(
Zk −

M+1∑
i=1

w(i)Ẑ
(i)
k

)
θ̂+
k = θ̂−k + LθkU

−1
k {HL}TkR−1

k

(
Zk −

M+1∑
i=1

w(i)Ẑ
(i)
k

)
.

(6.2.46)

Note that we avoid the computation of P+, P− and Kk matrices, instead we compute
them partially by using their decomposition in terms of L·k, U−1

k , {HL}k and Rk. As
result we operate with smaller matrices yielding a efficient (in terms of memory usage)
and faster method.

6.3 Biomechanical parameter estimation with ROUKF

Using the displacement field uOF obtained using the optical flow technique as ex-
plained in Chapter 4, the mechanical models presented in Chapter 5 and the ROUKF
method described in the previous section, we define the constitutive parameter estimation
problem for the arterial wall.

Let us define the domain Ωs with boundary ∂Ωs = ∂ΩW
s ∪ ∂ΩE

s ∪ ∂ΩA
s described

in Section 5.3 (see Figure 5.10) and a given domain partition Ωs =
⋃R
i=1 Ωi

s of R disjoint
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regions, each one with its own constitutive parameters (see Figure 6.1). We also know
the loads tW,ns and the displacement fields uOF

s (obtained by optical flow techniques) at S
different times. Since our problem is static, the time instants in the context of the Kalman
filter correspond to the different load levels. Hereafter we refer simply to time instants,
but the association with the load level must be kept in mind. By using the mechanical
models presented in Chapter 5, we want to estimate the constitutive parameters such that

θ = arg min
θ̂

S∑
s=1

‖uM
s (θ̂)− uOF

s ‖2L2
(6.3.1)

where uM
s (θ̂) is the displacement field at the time s obtained by solving the preload and

forward problems (described in Section 5.3) with the constitutive parameters θ̂.
This parameter identification problem can be rewritten as the discrete dynamic

nonlinear system presented as follows

Xa
k = f(Xa

k−1, tk−1) +Wk

Zk = h(Xk, tk) + Vk
(6.3.2)

where Xk is the augmented state vector

Xa
k =



utk(x1)
...

utk(xN )
λtk(x1)

...
λtk(xN )
θ1
...
θM


(6.3.3)

that contains the displacements utk and pressure λtk fields along the vessel wall, and
the constitutive parameters of all regions of the domain θ; f(Xa

k , tk) is the operator that
sequentially solves the preload and forward problem for parameters and initial state con-
ditions in Xk at the time tk; Wk are the model errors at the k-th step; h(Xa

k , tk) = HXa
k

is a linear operator represented by the block matrix

H =

[
IN×N 0N×(N+M)

0(N+M)×N 0(N+M)×(N+M)

]
(6.3.4)

where I is the identity matrix and the sub-indexes of the matrices indicate their size as
rows by columns; Zk is optical flow observation described by the column vector

Zk =


ũOF
tk

(x1)
...

ũOF
tk

(xN )
0N+M

 (6.3.5)

where ũOF
tk

(xi) is the interpolated value at the spatial position xi and time tk of the
displacement field given by the optical flow technique; and Vk is the vector of optical flow
and interpolation errors for observation vector Zk.

As presented in Section 6.2.4, we can apply ROUKF to obtain an estimate θ̂ of the
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parameters θ. First, we must provide the initial conditions for P+
0 , Q0, R0 and Xa

0 . We
will neglect the model error, then Q0 = 0. To initialize R0, we assume an error variance
for the displacement field estimated by optical flow, σOF, and define the diagonal matrix
R0 = σOF I. The states utk(xi) and λtk(xi) will impact the stability and the computational
time for solving f(Xa

k , tk) operator. We choose to initialize ut0(xi) = 0 and λt0(xi) = 0.

Lastly, we assume initial parameters θ̂i with an error variance of σθ̂i from its true value.
Thus, we define

Xa
0 =


02N

θ̂1
...

θ̂M


P+

0 = L0U
−1
0 LT0

L0 =

[
02N×M
IM×M

]

U−1
0 =

σθ̂0 . . . 0
...

...
0 . . . σθ̂M

 .

(6.3.6)

In Section 6.3.2, we analyze the appropriate range of values for θ̂i and σθ̂i based on
the experimental constitutive parameters reported in Section 5.5 for the different coronary
tissues. At this point, the only uncertainty is how to obtain the partition of the domain
Ωs from an IVUS image, which is address in the following section.

6.3.1 Initialization and tissue regions delimitation

In the present approach, we assume that the regions containing different materials
can be identified a priori. The main goal is to split the domain Ωs in a partition such that
tissues with different constitutive behavior remain in regions with different parameters. By
using regions with homogeneous tissue composition, we infer the tissue constitution from
the estimated parameters θ̂ based on the experimental fitting for these models presented in
Section 5.5. We present three alternative criteria to segment the domain Ωs in subregions
of potentially different tissues: an intensity approach, a strain approach and a virtual
histology approach. In the first two approaches, we derive a scalar field from the IVUS
image in which tissues of similar compositions have a close range of values. Then, we use
a K-Means clustering over the scalar field to create the partition.

The intensity approach uses the IVUS image intensities as scalar field. In fact, the
intensity represents the pressure amplitude of the acoustic echo reflected by the tissues,
which is proportional to the strain and density of the tissue. As strains (disregarding
dissipation effects) and density are expected to be homogeneous across the interior of a
tissue, it is acceptable to assume that a specific tissue presents a close range of intensities.
Here, we choose to use a denoised version of the image using the optimal parameters in the
sense of homogeneity (see Sections 4.2.2 and 4.4.2.2), to minimize the intensity distortion
due to speckle (from the acquisition) and smoothing (from the denoising). In Figure 6.2,
it is shown the resulting partition using K-Means with 3, 5 and 7 bins.

The strain approach exploits the estimated optical flow uOF
s to compute the first

gradient tensor εOF
s = ∇uOF

s . Then, we use the Frobenius norm of the ∇uOF
s to derive

a single modulus field that will be employed as input for the K-Means clustering. The
denoising is performed with the optimal parameters in the sense of homogeneity and the
optical flow is computed with parameters α = 0.01, β = 0.5, ρ = 2, κ2 = 0.5 and M = 4
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Figure 6.2: K-Means partition based on the IVUS intensity: (left-top) denoised IVUS
image, (right-top) segmented vessel wall, (left-bottom) partition with 3 bins, (central-
bottom) 5 bins and (right-bottom) 7 bins.

(the same as in 4.22). In Figure 6.3, it is shown the partition using K-Means with 3, 5
and 7 bins.

A third approach, not explored in this thesis, would be the use of virtual histologies
(e.g., VH-IVUS, IB-IVUS or iMap). Such data can be obtained from the sonograph
after the IVUS acquisition and has been validated against ex-vivo histology, see [115] and
reference therein. One drawback of those methods is that only 4 regions can be detected
and they may present heterogeneous constitutive parameters, e.g., two areas with fibrotic
dense tissue may present a different elasticity (see HyFb in Table 5.1 whose range is quite
variable), although the classifier of these strategies may deliver the same region for these
materials. In the intensity and strain approaches, this problem can be diminished by
increasing the number of bins. Even though, these aspects will be studied in future works.

Note that partitions in Figures 6.2 and 6.3 are qualitatively different with exception
of few structures (e.g. the abluminal regions at the middle-top or at the left-bottom).
Thus, it is uncertain yet which partition delivers the most reliable assessment, and, more-
over, the target solution could eventually rely on a completely different unknown partition.
This implies that the partition may change over the optimization process. This is beyond
the scope of the preesent work and will be addressed in the future.

6.3.2 ROUKF parameter setup

Let us define a homogeneous ring-shaped domain Ωs with the neo-hookean constitu-
tive behavior presented in Section 5.4.1(see equation (5.4.1)). The inner and outter radius
of the ring are 2mm and 2.71mm, respectively. The size and proportions are chosen to
approximate an idealized coronary artery. Loads of tW,n = 80 mmHg n and tW,n = 120
mmHg n are applied in the inner surface for the preload and forward problem, respectively,
simulating a normotensive scenario and tethering tractions tA,is such that an axial stretch
of 10% is imposed at the non-physical boundary. The forward operator f , which amounts
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Figure 6.3: K-Means partition based on ‖∇uOF
s ‖F : (left-top) denoised IVUS image, (right-

top) segmented vessel wall, (left-bottom) partition with 3 bins, (central-bottom) 5 bins
and (right-bottom) 7 bins. The parameters for denoising and optical flow are described in
4.22.

to solve the mechanical problems seen in Chapter 5 (see equations (5.3.7), (5.3.8), (5.3.10)
and (5.3.11)), is solved with an iterative scheme where at each iteration a Newton-Raphson
linearization procedure is applied (further details in [41]). The iterative scheme finishes
when ‖um+1

s − ums ‖L2 < 10−3 mm and ‖λn+1
s − λns ‖L2 < 10−1 mmHg. We choose these

convergence criteria because yield a similar precision than the optical flow processing
applied to IVUS or OCT images. To avoid negative values for the constitutive parameter

c in the neo-hookean model, we define it as c = 2θ̂ (this approach was introduced in [34])
allowing θ̂ to vary in R (as occurs in the presented formulation (6.2.46) and (6.2.45))
without delivering invalid values for c.2

Using this setting, we create an in-silico experiment to analyze: i) the sensitivity of
the parameter estimates θ̂ with respect to the σZ (the observations uncertainty, previously
referred to as σOF); and ii) the sensitivity of the parameter estimates θ̂ with respect to
the σθ (the estimate uncertainty). Thus, we generate the observations by computing
Z = h

(
f(Xt)

)
where Xt = [ 02N , θ

t ] is the true augmented state vector with the solution
parameters θt for the experiment. In this particular case, the domain is homogeneous and
the constitutive model has only one parameter (c), then, we only have one parameter to
estimate.

To analyze the sensitivity of θ̂ with respect to the observation uncertainty σZ , we
perform the estimation of the parameter assuming different values σZ , ranging from 10−1

to 10−5 mm. Also, we use three different materials for the ring: cellular fibrotic tissue
(2θ

t
= 5·105Pa), lipidic tissue (2θ

t
= 1·105Pa) and calcified tissue (2θ

t
= 4·106Pa). The es-

2The reparametrization 2θ̂ modifies the classic statistical meaning of the mean and covariance. We
propagate mean and covariance of θ which is not the same as to propagate the mean and covariance of
c. Nevertheless, there is a similar statistical meaning for c using these descriptors in an exponential space
of coordinates. For example, we must understand the a covariance of σ = 1 as the same probability of c
being half or twice its initial value.
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Figure 6.4: Kalman estimate for the experiment of the 1-material ring using observation
uncertainties of σZ = 10i, i = −5, . . . ,−1 and fixing the parameter uncertainty σθ = 2.
Each dot corresponds to the outcome of a Kalman estimation (after 200 iterations or
relative error minor than 10−2). The color indicates the material of the ring at each
experiment, the dashed line is 2θ

t
value and the whiskers denote the parameter uncertainty

computed as 2θ̂±
√

diag(U−1).

timation of the Kalman filter for the 15 cases is presented in Figure 6.4. The results showed

that in all cases the parameter uncertainty interval
[
2θ̂−
√

diag(U−1); 2θ̂+
√

diag(U−1)
]

con-

tains the true parameter value 2θ
t
. Even though, a closer estimate across the three ma-

terials is obtained for σZ = 10−3 mm which seems reasonable as it is the precision of the
displacements delivered by operator f . We see the larger errors are for the calcified tissue
which is the stiffest one and, consequently, the less deformed case (the displacements range
is within [7.76 · 10−3, 8.73 · 10−3] mm). Given that the strains are in the same order as the
forward operator precision it is expected a poor estimate of the parameter.

In relation with the filter convergence, we observed that as the uncertainty in the
observations decreases, the method converges faster. In Figure 6.5, it is shown that as the
σZ increases its value, the convergence is smoother and slower. Note that the estimator
gain matrix is computed as Kk = LθkU

−1
k {HL}TkR−1

k and the only operator that varies in
the first iteration of the presented cases is R−1

0 . As the spectral radius of R−1
0 diminishes

as σZ increases then K0 spectral radius diminishes as well, yielding a smaller correction
of θ̂+

k as presented in the plot. At the same time, since Pw is constant, the update of
Uk = Pw + {HL}TkR−1

k {HL}k is damped by Rk. This damping effect is evidenced in
the evolution of the parameter uncertainty intervals plotted in Figure 6.5. In statistical
terms, the lack of confidence in the new observations leads us to reducing its weight at
the correction step.

We performed an analogous analysis to study the sensitivity of θ̂ with respect to
the parameter uncertainty σθ. The uncertainty levels for σθ were from 0.25 to 4 and we
repeated the experiment for the same three different ring materials (fibrotic, lipidic and
calcified tissues). The results showed that the bigger σθ, the wider the search space for
the parameter, and the faster the method converges when the initial value is off the initial
parameter uncertainty interval (see Figures 6.6 and 6.7). On the other hand, high values of
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Figure 6.5: Convergence of the Kalman filter for the experiment of the 1-material ring using
observation uncertainties of σZ = 10i, i = −3,−2,−1, fixing the parameter uncertainty
σθ = 2 and 2θ

t
= 4 ·10−6: (top) overlay of the 3 cases; (bottom) each case separately. The
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denotes the parameter uncertainty interval
[
2θ̂−
√

diag(U−1); 2θ̂+
√

diag(U−1)
]
.
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Figure 6.6: Kalman estimate for the experiment of the 1-material ring using parameter
uncertainties of σθ = 0.25, 0.5, 1, 2, 4 and fixing the observation uncertainty σZ = 10−2.
Each dot corresponds to the outcome of a Kalman estimation (after 200 iterations or
relative error minor than 10−2). The color indicates the material of the ring at each
experiment, the dashed line is 2θ

t
value and the whiskers denote the parameter uncertainty

computed as 2θ̂±
√

diag(U−1).

σθ may cause an overshooting in the estimation and a slower convergence. In this scenario,
the reparametrization deteriorates the convergence even more. The reparametrization
imposes an estimation bias to stiffer values due to the fact that displacements are less
sensitive with respect to small variations in stiffer than softer materials. Then, the mean
observation error (used as correction term in (6.2.46)) is biased closer to the sigma points
associated with stiffer materials. This is clearly evidenced in Figure 6.8, where the initial
overshooting delays the estimation of the parameter.

Thus, we found a good agreement in term of accuracy and convergence for parame-
ters σZ = 10−3 mm and σθ = 4. These parameters identify clearly the three different kinds
of tissues in this idealized problem. Also, the observations generated in-silico present an
accuracy of similar order than the obtained (assuming no error carried by the optical flow)
through the IVUS image processing. For these reasons, we choose these parameters in the
next estimation process. Due to the tendency of the error introduced by the optical flow,
we may relax σZ for the in-vivo estimations.

6.3.3 Media and adventitia modeling

In the previous section, we successfully estimated the constitutive parameters for an
isotropic neo-hookean material as described in Section 5.4.1. Such materials correspond to
intimal pathological tissues that appear as product of inflammation and remodeling pro-
cesses. Now, we focus on the materials in the tunicas media and adventitia, which present
an anisotropic behavior described by the constitutive equation introduced in equation
(5.4.4), see Section 5.4.2. As we are interested only in the estimation of the atheroscle-
rotic plaque composition, we model the tunicas media and adventitia as a single layer
to reduce the computational effort and amount of constitutive parameters. Particularly,
IVUS images do not deliver a clear delimitation of the adventitia and the poor signal in
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Figure 6.7: Convergence of the Kalman filter for the experiment of the 1-material ring
using parameter uncertainties of σθ = 0.25, 1, 4 and fixing the observation uncertainty
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.
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Figure 6.8: Convergence of the Kalman filter for the experiment of the 1-material ring
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such region may yield a non-representative or an incomplete displacement field estimation.
Furthermore, the nonlinear stress-stretch relation of these layers is very accentuated due
to low isotropic and stiff fiber contributions to bear the intimal tractions. This forces the
use regularization terms in the preload and forward problem formulated in Section 5.3 (see
[22] and [41] for insights of the regularization terms) to stabilize the numerical scheme at
expenses of slower convergence.

For such reasons, we choose to construct two synthetic models with fixed parameters
to approximate the contributions of such layers and a synthetic model where only constitu-
tive coefficients c and k1 are optimized using the ROUKF. Note that in the later model, we
optimize only the isotropic and anisotropic contribution weights. We choose to optimize
these parameters because less tuning of the regularization parameters is required when
they are altered during the ROUKF process. Also, the optimization of all constitutive
parameters may be unnecessary because of the geometrical uncertainty of this layer on
in-vivo studies. Thus, geometry and coefficients of ex-vivo specimens reported in [145]
are used as reference. As the tunica media narrows to 0.08mm in average during the
atherosclerotic plaque progression (while the adventitia maintains a 0.4mm thickness) and
is notoriously more elastic than the adventitia, we choose to neglect its contribution. Thus,
we approximate the whole layer as adventitia tissue which bears most of the load. We use
the two sets of constitutive parameters described in Table 6.1.



138 Chapter 6. In-vivo estimation of biomechanical parameters

Media/Adventitia c k1 k2 θ ρ λ0

model (kPa) (kPa)

Soft 4.5 37.06 48.36 65.8 0.4 1
Stiff 29.86 119.25 213.81 53.4 0.6 1
Optimized − − 213.81 53.4 0.6 1

Table 6.1: Experimental coefficients reported in [145] for patients VIII (soft model) and
X (stiff and optimized model). The optimized model referred to the stiff model where
parameters c and k1 are optimized by the reduced order unscented Kalman filter.

6.4 Cases of study

We study three cases with increasing complexity of the model:

1. Synthetic idealized artery: We assume an ideal geometry of an arterial cross
section with two concentric layers, modeling the media/adventitia and the intima
layer, respectively. An in-silico displacement field is obtained by solving the preload
and forward problems. Using such displacements as observations for the ROUKF,
we analyze: i) the impact of alternative media/adventitia models; and ii) the capa-
bilities of the ROUKF method to identify the constitutive parameters for different
homogeneous intimal tissues.

2. Synthetic artery with in-vivo geometry: We segment the media and intima
from an IVUS image to create an arterial realistic domain. In this domain, we define
a distribution of tissues within the vessel wall and, as before, create an in-silico
displacement field solving the preload and forward problems. Finally, we estimate
the constitutive parameters with the ROUKF for a normotensive and a hypertensive
scenario. In this scenario, we analyze the capabilities of ROUKF to estimate the
constitutive parameters in real geometries with heterogeneous composition (although
the tissue distribution is synthetic) under physiological ranges of pressure.

3. In-vivo artery: We segment the media and intima from an IVUS image acquired
at the end-diastolic phase. Differently from the previous case, we split the obtained
domain with the K-Means strategies presented in Section 6.3.1. Additionally, we
estimate the optical flow between the end-diastolic image (the one used for seg-
mentation) and the systolic image at the same transversal position of the vessel
(the image that matches such location is obtained using the gating and registration
strategies described in Chapters 2 and 3). Using this in-vivo geometry, we estimate
the constitutive parameter of the tissues and infer the vessel composition. This
corresponds to a truly in-vivo characterization of the arterial tissues.

6.4.1 Synthetic idealized artery

The idealized artery is a perfect ring with inner and outer radius of 2mm and
2.55mm, and a thickness of 0.04mm. The domain is split in two concentric layers, the
inner layer with a radial thickness of 0.2mm models the intima while the outer layer with
a radial thickness of 0.35mm models the media and adventitia. Loads of tW,n = 80 n
mmHg and tW,n = 120 n mmHg are applied in the inner surface for the preload and
forward problem, respectively, simulating a normotensive scenario and tethering tractions
tA,is such that an axial stretch of 10% is imposed at the non-physical boundary. Due to
the intrinsic symmetry of the problem, we solve only a quarter of the domain (see Figure
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Intimal Media/Adventitia 2θ
t

(kPa) 2θ̂ (kPa) εc (%)
tissue model Estimation [LB,UB])

Fibrotic Soft 500 598.85 [302.21, 1186.68] 19.77%
Lipidic Soft 100 179.86 [90.58, 357.16] 79.86%
Calcified Soft 4000 3915.23 [1965.72, 7798.16] 2.12%
Fibrotic Stiff 500 456.60 [230.36, 905.05] 8.68%
Lipidic Stiff 100 56.88 [28.622, 113.043] 43.12%
Calcified Stiff 4000 3327.88 [1672.70, 6620.89] 16.80%
Fibrotic Optimized 500 632.42 [316.35, 1264.29] 26.48%
Lipidic Optimized 100 102.98 [51.51, 105.88] 2.98%
Calcified Optimized 4000 3937.52 [1984.28, 7813.46] 1.56%

Table 6.2: Estimate of intimal tissues using the soft, stiff and optimized models for
the media/adventitia layer. The optimized model estimates the coefficients c and k1

of the media/adventitia layer using reduced order unscented Kalman filter. The esti-

mate 2θ̂ of the true parameter 2θ
t

is presented with its uncertainty interval [LB,UB] =[
2θ̂−
√

diag(U−1); 2θ̂+
√

diag(U−1)
]
. The relative error of the elasticity modulus is com-

puted as εc = (|2θt − 2θ̂|)/2θt . The observed displacement Z are generated using a me-
dia/adventitia model with coefficients c = 15.8 kPa, k1 = 25.36 kPa, k2 = 67.85, θ = 70.3◦

and ρ = 0.7 (which is elastically a middle term between the soft and stiff models). The
Kalman parameters for uncertainty were σZ = 10−3 and σθ = 4.

6.9) to save computation cost. Two non-physical boundaries appear as result of this
simplification where homogeneous Dirichlet conditions are imposed to allow only radial
displacements.

This idealized geometry is used to test the media/adventitia models. To be fair with
the soft and stiff models, the in-silico displacements are generated with media/adventitia
coefficients c = 15.8 kPa, k1 = 25.36 kPa, k2 = 67.85, θ = 70.3◦ and ρ = 0.7, which are a
middle term between the two models in terms of elastic response. These coefficients were
taken from an ex-vivo specimen as well (see [145], Patient VI). Using such outer layer,
three experiments were created each one with a different intimal tissue (with neo-hookean
behavior): a fibrotic tissue with c = 500 kPa; a lipidic tissue with c = 100 kPa; and a
calcified tissue with c = 4000 kPa. Thus, we estimate the parameters of the intimal tissue
using only the in-silico displacements on the intima (reliable data that can potentially be
extracted from IVUS). The main focus is to analyze the error in the estimate when using a
stiffer, a softer or an optimized model for the media/adventitia. This allows to determine
a range of confidence for the estimates made with each model when the media/adventitia
coefficients are unknown.

The ROUKF estimation was performed using each of the three media/adventitia
models for each of the three intimal tissue experiments. The error in terms of the c
parameter, εc, (see Table 6.2) indicates that the best estimation for fibrotic tissue is
obtained by the stiff model, while for lipidic and calcified tissues it is obtained by the
optimized model. The mean error across the three experiments are 87.83, 252.88 and
65.96 kPa for the soft, stiff and optimized models, showing a close agreement between
the optimized model and soft model. The relative error of the experiments also presented
the optimized model as the most accurate solution, with less than 26.48% of error for
all materials. Another interesting outcome from these experiments is the fact that the
uncertainty interval always comprises the correct value of c without overlapping with the
c value of other type of tissue. However, this is not enough to ensure that all the three
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Figure 6.9: Domain discretization for the synthetic idealized artery and in-silico generated
displacement fields for the soft media/adventitia model with an homogeneous intimal
tissue with c = 4000 kPa (calcified tissue). Mesh contains 2469 nodes where (u, λ) are
unknowns, resulting in 9876 degrees of freedom for the preload and forward problems.
(Top) Domain discretization used for finite element method numerical scheme, the intima
and media/adventitia are the blue and red elements, respectively; (bottom-left) displace-
ments obtained from the preload problem; (bottom-right) displacements obtained from the
forward problem. Recall that the vessel is axially stretched by 10% in the configuration
Ωs, then the displacements obtained from the preload problem present an axial component
besides the cross-sectional components of displacement.
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models will perform successfully in a more realistic situation. This is because of the
complexity of the geometry or the material composition (fibro-lipidic materials or small
calcium inclusions on other tissue) that an in-vivo scenario may present. In fact, the
next case aims to study the performance of the ROUKF estimation in a realistic arterial
geometry.

6.4.2 Synthetic artery with in-vivo geometry

A more complex geometry extracted from an IVUS frame segmentation is now em-
ployed to assess the performance of the ROUKF on realistic vessel geometries under phys-
iological pressure ranges. The chosen frame corresponds to a lesion with 57.4% stenosis at
the end-diastolic phase. The pipeline described in Section 5.5.2 was applied for the con-
struction of the mesh. A manual demarcation of a lipid and calcified areas was performed
based on visual inspection of the image intensities. The intima/media layer obtained from
the segmentation was considered as intima layer only, since the mechanical contribution of
the media with presence of significant plaque (recall that the media thickness diminishes)
and in passive conditions (no smooth muscle activation is considered) is negligible when
compared to the intimal plaque contribution. The generated mesh of the domain for the
numerical simulation is presented in Figure 6.10. This domain partition is not necessarily
the in-vivo tissue distribution of this case, although similar to the plaque morphologies
analyzed in-vivo where lipid pools and calcifications are located inside fibrotic tissues (see
Figure 5.8). Nevertheless, the aim of this scenario is the analysis of the data assimilation
procedure on a realistic media/intima geometry, for which the tissue distribution seems
morphologically reasonable.

To generate the in-silico displacement field, use an adventitia material with coeffi-
cients c = 15.8 kPa, k1 = 25.36 kPa, k2 = 67.85, θ = 70.3◦ and ρ = 0.7 (see equation
(5.4.4)) and three neo-hookean materials without fibers (see equation (5.4.1)), a fibrotic
material with c = 500 kPa, a lipidic material with c = 100 kPa and a calcified material with
c = 4000 kPa. As in the previous case, loads of tW,n = 80 n mmHg and tW,n = 120 n mmHg
are applied in the inner surface for the preload and forward problem in the normotensive
scenario and loads of tW,n = 90 n mmHg and tW,n = 140 n mmHg are applied in the
inner surface for the preload and forward problem in the hypertensive scenario. Tethering
tractions tA,is at the non-physical boundaries are applied such that an axial stretch of 10%
is imposed in the axial direction. The ROUKF optimizes the coefficients (c, k1) and (c)
for the neo-hookean materials with and without fibers. The parameter uncertainties are
1 and 4 for the fibrous and non-fibrous materials, respectively. Such values presented a
convenient balance between convergence rate and stability of the method as presented in
Sections 6.3.2 and 6.4.1.

The results reported in Table 6.3 show that the method characterizes correctly the
properties in the intimal region for the hypertensive case and only misses the calcified
tissue for the normotensive case. The reason why the calcification was misidentified, is
associated with the small displacement at its locus. In Figure 6.12, it is seen that the
displacement in such region is close to 12µm in normotensive condition and close to 16µm
in hypertensive conditions. In turn, as shown in Figure 6.13, the error in such area is
similar for both cases (≈ 3µm, i.e. a relative error of 25% for the normotensive case and
18.75% for the hypertensive case) degrading more the identification of the normotensive
case.

With this example, it has been illustrated that the strategy based on the ROUKF
delivers a successful characterization when the displacements in the materials are large
enough to analyze the sensitivity of the parameters. This is an important issue to take
into consideration when analyzing lesions with large stenosis or calcified rings because
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Figure 6.10: Domain discretization for the synthetic artery with in-vivo geometry. The
intima is composed by a fibrotic (red), a lipidic (green) and calcified (magenta) partitions,
enclosed by the adventitia (yellow) partition. Mesh contains 11602 nodes where (u, λ) are
unknowns, resulting in 46408 degrees of freedom for the preload and forward problems.

Case Parameter 2θ
t

(kPa) 2θ̂ (kPa) Rel. error
Estimation [LB,UB]) εc (%)

Normotensive Fibrotic c 500 663.86 [332.60, 1325.04] 32.77%
Lipidic c 100 81.10 [40.66, 161.76] 18.9%

Calcified c 4000 591.13 [295.90, 1180.94] 85, 22%
Adventitia c 15.8 80.06 [40.16, 159.60] 406, 70%
Adventitia k1 25.36 59.72 [29.91, 119.22] 135, 49

Hypertensive Fibrotic c 500 641.85 [321.51, 1281.35] 28.37%
Lipidic c 100 96.25 [48.25, 191.98] 3.75%

Calcified c 4000 3631.12 [1816.99, 7256.53] 9.22%
Adventitia c 15.8 75.12 [37.66, 149.83] 375.44%
Adventitia k1 25.36 7.18 [3.60, 14.33] 71.69%

Table 6.3: ROUKF estimate of the constitutive parameters in the case of a synthetic

artery with in-vivo geometry. The estimate 2θ̂ of the true parameter 2θ
t

is presented

with its uncertainty interval [LB,UB] =
[
2θ̂−
√

diag(U−1); 2θ̂+
√

diag(U−1)
]
. The parameter

estimate relative error is computed as εc = (|2θt − 2θ̂|)/2θt . The Kalman parameters for
uncertainty were σZ = 10−3, and σθ = 1 and σθ = 4 for materials with and without fibers.
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Figure 6.11: In-silico generated displacement fields (in cm) for the normotensive case (first
row) and hypertensive case (second row). The columns present the solutions for the preload
problem (first column) and for the forward problem (second column). Each column uses
the same range and color bar. Recall that the vessel is axially stretched by 10% in the
configuration Ωs, then the displacements obtained from the preload problem present an
axial component besides the cross-sectional components of displacement. This is clearly
evidenced in the lipidic region at the top center part of the artery, which experiments an
important axial retraction at the no-load configuration (Ωm).
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Figure 6.12: Comparison of the displacement field (in cm) for the forward problem ob-
tained by in-silico experiment and as result of the data assimilation process (characteri-
zation): (first-column) normotensive case; (second-column) hypertensive case.
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Figure 6.13: Error of the displacement field (in cm) for the forward problem between
the in-silico experiment and the result of the data assimilation process (characterization):
(first-column) normotensive case; (second-column) hypertensive case; (first-row) absolute
error of the displacements in cm; (second-row) relative error of the displacements com-

puted as εr = |Ωs| ums −uts∫
Ωs
|uts|dΩ

where uts and ums are the in-silico and estimate displacements

respectively.
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such characteristics of the vessel wall reduce the compliance and may lead to insufficient
input data for a successful characterization.

6.4.3 In-vivo artery

In this last case of study, we use two images of an IVUS studies corresponding
to the same cross-sectional area of the vessel at the end-diastolic and systolic phase,
respectively (see Figure 6.14). This scenario corresponds to the in-vivo characterization
of the biomechanical properties of a patient-specific arterial vessel, which is the ultimate
goal of this thesis.

To delineate the partition of the domain, we use the K-means strategy based on
the IVUS intensity. The domain contains 2 intimal tissues (2 bins used in the K-means
strategy) and an adventitia of thickness ≈ 300µm, compatible with a typical coronary
morphology reported in the literature for atherosclerotic patients [329]. The mesh gen-
erated for such partition is shown in Figure 6.15. Additionally, loads of tW,n = 80 n
mmHg and tW,n = 120 n mmHg are respectively applied over the inner surface for the
preload and forward problems, and tethering tractions tA,is such that an axial stretch of
5% is imposed in the axial direction. The assumption of normotensive levels of loads was
assumed because the patient is medicated to control its pressure during catheterization.
The axial stretch of 5% was chosen to obtain similar displacements in the OF observations
and in the in-silico simulations used in the characterization process. As reported in [146]
the physiological level of axial stretches range from 5− 10% justifying that the considered
loading is physiologically consistent.

The results of the characterization process presented that the intima is composed by
two lipidic materials, where the blue partition is slightly more fibrotic (see Table 6.4). The
obtained displacement field from the data assimilation procedure (um) showed the larger
differences to the observed field (uOF

s ) at the top part of the cross-section, ranging errors
between 70 and 148µm. Such differences can be associated to the error in the domain
partion or the absence of surrounding tissues in the model. Inspecting the orientation of
the error it seems that a stiffer material (or external tissue to the vessel) is associated
to the top right region which advances radially towards the lumen (accordingly to the
observations uOF

s ).
The previous analysis of the displacement errors in magnitude and pattern can

be useful for the development of domain partitioning techniques, something that seems
to be fundamental to obtain a more precise description for the displacements in the data
assimilation process. Regions with error higher than a certain threshold can be candidates
to conform a partition for a different tissue. Also, models for surrounding tissues as those
introduced in [22, 41], will be useful to model epicardium contact, myocardial bridge and
other scenarios that reduce the compliance of the vessel surrounding media.

6.5 Final remarks

A data assimilation environment for analysis of arterial models and biomechanical
characterization has been developed. The in-silico experiments presented in Section 6.4.1
and 6.4.2 have shown that the methodology is capable to recover biomechanical properties
of the intimal tissue when the distribution of the vessel constituents is known and the
arterial pressure is large enough to perform observable deformations in the tissues. Also,
an in-vivo case showed preliminary results for the biomechanical characterization of a
vessel cross-section. Based on this case, some considerations were exposed for further
development of the data assimilation technique, such as: i) dynamic strategies for domain
partitioning to iteratively enhance the distribution of materials within the arterial wall,
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Figure 6.14: IVUS images used for the biomechanical characterization in the case of the
in-vivo artery. (Top) Images correspond to an atherosclerotic lesion gated at the cardiac
phases Ist (left) and Imo (right); (bottom) optical flow (in cm) between frames at Ist and
Imo phases, estimated with a Weickert formulation using the numerical scheme proposed
in Section 4.3.4.5. The selection and alignment of these images was performed using the
gating and registration methods developed in Chapters 2 and 3.
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Figure 6.15: Domain discretization for the case of the in-vivo artery. The intima is com-
posed by a material 1 (blue) and a material 2 (red), enclosed by the adventitia (cyan)
partition. The mesh for the finite element method was created from the K-Means based
on intensity for 2 materials, it contains 8867 nodes where (u, λ) are unknowns, resulting
in 35468 degrees of freedom for the preload and forward problems.

Parameter 2θ̂ (kPa) Mean relative error
Estimation [LB,UB]) by partition

Material 1, c 126.34 [63.85, 250.00] 1.6913
Material 2, c 70.15 [35.38, 139.08] 2.7140
Adventitia c 3.55 [1.78, 7.08] —
Adventitia k1 1243.00 [623.96, 2476.23] —

Table 6.4: Estimate of the reduced order unscented Kalman filter for in-vivo constitutive
parameters of a patient-specific artery. The estimate 2θ̂ of the partition materials is pre-

sented with their uncertainty interval [LB,UB] =
[
2θ̂−
√

diag(U−1); 2θ̂+
√

diag(U−1)
]
. The

mean relative error for each partition is computed as 1
|Ωi|

∫
Ωi

|uOF
s −ums |
|uOF
s |

dΩi where Ωi is the

partition of the material i. The Kalman parameters for uncertainty were σZ = 10−3 and
σθ = 1 and σθ = 4 for materials with and without fibers.
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Figure 6.16: Comparison of the displacement field (in cm) recovered from the images
by optical flow techniques and the obtained for the forward problem as result of the
data assimilation process (characterization): (upper-left) optical flow displacement field
uOF
s ; (upper-right) data assimilation displacement field ums ; (bottom-left) difference of the

displacement fields ums −uOF
s ; (bottom-right) relative difference of the displacement fields

|Ωs| ums −uOFs∫
Ωs
|uOFs |dΩ

.
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unveiling the tissue distribution by making use of the disagreement between the obser-
vations and the mechanical response; and ii) the use of surrounding tissues models to
reproduce the vessel displacement when there is substantial media resistance (epicardium
contact, myocardium bridge, among others).

Nevertheless, a complete methodology has been presented that integrates all the
elements developed in this thesis. The development of this toolbox for study of biomechan-
ical characterization of the vessel wall successfully completes the goals initial delineated
in Chapter 1. This new tools enables several new studies to achieved the in-vivo and
patient-specific characterization of the vessel wall tissues, such as: development of shape
optimization methods to obtain an in-vivo distribution of the vessel tissues; analysis of the
axial and external stress forces along the tissue characterization; assessment of uncertainty
of the optical flow observations to establish a heterogeneous distribution of the parameter
σZ along the image.
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Chapter 7

Geometric arterial models: IVUS
vs. CCTA

The present chapter summarizes some of the clinical contributions derived from
the IVUS image processing (introduced in the first part of this manuscript), CCTA image
processing (developed in [52]) and the collaboration with the Incor and Śırio-Libanês health
centers in São Paulo state, Brazil. The goal is the comparison between the geometric
models obtained from coronary angiography fused with intravascular ultrasound (for the
sake of simplicity denoted just as IVUS) and coronary computed tomography angiography
(CCTA). The construction of such models is further detailed in [212] and [52] for IVUS
and CCTA-based approach, respectively. Still, here we describe the fundamental steps in
the corresponding processes.

In what follows, two studies are presented: i) a geometric comparison based on
features post-processed from the generated geometries; and ii) a comparison of the hemo-
dynamic quantities computed by each model with special focus on the computational
estimation of fractional flow reserve (FFR) and of averaged wall shear stress (AWSS).
Results of the later study have been published in [54].

7.1 Introduction

Computational fluid dynamics (CFD) [73] is being used to explain the development
of atherosclerotic coronary lesion [68] and evaluate its functional significance [232] in term
of the computed hemodynamic quantities such as blood flow, pressure gradients and shear
stresses. To perform a CFD simulation in a patient-specific scenario, a geometrical model
from a given arterial district must be constructed from a medical imaging technique.
The most common imaging modalities for coronary arteries are the coronary computed
tomography angiography (CCTA), the coronary angiography (AX) and intravascular ul-
trasound (IVUS). In [212], we developed a methodology to fuse the spatial information
from AX with a local and high resolution description of the vessel structures from IVUS.
Integrating the gating and registration techniques developed in the present thesis to the
previous methodology, it is possible to achieve a spatial and phase consistent geometric
model of the coronaries (henceforth referred to as IVUS model).

Several studies compared the diagnostic capabilities of IVUS and CCTA models in
terms of lumen area, plaque volume and other classic measurements [108, 118]. However,
there are no previous studies comparing a comprehensive set of geometric descriptors for
coronary arterial models constructed from IVUS and CCTA. Furthermore, the correct-
ness of hemodynamic simulations is determined, mainly, by two factors: (a) accurate
anatomical data provided by three-dimensional coronary model and (b) the suitability of
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hypothesis behind the definition of boundary conditions related to patient specific param-
eters (see [54] for further details). Therefore, our purpose is to compare the geometric
features of both models and objectively interpret the impact of geometric differences on
CFD simulations.

Additionally, we study the sensitivity of the fractional flow reserve (FFR) with re-
spect to each the geometric model. The FFR is the accepted gold standard for detection
of ischemia-related lesion and guide treatment [257], although the need for using drugs to
induce maximum hyperemia and its inherently invasive nature (a pressure wire is required)
are contributors to low adoption [92]. Despite being non-invasive and already validated
[240], the computational assessment of FFR using coronary computed tomography an-
giography (CCTA) carry some limitations related to this image modality such as lumen
underestimation in the presence of stents or calcium [175, 196]. In turn, the use of other im-
age modalities such as quantitative coronary angiography [251] or intravascular ultrasound
(IVUS)[61], also allows the computational estimation of FFR. In this context, IVUS brings
some advantages, such as high definition of arterial lumen, vascular remodeling [101, 118]
and pulsatility [182]; in addition to being associated with decreased use of iodine contrast
during percutaneous coronary intervention [208].

7.2 Methods

7.2.1 Study population

Patients with clinical suspicion of atherosclerotic coronary disease who underwent
multimodal evaluation with CCTA and IVUS at least, but also FFR in selected cases
made up our samples. The left anterior descending (LAD), ramus intermedius (RI), left
circumflex (LCx) and right coronary artery (RCA) were analyzed. Imaging data for such
vessels were acquired using standardized image acquisition protocols. Data processing and
analysis were performed retrospectively using the reconstruction techniques presented in
[52] and [212]. The study protocol was approved by the local ethics committees of the
centers and is in a accordance with the Helsinki Declaration.

Sample for geometric comparison

The study sample consisted of 28 patients (34 arteries) who were indicated to both
CCTA and IVUS protocols for diagnostic or therapeutic percutaneous coronary procedure
at Śırio-Libanês Hospital, São Paulo, Brazil. Most patients presented mild symptoms
(93%). More than 30% of the patients had diabetes and the mean of left ventricular
ejection fraction was 64 ± 7%. Details of the study population are outlined in Table
7.1. Regarding stenotic lesion description, the median maximum percentage of diameter
stenosis (%DS) by AX was 55% [40-70], whereas median minimum lumen area (MLA)
and plaque burden, measured in the IVUS images, were 3.96 mm2 [3.2-5.1] and 68.5%
[56-73], respectively (median [min-max] of the sample).

Sample for hemodynamic comparison

The study sample is a subset of the previous sample, consisting of 11 patients (16
arteries) who were indicated to both CCTA and IVUS protocols with invasive FFR mea-
surements. The time span between both medical studies was 3.4 ± 4.9 days, and the
CCTA was always performed before percutaneous coronary procedure. Details of the
study population are outlined in Table 7.2.
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General information
Male 23 (82%)
Age (yrs) 64± 11
Mean body mass index (kg/m2) 28± 3
Hypertension 16 (57%)
Hyperlipidemia 27 (96%)
Current smoker 9 (32%)
Diabetes mellitus 9 (32%)

Angina type
Asymptomatic/ Silent ischemia 12 (43%)
Atypical symptoms 14 (50%)
Stable angina 2 (7%)

Cardiovascular history
Previous PCI 3 (11%)
Previous CABG 2 (7%)
Atrial Fibrillation 3 (11%)
Heart failure 2 (7%)
Calcium score∗ 218± 345
LVEF, % 64± 7

Arteries
Left anterior descending 22 (65%)
Left circumflex 9 (26%)
Ramus intermedius 2 (6%)
Right coronary 1 (3%)

Vessel characteristics
Percentage diameter stenosis (AX) 55 (40− 70)
Minimum lumen area (IVUS) (mm2) 3.96 (3.2− 5.1)
Plaque burden(%) 68.5 (56− 73)
Fractional flow reserve∗∗ 0.86 (0.78− 0.93)
Percentage diameter stenosis (CCTA) 50 (40− 60)

∗23 calcium score measurements (5 patients with previous PCI or CABG).

∗∗23 FFR measurements were taken.

Table 7.1: Clinical characteristics of the sample used for the geometric comparison (n = 28
patients, 34 arteries). Values are mean ± SD, n (%), or median (IQR). Abbreviations:
coronary artery bypass graft (CABG); interquartile range (IQR); percutaneous coronary
intervention (PCI); left ventricular ejection fraction (LVEF).

7.2.2 Acquisition and processing of medical images

Due to the intrinsic difference between IVUS and CCTA images, different processing
methodologies are employed to retrieve the three-dimensional model of the arterial lumen
and its associated axial centerline. While CCTA images deliver three-dimensional arterial
models, IVUS must be enriched with spatial information of the pullback path1 obtained
from angiographies (AX). All arterial models were generated from images acquired during
end-diastole. Figure 7.2 illustrates the CCTA and IVUS image processing pipeline. For
both geometric models, extensions at inlet/outlets were added to reduce boundary effects
in the simulation [120].

1Spatial path followed by the IVUS transducer during the acquisition of the study.
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General information
Male 10 (91%)
Age (yrs) 59± 12
Mean body mass index (kg/m2) 28± 4
Resting diastolic pressure (mmHg) 76±5
Resting systolic pressure (mmHg) 120±8
Resting mean systemic pressure (mmHg) 91±6
Resting heart rate (bpm) 72±9

Arteries
Left anterior descending 10 (62%)
Left circumflex 5 (31%)
Ramus intermedius 1 (7%)

Circulation dominance
Right 10 (91%)
Co 1 (9%)

Table 7.2: Clinical characteristics of the sample used for the hemodynamic comparison
(n = 11 patients, 16 arteries). Values are mean ± standard deviation or n (%).

For each geometric model, the centerline (resolution of 0.5 mm between points)
was computed as in [18], and was used to clip the model at the ostium of the artery
of interest. From the CCTA model, a region of the centerline was chosen such that it
matches the length of the IVUS centerline (see solid surfaces in Figure 7.1). Side branches
were removed for comparison purposes. Cross-sectional slices, denoted Γs with contour
∂Γs, were extracted at each point over the centerline (see Figure 7.2). Hemodynamic
quantities defined in the bulk of the domain were averaged at each section Γs, while
quantities defined over the surface of the domain were averaged over ∂Γs. We simply refer
to these as Γs-averaged quantities, and are denoted by (̄·).

7.2.2.1 Intra-vascular ultrasound

IVUS images were acquired with the Atlantis™ SR Pro Imaging Catheter 40 MHz
synchronized with an ECG signal and connected to an iLab™ Ultrasound Imaging System
(Boston Scientific Corporation, Natick, MA, USA). The acquisition was performed with
a frame rate of 30 FPS during an automated constant velocity pullback at 0.5mm/s. The
acquisition finalizes at the ostium of the aorta in every run. The IVUS frames of 512×512
pixels yield a resolution of 17.5µm × 17.5µm per pixel. Overall, multiple IVUS runs where
performed on 28 patients resulting in 34 IVUS studies (one for each reconstructed artery)
with synchronized ECG signal. In addition, the IVUS study is gated to retrieve the images
at the end-diastolic phase (see Chapter 2). The vessel geometry is defined in a system
of intrinsic transducer coordinates which requires integration with angiographic images to
adequately place the model in the three-dimensional space.

Two orthogonal AX films were acquired synchronized with the ECG signal when
the IVUS sensor was at the initial pullback position. The views were taken along the
cranial-caudal plane for left coronary vessels and along the right-left oblique plane for right
coronary arteries. These positions minimize dye overlapping between the coronary vessels
and heart chambers as well. The films span over 8 heartbeats to ensure the acquisition
along the whole respiratory period. Finally, a specialist selected images from the films
at the same respiratory phase (full exhalation) and at the end-diastolic cardiac phase, to
perform a time-space consistent reconstruction of the vessel.

An in-house software developed in Matlab™ was used to retrieve the end-diastolic
cardiac phase from IVUS images. Luminal area (from all end-diastolic IVUS frames) was
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CCTA IVUS

Figure 7.1: Geometric models of 16 arteries used in the study for hemodynamic compar-
ison. The lumen geometries used for computational simulations are shown with trans-
parency. Regions for comparison are highlighted with solid colors blue for CCTA and red
for IVUS.
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Figure 7.2: Complete processing pipeline from medical images to geometric models. The
CCTA procedure is presented in the left column and the IVUS procedure is shown in the
right column.

manually segmented by a specialist using cubic splines. The length of the segmented
pull-backs was 153.81 ± 45.76 gated frames, which corresponds to 67.19 ± 17.89 mm of
vessel length. Then, the transducer path was segmented from the orthogonal AX images
using a biplane snakes method [231]. The segmented cross-sectional areas were positioned
in the transversal plane of the recovered transducer path, using an inter-frame spacing
dictated by the acquisition time of the frame and by the pullback velocity. Segmentation
of side branches from IVUS images was also manually performed, creating a mesh in
intrinsic transducer coordinates for each branch. These branches were spatially positioned
in the transversal plane already determined for the parent vessel.

To account for catheter rotations, all contours are rotated around the axis described
by the transducer path. The rotation angle of each frame is the one that minimizes the
mismatch between the projected luminal area from IVUS and the AX contrast in the same
part of the vessel. After this process, a specialist verifies and, if necessary, corrects the
rotation angle by matching the branches and main artery with the projection resulting in
the AX.

At this point, IVUS processed data consist in several disconnected meshes, one for
the parent vessel and one for each branch. Each mesh is improved applying the following



7.2. Methods 159

processes: i) smoothing using a Laplacian algorithm with no shrinking restriction (a re-
laxation factor of 0.63 and 30 iterations are used) [183]; ii) addition of tube extensions at
inlet/outlets (at boundaries near bifurcations or in boundaries with non-convex enclosing
curves) to reduce boundary effects in the simulation [120], such extensions have circular
cross-section with the same area of the boundaries that are extending in the direction of
the outward normal; iii) adaptive refinement as a function of the vessel radius. Then, all
surfaces are merged using union surface operations described in [265]. Finally, a tetra-
hedral volume mesh is constructed for the CFD simulations using also VMTK [1]. The
number of side branches was manually performed by an expert.

7.2.2.2 Coronary computed tomography angiography

CCTA images were acquired in a 320-row scanner system (Aquilion ONE, Toshiba
Medical Systems, Japan). All acquisitions were ECG-triggered prospectively at end-
diastolic phase (75% of the cardiac cycle) to keep the lowest possible radiation dose. The
acquisition scheme followed standard practice protocols [53], ensuring heart rate lower to
65 bpm.

For each patient, the arterial lumen is segmented by implicit deformable models [19].
First, a curvature anisotropic filter is applied over a region of interest [336]. Initialization
of the level-set method is performed in individual arteries using a colliding front algorithm
[19]. The segmented lumen is defined using a marching cubes method [200]. This procedure
results in a triangulated raw surface of the coronary tree which is improved following the
same procedure described in Section 7.2.2.1. All image and mesh processing stages are
performed using VMTK [1], ImageLab [126] and HeMoLab [183] softwares.

An advantage of CCTA images is that the coronary network can be retrieved from
a single tomography. The degree of detail, i.e. number of small arteries, of such network
depends on image quality and artifacts. The number of side branches for each artery is
counted from such network.

7.2.3 Invasive FFR measurements

FFR invasive measurement was performed according to routine clinical practice
utilizing the PressureWire Certus™ (St Jude Medical Systems). The FFR was performed
only in vessels demonstrating an intermediate stenosis and with clinical indication for
FFR evaluation. Transcatheter aortic and intracoronary pressure tracings were equalized.
After administration of nitroglycerin, the guidewire was advanced into the distal portion of
respective coronary artery and distal to the index lesion. The ratio of the mean pressure in
the distal portion of coronary over the mean pressure in the aorta (Pd/Pa) was continuously
recorded. Adenosine was either injected intravenously at a constant rate of 140 mg/kg/min
or as an intracoronary bolus (300µg for the right coronary artery and average of 990µg
for the left coronary artery), and the lowest Pd/Pa value in steady state after adenosine
application was documented as FFR result. FFR was considered diagnostic of ischemia
at a threshold of < 0.80.

7.2.4 Flow Simulations

Blood flow was modeled using the Navier-Stokes equations with rigid vessel wall
boundaries. Let Ω be the domain occupied by the coronary vessels, with boundary Γw
representing the arterial wall, Γp the proximal boundary and Γi, i = 1, . . . , No, the No
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outlet boundaries, and n the normal vector. Then, we must find the velocity and pressure
fields (v, p) such that

ρ
∂v

∂t
+ ρ(∇v)v − µ4v +∇p = 0 in Ω

div v = 0 in Ω

v = 0 on Γw

tp = −Ppn on Γp,

+ Resistance boundary conditions (see [52]) on ∪Noi=1 Γi,

+ Initial conditions in Ω

(7.2.1)

where ρ and µ are blood density and viscosity, tp are the homogeneous tractions imposed
at Γp, Pp is the mean systemic blood pressure and the resistance boundary conditions
are homogeneous tractions ti imposed at the outlets ∪Noi=1Γi. The variables Pp and ti are
constant or variable in time if the blood flow simulation is steady or pulsatile, respectively.
The resistance boundary conditions are responsible for the flow distribution over the ar-
terial network and are estimated relying in two assumptions: (i) the pressure drop is only
due to peripheral bed resistances; and ii) the Murray’s law, with a certain exponent γ,
holds. Details of the estimation and justification of such conditions are given in [52, 54].
Particularly, the parameters were defined as ρ = 1.05 g/cm3, µ = 0.04 cP and γ = 2.66.
For simulations at maximum myocardial hyperemia, hyperemic blood flow is estimated
from patient data. Given the IVUS and CCTA models of a coronary artery, boundary
conditions are prescribed such that the same amount of blood volume flows through the
compared arteries. Therefore, differences in hemodynamics variables such as FFR or time
average wall shear stress (AWSS) are caused by the difference in the geometric models.

To solve the equations (7.2.1), the variational form of system is approximated using
an implicit backward Euler finite-difference method in time and a fully coupled velocity-
pressure finite element method in space [23, 149]. Tetrahedral meshes were constructed
using the VMTK library [1]. Computer simulations were performed with an in-house fully
parallel solver. For pulsatile simulations, the time step was ∆t = 5 · 10−4 s, and homoge-
neous initial conditions were used. Mesh independence tests were performed. Models of
IVUS and CCTA contained 2.05±1.18 M and 1.52±0.43 M degrees of freedom, respectively.

7.2.5 Statistical analysis

The analyses were performed on a per-vessel basis. Features and indexes are ex-
pressed as mean ± SD describing the correlation between modalities in terms of the Spear-
man coefficient ρ, Bland-Altman relative bias and limits of agreement. Centerlines were
scaled down to a normalized centerline with parametric arc-length coordinate s ∈ [0, 1],
and re-sampled to 200 points for each centerline for comparison purposes.

Hemodynamic comparisons along the region of interest focused on the magnitude
of velocity v̄ = ‖v‖ and pressure p̄, lumen area A (D the diameter), Reynolds number
Re = ρv̄D

µ , time average wall shear stress AWSS, oscillatory shear index OSI, flow rate Q̄

and fractional flow reserve (FFR = p̄/PHp ). The hemodynamic time-dependent quantities
were averaged over the last cardiac cycle (first cardiac cycle were periodicity of the solution
is achieved). Also, the branch count in the regions of interest, and the fraction of flow at
the outlet relative to the total flow rate coming into the coronary tree, denoted FFOI, were
compared. Point-wise comparison between Γs-averaged quantities was performed. Paired
nonparametric Mann-Whitney U-Test (two tailed) and Bland-Altman (BA) analysis of
differences were used to show statistical discrepancies between variables from IVUS and
CCTA simulations.
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Invasive measurements of FFR were available for each vessel of the set. The pres-
sure wire location in the arterial models is manually determined by an expert from the
associated angiographic image. A region ΩFFR of approximately 2 mm of length is used
to average the FFR field which is used as the computational estimation of FFR. Due to
poor image quality, only 1 CCTA model did not reach the measurement domain ΩFFR.
In turn, 11 IVUS models did not reach the ΩFFR, because IVUS pullbacks started more
proximally than the pressure wire locus at the moment of the FFR test.

7.3 Results

The results for the geometric and computational hemodynamic comparisons are
reported in Table 7.3 and Table 7.4, respectively. The correlation was analyzed in terms
of the Spearman’s correlation because not all features present a normal distribution (which
invalidates the Pearson’s correlation analysis). Also, it was analyzed the agreement be-
tween the two modalities in the sense of Bland-Altman. To ease the comparison across
different features, the quantities were normalized by the average value between IVUS and
CCTA means. In that manner, the bias and limits of agreement are interpreted as a factor
of disagreement between the modalities.

7.3.1 Geometric comparison

The results of the geometric comparison between modalities is detailed in Table 7.3.
It is shown a good correlation (ρ > 0.6 and p < 0.01) between the following characteristics:
aspect ratio, bending energy, twisting energy, total curvature, total torsion, total combined
curvature, lumen area and volume.

Due to the presence of the IVUS catheter, the three-dimensional model obtained
by IVUS may undergo vessel straightening. Analyzing the entire sample, total curvature
is smaller in IVUS than CCTA model (4.312 vs 4.784 mm−1, p < 0.01) with relative
difference of -18 ± 36%. In Figure 7.3, we present two angiographies that evidence the
previous finding. In the images, it is seen that the LCx and LAD arteries feature higher
curvature when the transducer is not deployed yet (e.g. sites marked by the arrows).
Particularly, a more pronounced rectification is seen in the LCx comparing to the LAD.

Figure 7.3: Rectification of the vessel due to catheterization: (left) transducer deployment
at the left anterior descending coronary artery; (right) transducer deployment at the left
circumflex coronary artery.
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Among the geometrical features that affect hemodynamic variables, the ones related
to the lumen area are the most important. In comparison to CCTA, the IVUS model
showed bigger mean radius (1.37 vs 1.26mm, p < 0.01), mean cross-sectional area (7.466
vs 6.598 mm2, p = 0.02), volume of lumen (408.314 vs 347.012 mm3, p < 0.01) and area
of lumen (534.48 vs 495.55 mm2, p < 0.01) with relative differences of 8± 10%, 10± 19%,
13 ± 27%, 6 ± 11%, respectively. These results suggest the systematic underestimation
of lumen in CCTA models. Conversely, CCTA has a 18 ± 36% higher total curvature,
a 8 ± 10% lower average radius and a 10 ± 19% lower average cross-sectional area. The
amount of lateral branches can also influence hemodynamic variables. The IVUS model
has a higher lateral branch count than CCTA (5.441 vs 2.235; p < 0.01) with relative
difference of 58± 26%.

7.3.2 Hemodynamic comparison

The statistical analysis for the sample specified in Section 7.2.1 is presented in Table
7.4. It was found that A, p̄ and OSI are larger in IVUS than CCTA, while v̄,Re and AWSS
are smaller. Such results are confirmed through the U-test with statistical significance of
p < 0.01. The Bland-Altman analysis (CCTA − IVUS) shows that all variables have
significant correlation (p < 0.01) with moderate (0.35 < ρ < 0.6) to high (ρ ≥ 0.6)
values of the Spearman’s correlation coefficient. Figure 7.4 presents the mean± SD of the
computed hemodynamic quantities for the entire sample, along the normalized centerline.

Figure 7.4: Mean (solid lines) and standard deviation (light areas) along the normalized
arc length of the centerline for each quantity of interest. Red and blue stand for IVUS
and CCTA, respectively.

The smallest relative biases were found for the FFR (-4%), p̄ (-5%), Q (-8%) and
Re (+8%) while the biggest are seen in AWSS (47%) and OSI (-15%). However, OSI
value is relatively small for all cases which hinders a significant comparison. The standard
deviation of the bias indicates that p̄ and FFR are the less sensitive with respect to the
imaging modality (SD 12%), in contrast to AWSS and OSI, where SD reaches 140% and
215% respectively. As in the geometric comparison, the area was larger in IVUS, whereas
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v̄ was larger in CCTA models. This is not a straightforward consequence because the
topology of the arterial tree is different between the modalities. In fact, main artery flow
rate Q at distal locations may vary because IVUS models feature, in average, 3 more side
branches than CCTA models, promoting the blood deviation through proximal branches.
Despite this, Q continues to be higher in IVUS, which implies that the flow deviation
is actually more significant in the CCTA model. This is also appreciated in the low
correlation of FFOI.

Visual inspection of Figure 7.4 shows how the different variables differ in the proxi-
mal, mid and distal thirds of the arterial models. Particularly, focusing on the FFR and
AWSS, differences in the three portions of the arterial segments are reported in Table 7.5.
For both variables, correlation decreases towards the distal section. While the FFR relative
bias and dispersion increases from proximal to distal thirds, the AWSS results in larger
bias in the last two-thirds. Furthermore, arterial tapering is far from linear, and differ-
ences in the area between models impact directly in the discrepancies of hemodynamic
variables between models. To illustrate such behavior, Figure 7.5 presents scatter plots
of discrepancies in FFR and AWSS as a function of the discrepancy in the lumen area
(CCTA − IVUS for both cases). As expected, differences in the area are proportional to
deviation in the AWSS. In turn, deviations in the FFR depend not only of local difference
in lumen area, but also on the cumulative pressure drop caused by discrepancies in the
lumen area at proximal locations. For instance, discrepancies in the second third of the
vessels are caused by lumen area differences at the first third of the vessel.

Hemodynamic Index IVUS CCTA ρ Rel. Bias Rel. LA

FFR
Proximal 0.98±0.02 0.97±0.03 0.69 -0.01±0.03 [-0.07, 0.05]
Mid 0.96±0.03 0.92±0.11 0.51 -0.04±0.11 [-0.27, 0.18]
Distal 0.96±0.03 0.89±0.16 0.39 -0.07±0.16 [-0.38, 0.24]

AWSS [dyn/cm2]
Proximal 55±40 81± 68 0.54 0.38±0.98 [-1.54, 2.29]
Mid 54±43 93±126 0.43 0.53±1.63 [-2.67, 3.73]
Distal 37±24 63± 66 0.17 0.51±1.33 [-2.01, 3.11]

Table 7.5: Statistical analysis of Γs-averaged quantities in the proximal, mid and distal
thirds of geometric models. Mean ± standard deviation are shown for each model and
for the relative bias. The bias (CCTA-IVUS) and the limits of agreements (mean±SD)
for the Bland-Altman analysis were normalized by the average between IVUS and CCTA
means. All statistical tests, including correlations were statistically significant (p < 0.01).

Regarding invasive FFR measurements for the 16 arteries, the in-vivo measure of
FFR was 0.86 ± 0.08. The computational estimation of the FFR delivered a mean of
0.85± 0.16 with CCTA models (with correlation ρ = 0.70, p < 0.01, and mean difference
0.01 ± 0.18) and 0.95 ± 0.03 for the IVUS models (with correlation ρ = 0.61, p = 0.014,
and mean difference −0.08± 0.07).

7.4 Discussion

The unique findings of our study were the geometric confrontation of two three-
dimensional models by CCTA and IVUS exposing their differences markedly. Furthermore,
accurate description of arterial geometry is relevant for diagnostic evaluation of coronary
atery disease (CAD) with classic lumen measurements [29, 262] or such as a CAD risk
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Figure 7.5: Scatter plots featuring differences between IVUS and CCTA models: (left)
FFR and (right) AWSS, against differences in area, in the entire sample. The position,
i.e. proximal, mid and distal third, are identified.

factor [166, 171, 207]. Features of each model can influence on interpretation of the other
and emphasize some aspects to improve plaque evaluation and flow simulations. While
it is possible to retrieve the correct spatial information of the coronary arteries provided
by CCTA; on the other hand, the IVUS delivers a more refined anatomical vasculature
in terms of lumen area and branch count. The higher confidence in the geometrical
description of the lumen in IVUS images is not only due to the higher resolution, but
also by the fact that the images display the physical boundary of the lumen, whereas the
CCTA visualizes only the contrast within the lumen (which can be attenuated distally). A
clear phase consistent description of the vessel in IVUS can only be achieved by using the
gating technique presented in Chapter 2. Without such preliminary processing, the lumen
area and the spatial position may present severe osculations due to the vessel deformation
along the cardiac cycle. However, IVUS clinical procedure focuses on one (or two) arterial
vessel, and inclusion of branches in the geometric models is an arduous task. In this aspect,
CCTA segmentation of lateral branches and, overall, a global topological description, is
easier.

With respect to the vascular lumen, the IVUS model realizes a larger mean radius,
cross-sectional area, volume and area of lumen in the full sample. In fact, if we analyze the
relative errors, the mean radius and cross-sectional area are 8% and 10% higher in IVUS
than CCTA, respectively. These findings remained in accordance with earlier studies.
We found that the underestimation of the vascular lumen by CCTA is critical, being 6%
smaller in total area lumen and 13% smaller in total volume of the whole vessel. This
might be explained by: i) low image resolution of CCTA; ii) effect of calcium in lumen
measurements [45, 141, 242, 318]; and iii) the natural tapering of vessels may be distorted
due to attenuation of contrast intensity in distal regions [74]. Hoffmann et al. [140]
showed that CCTA can underestimate the lumen in comparison with QCA, especially in
the presence of large calcified plaques which appear enlarged (blooming effect). Kruk et al.
[175] showed that CCTA significantly underestimated coronary lumen area within calcified
lesions by a mean of 5%. The mean calcium score of our sample is 218, lower than other
studies which detected lumen underestimation in CCTA (DeFACTO study at 381 and
Kruk et al. at 433) [175, 240]; and the mean total length of analyzed arteries are 54mm
in IVUS and CCTA (p = 0.2), just contemplating the proximal and middle portions of
coronary arteries, avoiding the use of distal portions which commonly result in impairment
of image quality on CCTA. Likewise, it was previously shown that in cases of ambiguous
lesions CCTA correlates better with the IVUS than angiography [246]. Nevertheless, we
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still had smaller lumen in CCTA in all geometric features analyzed.
Despite the poor results achieved in the estimation of lesion significance with anatomic

data, the intravascular image modalities are often used for this purpose [328]. In fact, the
capabilities for the estimation of lesion significance strongly depend on the methodological
aspects behind the definition of patient-specific physiology, which is hard to quantify in
clinical routine. However, CFD simulations allow the integration of the anatomy and
physiology to evaluate the coronary lesions and have obtained much improvement notably
with image extracted from CCTA. CFD simulations depend on the geometry of the ar-
terial domain and on boundary conditions. Moreover, under many hypotheses the latter
depends on the former. Therefore, the impact of geometric discrepancies between two
coronary models (CCTA and IVUS) over hemodynamic variables is of the utmost impor-
tance to understand CFD outcomes. Despite the growing interest in FFR by anatomical
methods, the recent DeFACTO study obtained disappointing results. Due to exponential
relationship between the area of the stenosis and coronary resistance, even small errors
can result in substantial inaccuracy of FFR values. In this work, CCTA underestimate
the mean cross-sectional area in a 11.6%, which consequently overestimates the degree of
stenoses [240]. It may be speculated that the computational FFR method, irrespective
of the accuracy of blood flow models, remains subject to imperfect lumen delineation
within lesions. The overestimation of lesions may be associated not only to the presence
of calcium, but as importantly, to a smaller lumen. Kruk et al. [176] demonstrated that
the coexistence of calcium arc exceeding 47◦ and mean lumen diameter of < 2.9 mm as
the most accurate marker of excessive lumen underestimation by coronary CCTA.

Most of the coronary lesions included in our sample are intermediate lesions, and
this is the case where the functional evaluation is necessary and the image quality really
matters. In general, we obtained a good correlation of all area and volumetric features
(with certain disagreement in the mean cross-sectional area) between the IVUS and the
gold standard for spatial information, CCTA. Some differences were found in curvature
due to coronary rectification produced by IVUS catheter and tapering overestimation in
CCTA due to distal contrast attenuation and calcium artifacts. Thus, some concerns have
to be taken into account in: extremely tortuous vessels in IVUS (not included in this
study) where significant underestimation of curvature and lumen volume (ghost lesions)
can be found; and in the excessive tapering in distal regions for the CCTA models.

Regarding the computational hemodynamic comparison, it is seen that the smaller
lumen area consistently yields larger blood velocity, forcing the pressure to drop more
markedly in CCTA than in IVUS models. Focusing on the pressure and FFR, the sensi-
tivity to the imaging modality increases as we move distally. The underestimated lumen
area of the CCTA models also results in larger AWSS, for roughly the same flow rate.
Differently from the pressure and FFR, the bias and limits of agreement of the wall shear
stress are extremely wide, which indicate that wall shear stress estimation from CCTA is to
be carefully regarded when correlating this to coronary disease, at least under hyperemic
conditions. In turn, the oscillatory shear index featured small values in both imaging
modalities, which is consistent with the fact that no retrograde flow occurs along the
cardiac cycle. Although it is not the focus of this work, the comparison between invasive
FFR to computational FFR shows promising results. The better correlation with CCTA
models is explained by the fact that the used IVUS computational domains did not reach
the FFR acquisition site. Then, the pressure drop was underestimated because the FFR
was estimated at a more proximal site of the artery.

7.4.1 Limitations

Due to the unblinded nature of the comparison of the FFR and small sample size, it
was not carried out a comparison of FFR-CCTA and FFR-IVUS with the FFR measured
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by a pressure wire. The present study has a relatively small number of vessels to generalize
the obtained findings. Nevertheless, collecting the amount of data for each patient is an
extremely complex task, and the results reported here have helped to elucidate some of the
main drawbacks when trying to simulate coronary blood flow under hyperemic conditions.
Strengths and weaknesses of each modality in terms of the geometric and hemodynamic
features were highlighted, as well as some concerns to take into account when interpreting
results from CCTA or IVUS models.

The study is retrospective by image processing of data already acquired in daily
routine catheterization laboratory, and there may be subtle differences in the image ac-
quisition for each patient such as the presence or absence of sedation interfering with
hemodynamic and breaths.

7.5 Final remarks

In this chapter, we presented a geometric and computation hemodynamic compar-
ison in coronary arteries performed on top of geometric models constructed from IVUS
and CCTA imaging modalities. A good correlation between modalities was found in global
geometrical descriptors such as area and volume. It was observed that the major factor
affecting hemodynamics was arterial geometry, more specifically, lumen cross-sectional
area which is distally underestimated by CCTA models. Wall shear stress and blood
velocity were significantly sensitive to the lumen radius. In turn, pressure and FFR were
less sensitive, although pressure drop is systematically higher in CCTA models. As con-
sequence of the smaller lumen area rendered by CCTA, and even featuring less proximal
side branches, these models are more affected by coronary steal phenomenon than IVUS
ones. This fact implies that the IVUS model carries more flow rate than the CCTA model
in the major vessel of interest, which counterbalances the effect of IVUS having a larger
lumen area for the computational FFR assessment.

The statistical analysis indicates that care must be taken when drawing conclusions
from computational simulations of coronary flow. As in some cases the agreement in
both modalities was quite good, certain calcified lesion or excessive tapering produced in
CCTA may lead to overestimation of blood velocity, wall shear stresses, pressure drop and,
finally, underestimation of FFR. Also, excessive tortuous vessels may present ghost lesions
or artificial straightening in IVUS models leading to less reliable AWSS estimations.



Chapter 8

Conclusions

This chapter acts as a counterpoint of the introduction, it exposes the advance
along the roadmap initially traced detailing the contributions obtained and the goals
achieved. In this denouement, we draw general conclusions for each of the three parts
of the manuscript with the intent of integrating the independent conclusions outlined at
the end of each chapter. Ultimately, a general conclusion of this thesis is elaborated,
establishing its significance in the context of the state-of-the-art.

8.1 Contributions

Several methods were developed to achieve the biomechanic characterization of the
vessel wall. Their usage far exceeds the current methodology, allowing diverse applications
in research and clinical practice. Next, it is detailed each contribution of this work and
their potential uses:

Gating method for IVUS A novel method that integrates frame motion descriptors
was proposed. The combination of uncorrelated descriptors improved the accuracy to
estimate the vessel motion. Based on the inferred motion and knowledge of the cardiac
phases, it was developed a methodology to gate not one but several cardiac phases from
an IVUS study. The method can also be used for

• Visualization of the vessel deformation along the cardiac cycle: it is available new
gated studies showing the vessel at different cardiac phases, then a temporal sequence
for the longitudinal view of the vessel is straightforwardly available;

• Removal of artifacts from longitudinal view associated with the entanglement of all
cardiac phases (saw-tooth artifact);

• Creation of motion free IVUS sequences: A gated phase presents lower to no motion
between the frames, aligning the vessel structures from one frame to the next one.
This eases segmentation or structure recognition tasks;

• Time-coherent reconstruction of the vessel from IVUS images: As the gated se-
quences contains all frames for the same cardiac phase, the spatial description of the
vessel in such sequences is temporally-coherent and allows to reconstruct the vessel
in a specific cardiac phase.
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Registration of cardiac phases Using the previous gating method, several IVUS sub-
sequences are obtained, each one corresponding to a specific cardiac phase. To obtain the
frames across these sub-sequence that are associated with the same vessel cross-section,
it was developed a novel method of longitudinal and transversal registration. This en-
dows the previous gating with a semi-rigid mapping (non-rigid longitudinally and rigid
transversally) of the vessel structures along the cardiac cycle. The method can be used
for

• Recovering of the deformation of a vessel cross-section along the cardiac cycle;

• Quantification of the longitudinal deformation of the vessel along the cardiac cycle
(see Sections 3.3.5 and 3.3.6);

• Quantification of the transversal motion at each vessel cross-section which can be
used as an additional feature in geometrical studies as the one presented in Chapter
7;

• Accurate spatio-temporal reconstruction of the vessel: Additionally to the classic
end-diastolic phase reconstruction of the vessel, it can be reconstructed all other
phases with neither longitudinal nor transversal displacement between the cross-
sections.

• Estimation of the local pulsatility of the vessel.

Denoising method for IVUS A novel denoising method was specifically developed to
remove speckle noise originated from high-frequency ultrasonic images. By knowing that
the IVUS noise follows a generalized gamma distribution, it was created a log-likelihood
estimator for such images. Using this estimator, it was derived a tailored denoising method.
By varying the log-likelihood estimator to other type of noises, the same methodology
allowed the creation of noise specific denoising methods. The method can be used for

• Improving segmentation and structure recognition methods;

• Improving optical flow performance;

• Enhancing the visualization of structure of the vessel wall;

Data assimilation environment for the setup and analysis of arterial models
A data assimilation environment was carefully developed in this work integrating displace-
ment data extracted from medical images. We use data assimilation techniques already
employed in the literature for linear elastic arterial models [33, 34]. Nevertheless, the setup
here proposed integrates the data assimilation strategy with more realistic arterial models
and vessel conditions such as axial strain, preload and external tissue (the later was not
analyzed in this work) [22, 41]. The data assimilation environment can be used for

• The study of the axial strain level on patient-specific arteries by adding this param-
eter to the data assimilation process;

• The study of the external tissues contributions on patient-specific arteries by adding
the associated parameters to the data assimilation process;

• Identification of the material distribution on patient-specific arteries by performing
a domain partitioning adaptive process. Some criteria for domain partitioning can
be the discrepancy between the OF observation and the mechanical displacements
after the data assimilation process.
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8.2 Partial conclusions

Each chapter presented partial and independent conclusions. Here, we summarize
and integrate the outcomes of the chapters in each part of the thesis, highlighting the
most important findings.

8.2.1 Image processing of IVUS studies

Novel methods for gating, registration and denoising tailored specifically for IVUS
were developed in this work. The gating and denoising methods showed to outperform the
state-of-the-art alternatives for the IVUS processing in the processed phantom and IVUS
studies. In turn, the registration and gating methods were validated against a ground
truth manually constructed by specialists from more than 50 IVUS studies (52 and 61,
respectively). In both cases, the automatic methods showed an accuracy comparable
to the specialists. The denoising method presented an interesting methodology for the
construction of a family of specific purpose methods to enhance images with known noise
statistics.

Additionally, methods of optical flow from the literature were studied focusing their
applicability to IVUS images. The Weickert method, which showed to be the more promis-
ing strategy, was implemented using a parallel and efficient numerical scheme. As other
optical flow methods, the Weickert approach diminishes its performance in the presence
of noise. The denoising method showed to remove the speckle delivering more consistent
patterns for optical flow computation.

As a general result of this part of the thesis, the developed automatic methods
have enabled extraction of the displacement field for a vessel cross-section of interest, in
several cardiac phases. This delivers an unprecedented tool for IVUS processing with the
following features: i) rearrangement of the study data by cardiac phase; ii) quantification
of the longitudinal displacement of each vessel cross-section along the cardiac cycle; and
iii) extraction of sequences along the cardiac cycle for a vessel cross-section of interest,
this is fundamental to study the stresses within atherosclerotic lesions.

8.2.2 Biomechanical characterization of the vessel wall

A self-contained description of the vessel anatomy and atherosclerotic plaque histo-
pathology was presented focusing in the coronary vessels. From this review, modeling
decisions and hypotheses were taken to determine adequate models for vessel and plaque
tissue representation. Physiological ranges in coronary arteries for the parameters of such
models were also reported to establish a proper numerical setup for solid mechanics sim-
ulations. Based on previous works [22, 41], vessel preload and axial stretch were taken
into account to obtain more realistic physiological conditions. Hence, a pipeline to con-
struct patient-specific geometrical models of the vessel wall suitable for solid mechanics
simulations was developed.

The patient-specific geometrical models and numerical simulations under realistic
physiological conditions, were combined with the data assimilation technique known as
reduced order unscented Kalman filter. In-silico experiments were used to test the ca-
pabilities of the method to estimate constitutive parameters of the vessel wall when the
displacement field of the arterial wall between two cardiac phases is known. From these
experiments, it was seen that parameters for plaque materials can be estimated as long as
the pressure diference between the cardiac phases deforms the tissues “sufficiently”. The
necessary deformation has to be observable (more than a pixel in the IVUS image) and
higher than the expected observation noise (which is modeled by the observation uncer-
tainty parameter). Preliminary in-vivo experiments were presented showing the successful
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integration of the Kalman strategy with the optical flow estimated as proposed in the
first part of this work. Further research is required to dynamically perform domain parti-
tioning towards a correct identification of the materials distribution. As the preliminary
results suggest, an accurate domain partition (as well as the inclusion of other modeling
factors such as surrounding tissues) is essential to successfully reproduce the observed
displacement field, which is a mandatory condition for the estimation of the vessel wall
parameters.

The developed tools in this part of the thesis settle a framework for the study of the
biomechanical characterization of the vessel wall. Thus, further work is still to be done to
adjust the current methodology and models for in-vivo scenario. This motivates to future
work described in Section 8.4.

8.2.3 Medical applications

The collaboration with other members of the HeMoLab group and physicians allowed
to apply the here developed tools (and also previous developed tools [212]) in studies with
relevance in the clinical practice. The image processing tools enabled the reconstruction
of patient-specific geometrical models for coronary arteries where geometric and hemody-
namic features were estimated.

The studies delivered insights about the differences obtained with CCTA and IVUS
image modalities. The study was centered in the analysis of the weaknesses and strengths
of each imaging technique. A complete comparison between the geometric and hemody-
namic features obtained with each modality was reported. The features were estimated
in a small sample of 28 patients (and a sub-group of 11 patients for the hemodynamic
comparison) targeting a more individual comparison and interpretation of the cases. The
most notable outcomes revealed that CCTA models are less accurate in zones near calcified
lesions while IVUS models present a less accurate description of the vessel curvature due
to the rectification provoked by the catheter.

Further medical studies are currently in progress using the gating and registration
methods for the computational assessment of fractional flow reserve and quantification of
the axial deformation of the vessel during stent deployment.

8.3 General conclusions

A methodology towards in-vivo mechanical characterization of the vessel wall was
developed. It is a bridge from the IVUS study to a patient-specific geometrical model
that incorporates the displacements observed in the medical images. All image processing
steps that yield such data are completely automatized allowing the processing of large
amount of patients without human intervention. Hence, a data assimilation scheme was
proposed, which has shown to be capable of estimating the mechanical properties of a
model when precise observations and tissues distribution are given. Further research has
to be conducted to obtain a patient-specific and in-vivo mechanical characterization of
the vessel wall. Sensitivity studies regarding the estimated parameters with respect to the
domain partition error, more ex-vivo data regarding axial stretch, mechanical properties
of the adventitia in a wide sample of the population and the study of the incorporation of
surrounding tissues for the analyzed vessel, are in order.

An advantage of the proposed methodology is that, beyond from the mechanical
characterization of the vessel wall, other typical features of arterial vessels can poten-
tially be studied such as the surrounding tissue distribution, axial stretches, or any other
phenomenon that can be modeled in terms of specific parameters of the mechanical or
geometrical model. Also, the constitutive laws of the materials can be changed without
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any modification to the methodology, only the data assimilation parameters to be opti-
mized. Furthermore, the present methodology is highly decoupled allowing to work in any
of the stages (for example, proposing optical flow alternatives to enhance the quality of
the observations) without compromising the rest of the steps.

Related to the goals traced at the beginning of this work, all of them were success-
fully achieved and several publications were produced in congresses, journals and books,
reporting the partial contributions along the production of this manuscript. In addition,
other parts of this work are pending to be published in the near future. Also, contributions
beyond the initial roadmap were produced due to the team work with other members of
the HeMoLab group, e.g., the results presented in Chapter 7.

The collaboration with institutions such as Incor and Sirio Libanés, constituted a
challenge for this work, and endowed this thesis with large amounts of data for validation of
the image processing methods, as well as enriched the diverse discussions regarding clinical
results and presented possibilities to develop closely related works that were published in
congresses and journals. Hence, such collaboration motivated the writing of the anatomical
and atherosclerotic plaque description by the knowledge acquired from researchers in these
institutions, as well as from members of the HeMoLab group along the post-graduation
program. As result of working side-by-side with such professionals, this work earned an
extra dimension of multi-disciplinarity.

Also, the availability of the HPC environment (MACCHPC and Santos Dumont
clusters) at LNCC allowed the processing of computationally demanding task consum-
ing thousands of allocation units. The use of these resources is materialized in: i) the
parameters study of the gating, registration, denoising and optical flow methods; ii) the
validations of the gating and registration methods; and iii) the computational fluid dy-
namics simulations used in the medical applications.

8.4 Future works

The present methodology opens several new possibilities for future works such as:
i) the enhancement of the methods used in the different stages, ii) the use of developed
components for clinical studies; and iii) the increase of models complexity to engage further
research in the mechanical characterization of vessels. Next, the future works which branch
out from this thesis are addressed:

• The integration of the developed image processing tools in this work and a previous
one [212] in a unified software for the manipulation of IVUS studies, allowing to
recover geometric models, perform mechanical parameter estimation of the vessel
wall components, gating, examination of a fixed cross-section of the vessel along the
cardiac cycle, among other tasks.

• The development of non-rigid registration techniques based on optical flow.

• The development of a generalized methodology to obtain denoising methods, specific
to remove noise with known probability density functions.

• The development of new optical flow solutions that combine temporal data from
several frames to obtain a more robust estimate of the vessel wall displacement.

• The extension of the optical flow method to estimate the flow between the different
gated cardiac phases.

• The development of methods for domain partioning that are based on the displace-
ment error obtained from the data assimilation process presented in Chapter 6.
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• The study of different constitutive laws to model the tissues and analyze their im-
pact on the outcome of the data assimilation process. In particular, models with
physically meaningful parameters would allow to extract more biological informa-
tion about the vessel and its inner structures, e.g., the collagen fiber orientation,
quantification of GAG/PGs proportion in the tissue, among others.

• The study of the surrounding tissues of the coronary arteries and their mechanical
contribution to the vessel stress state along the cardiac cycle. Poor knowledge is
reported about the coronary vessels fixation to the epicardium and other surrounding
tissues, the insights in this topic will contribute to the anatomical and mechanical
description of the coronary vessels.

• The extension of the data assimilation process to 3D geometries for the whole vessel
of interest.

• The estimation of axial stretch in healthy places of the coronary arteries by using
the proposed data assimilation process.

• The study of axial deformation of the coronary vessels when a stent is deployed.
There is no report of this phenomenon in the literature and it is medically relevant
to assess: i) the condition of the vessel after implantation, ii) the success of the stent
deployment; and iii) the stent design to use in each specific scenario.



Appendix A

Guidewire detection

For simplicity, the polar representation of the frames, Ĵk(r, θ), r = 1, . . . , R, θ =
1, . . . , S, is employed for the identification of artifacts. To preserve the IVUS frame quality
and avoid oversampling, we choose R = 256 and S = 256, given that the IVUS transducer
performs 256 individual radial scans of 256 pixels of resolution through the acquisition of
each frame [224].

The down-ring artifact fixed in size and space affects a rounded central region of
the image at a neighborhood of the transducer. Then, we identify, by visual inspection,
this region along 45 IVUS studies as the first 45 lines of the polar representation. Thus,
the mask in polar coordinates for the down-ring artifact is the same for all frames, and is
defined as

M̂DR(r, θ)

{
0 r > 45,
1 0 < r ≤ 45.

(A.0.1)

The guidewire artifact is identified through a semi-automatic approach. First, two
rows enclosing the artifact must be marked in the frames Jl, l ∈ L = {100×m+ 1, m =

0, . . . ,
⌊

# study frames
100

⌋
} of the IVUS study. Then, each of the enclosed regions, de-

noted as RlUGW, is used to detect the guidewire position in the subsequent 99 frames.
Given the low shape variation of this artifact signature along adjacent frames, normalized
cross-correlation and a sliding window (in polar space) are used to assess the angular
displacement of the artifact. Let us define RW(Ĵk, θk) as the region in Ĵk enclosed at
the same position of the previous RlUGW but angularly displaced θk pixels. Also, we

consider Ĵk to be cyclic in its second argument with period equal to S, i. e., the pixels
Ĵk(r, S + m) = Ĵk(r,m). Then, the guidewire region for the frame Ĵk is calculated as
follows

RkGW = arg max
θk∈[−M,M ]

c(RlUGW, RW(Ĵk, θk)), (A.0.2)

where l is the maximum value in L such that l < k. To reduce computational cost, the
search range is reduced to M = 30 due to the small in-plane motion of the guidewire along
the 99 frames. Finally, the mask in polar coordinates for the guidewire artifact is defined
as

M̂k
GW(r, θ) =

{
0 (r, θ) 6∈ RkGW

1 (r, θ) ∈ RkGW.
(A.0.3)

After identification of the guidewire artifact, an expert assesses the correctness of the
solution and adjusts it if necessary. For all the studies processed no adjustment was
needed. The success in the guidewire identification is related to the particular artifact
pattern. It presents a saturation in the guidewire location and a clear drop in intensity
over the metal boundaries. Although it was not reported for the processed studies, bare-
metal stents and calcifications may project shadows similar to the guidewire, potentially
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misleading the artifact identification. More complete studies including different plaque
morphologies and histologies must be performed in order to guarantee the success of the
algorithm under different scenarios.



Appendix B

Discrete gradient ascendant
method

To use a gradient ascendant method for the functional F over U , we must find
a continuum representation of space, say Ũ , to evaluate the function in non-defined co-
ordinates of U (i.e., τi 6∈ [τMIN

i , τMAX
i ] or θ 6= i π

128 , i = 0, . . . , 255). A straightforward
solution that avoids spurious minima in the non-defined elements of U , is to perform
a linear interpolation of the defined values. Given that each evaluation of the function
F(Ξ) implies the rotation, translation and cross-correlation computation over an image,
we choose approximations for F (Ξ̃) and ∇F (Ξ̃), Ξ̃ ∈ Ũ that minimize the evaluations.
In that manner, F (Ξ̃) is estimated with the four nearest defined values F (Ξ),Ξ ∈ U by
applying barycentric interpolation. The gradient ∇F (Ξ̃) is approximated as

∇F (Ξ̃) =
(∂F

∂τx
(Ξ̃),

∂F

∂τy
(Ξ̃),

∂F

∂θ
(Ξ̃)
)

(B.0.1)

being

∂F

∂η
(Ξ̃) = ωη(Ξ̃)

F (Ξ + ∆η)−F (Ξ)

∆η
+ (1− ωη(Ξ̃))

F (Ξ)−F (Ξ−∆η)

∆η
,

η ∈ {τx, τy, θ}, (B.0.2)

where Ξ is the nearest (in the sense of the U norm, see Eq. (3.3.1)) defined coordinate to
Ξ̃ in U , ∆τx = ∆τy = 1, ∆θ = π/128 and ω is defined as follows

ωη(Ξ̃) =
Ξ̃ · η̆ − Ξ · η̆

∆η
+

1

2
, (B.0.3)

where η̆ is the η versor and · stands for the standard inner product. We choose this
approximation for the gradient because it only requires seven evaluations of the function
F (Ξ).

Finally, we use a gradient ascend method with the backtracking line search over Ũ .
This method offers a suitable trade-off between the convergence ratio and the amount of
F (Ξ) evaluations.
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Appendix C

Application of variational calculus

In this appendix, we detail the variational calculus used with the development of
some optimization problems introduced in the manuscript. For each of them, we show
the necessary and sufficient conditions for optimization and, then, we derive the Euler-
Lagrange equations associated to the problems.

C.1 Maximum likelihood variations

Given the minimization problem presented in Section 4.2.2, stated as

Id = arg min
Ĩ

∫
Ω

(
− c
(
Io(x, y), Ĩ(x, y)

)
+ α|∇Ĩ(x, y)|

)
dΩ, (C.1.1)

where

c
(
Io(x, y), Ĩ(x, y)

)
= γν(Io(x, y)− Id(x, y))− 1

δγ
eγ(Io(x,y)−Id(x,y)), (C.1.2)

we have to find the minimizer function Ĩ(x, y) ∈ U , where

U = {Ĩ(x, y) ∈ Rn,m; Ĩ(x, y),∇Ĩ(x, y) are square-integrable functions}. (C.1.3)

To ease the readability, let us simply denote I(x, y) as I. Introducing C.1.2 in C.1.1, we
obtain the following functional

F(Ĩ) =

∫
Ω

(
− γν(Io − Ĩ) +

1

δγ
eγ(Io−Ĩ) + α|∇Ĩ|

)
dΩ. (C.1.4)

We use variational calculus to analyze the necessary and sufficient conditions for the
function to be a minimizer. Thus, we perturb the function Ĩ as Ĩ + τη with η ∈ U .

The resulting perturbed functional is presented as follows

F(Ĩ + τη) =

∫
Ω

(
− γν (Io − Ĩ) + γν τη +

1

δγ
eγ(Io−Ĩ)e−γ τη + α|∇Ĩ − τ∇η|

)
dΩ. (C.1.5)

The necessary condition is obtained when the first Gâteaux derivative of F is nullified
for any admissible perturbation η, i.e., δF(Ĩ , η) = 0,∀η ∈ U . Then, we calculate such
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condition as follows

δF(Ĩ , η) =
∂F(Ĩ + τη)

∂τ

∣∣∣∣∣
τ=0

=

∫
Ω

(
γν η − γ

δγ
eγ(Io−Ĩ)η + α

1

|∇Ĩ|

(∂Ĩ
∂x

∂η

∂x
+
∂Ĩ

∂y

∂η

∂y

))
dΩ

=

∫
Ω

(
γν η − γ

δγ
eγ(Io−Ĩ)η + α

∇Ĩ · ∇η
|∇Ĩ|

)
dΩ = 0, ∀η ∈ U .

(C.1.6)

To determine if the extreme in δF(Ĩ , η) = 0 is maximum or minimum, we inspect
the sign of the second Gâteaux derivative δ2F(Ĩ , η) obtained as follows

δ2F(Ĩ , η) =
∂2F(Ĩ + τη)

∂τ2

∣∣∣∣∣
τ=0

=

∫
Ω

[
γ2

δγ
eγ(Io−Ĩ)η2 + α

∇η · ∇η
|∇Ĩ|

+ α∇Ĩ · ∇η δ
(

1

|∇Ĩ + τη|

)]
dΩ

(C.1.7)

where

δ

(
1

|∇Ĩ + τη|

)
=

∂

∂τ

((∂Ĩ
∂x

+ τ
∂η

∂x

)2
+
(∂Ĩ
∂y

+ τ
∂η

∂y

)2
)−1/2

∣∣∣∣∣
τ=0

= − 1

|∇Ĩ|3
∇Ĩ · ∇η.

(C.1.8)

Replacing C.1.8 in C.1.7 and rearranging terms

δ2F(Ĩ , η) =

∫
Ω

[
γ2

δγ
eγ(Io−Ĩ)η2 + α

∇η · ∇η
|∇Ĩ|

− α 1

|∇Ĩ|3
(∇Ĩ · ∇η)2

]
dΩ

=

∫
Ω

[
γ2

δγ
eγ(Io−Ĩ)η2 +

α

|∇Ĩ|

(
∇η · ∇η −

( ∇Ĩ
|∇Ĩ|

· ∇η
)2
)]

dΩ.

(C.1.9)

Note that the first term of the integral is always positive, and the second term is positive
if

α

|∇Ĩ|

(
∇η · ∇η −

( ∇Ĩ
|∇Ĩ|

· ∇η
)2
)
≥ 0

∇η · ∇η −
( ∇Ĩ
|∇Ĩ|

· ∇η
)2
≥ 0

∇η · ∇η ≥
( ∇Ĩ
|∇Ĩ|

· ∇η
)2

|∇η| |∇η| cos 0 ≥
(∣∣∣∣ ∇Ĩ|∇Ĩ|

∣∣∣∣ |∇η| cos θ

)2

|∇η|2 ≥ |∇η|2(cos θ)2

(C.1.10)

where θ is the angle between ∇Ĩ
|∇Ĩ| and ∇η. As (cos θ)2 ≤ 1 ⇒ |∇η|2 ≥ |∇η|2(cos θ)2 ⇒

the second term is always positive. As both terms are always positive, then δ2F(Ĩ , η) ≥
0,∀η ∈ U , implying that δF(Ĩ , η) = 0 is a minimum. Note that only η = 0 nullifies the
first term since γ 6= 0 (from the definition of generalized gamma distribution). Also, the
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second term can be rewritten as

α

|∇Ĩ|
|∇η|2

(
1− (cos θ)2

)
(C.1.11)

where only spatially homogeneous η variations or ∇η ‖ ∇I nullifies such term. Then, both
terms are nullified at the same time if and only if η = 0, implying that the uniqueness of
the minimum.

Finally, we integrate by parts C.1.6 as follows

δF(Ĩ , η) = α
∇Ĩ
|∇Ĩ|

· n η

∣∣∣∣∣
∂Ω

+

∫
Ω

[
γν η − γ

δγ
eγ(Io−Ĩ)η − α div

(
∇Ĩ
|∇Ĩ|

)
η

]
dΩ = 0, ∀η ∈ V,

(C.1.12)

where n is the normal vector to the boundary ∂Ω. By the fundamental lemma of the
variational calculus, we obtain the following Euler-Lagrange equations for C.1.1

γν − γ

δγ
eγ (Io−Ĩ) − αdiv(∇Ĩ)

|∇Ĩ|
− α 1

|∇I|3
∇2I : (∇I ⊗∇I) = 0 in Ω (C.1.13)

∇Ĩ · n = 0 on ∂Ω.(C.1.14)

To decrease the computation cost, we neglect the second order term assuming that
the modulus of the image gradient varies smoothly. Thus, the simplified Euler-Lagrange
equations are the following

γν − γ

δγ
eγ (Io−Ĩ) − αdiv(∇Ĩ)

|∇Ĩ|
= 0 in Ω (C.1.15)

∇Ĩ · n = 0 on ∂Ω. (C.1.16)

C.2 Optical flow based on Weickert strategies

The optical flow strategy presented in Section 4.3.4.4, results in the minimization of
the following functional

E (w̃) =

∫
Ω

[
ψ

((
∇ρI · w̃ +

∂ρI

∂t

)2
)

+ αψ

(∥∥∇(w + w̃)
∥∥2

F

)]
dΩ (C.2.1)

where ‖·‖F is the Frobenius norm and ψ(x) function is defined as

ψ(x) = 2κ2

√
1 +

x

κ2
. (C.2.2)

Note the drop of the supra-index m in C.2.1 for the sake of readability.
As in the previous Section, we use variational calculus to analyze the necessary and

sufficient conditions for the minimizer. Thus, we perturb the function w̃ as w̃ + τη with
η ∈ V where

V = {η ∈ R2,n,m;η,∇η are square-integrable functions}. (C.2.3)
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The resulting perturbed functional is

E (w̃ + τη) =

∫
Ω

[
ψ

((
∇ρI · w̃ +∇ρI · τη +

∂ρI

∂t

)2
)

+ αψ

(∥∥∇(w + w̃) + τ∇η
∥∥2

F

) ]
dΩ

(C.2.4)

The necessary condition for optimization of the E is obtained when the first Gâteaux
derivative of E is nullified for any admissible perturbation η, i.e., δE (w̃,η) = 0, ∀η ∈ V.
Then, we calculate such condition as follows

δE (w̃,η) =
∂E (w̃ + τη)

∂τ

∣∣∣∣
τ=0

=

∫
Ω

[
ψ′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)

2
(
∇ρI · w̃ +

∂ρI

∂t

)
∇ρI · η

+ αψ′
(
∇(w + w̃) : ∇(w + w̃)

)
2
(
∇(w + w̃) : ∇η

) ]
dΩ = 0, ∀η ∈ V.

(C.2.5)

where : denotes the Frobenius inner product.
To determine if the extreme in δE (w̃,η) = 0 is maximum or minimum, we inspect

the sign of the second Gâteaux derivative δ2E (w̃,η) obtained as follows

δ2E (w̃,η) =
∂2E (w̃ + τη)

∂τ2

∣∣∣∣
τ=0

=

∫
Ω

[
ψ′′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)

4
(
∇ρI · w̃ +

∂ρI

∂t

)2
(∇ρI · η)2

+ ψ′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)

2 (∇ρI · η)2

+ αψ′′
(
∇(w + w̃) : ∇(w + w̃)

)
4
(
∇(w + w̃) : ∇η

)2

+ αψ′
(
∇(w + w̃) : ∇(w + w̃)

)
2
(
∇η : ∇η

) ]
dΩ

(C.2.6)

For convenience, we analyze the integral sign by taking two term at the time. The first
two terms are positive if only if

ψ′′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)

4
(
∇ρI · w̃ +

∂ρI

∂t

)2
(∇ρI · η)2

+ψ′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)

2 (∇ρI · η)2 ≥ 0

(C.2.7)
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by changing variables x =
(
∇ρI · w̃ +

∂ρI
∂t

)2
, then

4xψ′′(x) (∇ρI · η)2 + 2ψ′(x) (∇ρI · η)2 ≥ 0

2xψ′′(x) + ψ′(x) ≥ 0

2x
(
− 1

2κ2(1 + x
κ2 )3/2

)
+
(

1 +
x

κ2

)−1/2
≥ 0(

1 +
x

κ2

)−1/2
≥ x

κ2(1 + x
κ2 )3/2

1 ≥ x

κ2 + x

(C.2.8)

which is always true since x =
(
∇ρI · w̃ +

∂ρI
∂t

)2
≥ 0, then the sum of the first two terms

is always positive. Now let us analyze the second two terms, which its sum is positive if
and only if

αψ′′
(∥∥∇(w + w̃)

∥∥2

F

)
4
(
∇(w + w̃) : ∇η

)2
+ αψ′

(∥∥∇(w + w̃)
∥∥2

F

)
2
(∥∥∇η∥∥2

F

)
≥ 0

ψ′
(∥∥∇(w + w̃)

∥∥2

F

)(∥∥∇η∥∥2

F

)
≥ −2ψ′′

(∥∥∇(w + w̃)
∥∥2

F

)(
∇(w + w̃) : ∇η

)2
.

(C.2.9)

Consider the change of variable x =
∥∥∇(w + w̃)

∥∥2

F
, then

ψ′(x)
(∥∥∇η∥∥2

F

)
≥ −2ψ′′(x)

(
∇(w + w̃) : ∇η

)2

(
1 +

x

κ2

)−1/2 (∥∥∇η∥∥2

F

)
≥ −2

(
− 1

2κ2(1 + x
κ2 )3/2

)(
∇(w + w̃) : ∇η

)2

(κ2 + x)
(∥∥∇η∥∥2

F

)
≥
(
∇(w + w̃) : ∇η

)2

κ2
∥∥∇η∥∥2

F
+
∥∥∇(w + w̃)

∥∥2

F

∥∥∇η∥∥2

F
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∇(w + w̃) : ∇η
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(C.2.10)

Assuming the worst case scenario where κ = 0, and expressing the previous equation in
terms of the Frobenius inner product, we obtain that(

∇(w + w̃) : ∇(w + w̃)
)(
∇η : ∇η

)
≥
(
∇(w + w̃) : ∇η

)2
(C.2.11)

which is the Cauchy-Schwarz inequality, then the sum of the second two terms is also
positive. Thus, δ2E (w̃,η) ≥ 0,∀η ∈ V, implying that δE (w̃,η) = 0 is necessary and
sufficient condition for minimization.

In that manner, we integrate C.2.5 as follows

δE (w̃,η) = αψ′
(∥∥∇(w + w̃)

∥∥2

F

)(
∇(w + w̃)

)
n · η

∣∣∣
∂Ω

+

∫
Ω

[
ψ′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)(
∇ρI · w̃ +

∂ρI

∂t

)
∇ρI

− α div

(
ψ′
(∥∥∇(w + w̃)

∥∥2

F

)
∇(w + w̃)

) ]
· η dΩ = 0, ∀η ∈ V,

(C.2.12)
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where n is the normal vector to the boundary ∂Ω. By the fundamental lemma of the
variational calculus, we obtain the following Euler-Lagrange equations for the minimization
of C.2.1 as

ψ′
((
∇ρI · w̃ +

∂ρI

∂t

)2
)(
∇ρI · w̃ +

∂ρI

∂t

)
∇ρI

−α div

(
ψ′
(∥∥∇(w + w̃)

∥∥2

F

)(
∇(w + w̃)

)
= 0 in Ω (C.2.13)(

∇(w + w̃)
)
n = 0 on ∂Ω. (C.2.14)



Medical glossary

anamnesis

a patient’s account of a medical history. 2

angiogenesis

formation of new blood vessels. This process involves the migration, growth, and
differentiation of endothelial cells, which line the inside wall of blood vessels. 95

angioplasty

minimally invasive, endovascular procedure to widen narrowed or obstructed arteries
or veins, typically to treat arterial atherosclerosis. 99

apical

relating to or denoting an apex (the top or highest part of something, especially one
forming a point). 93

atherosclerosis

specific form of arteriosclerosis in which the arterial wall thickens as a result of inva-
sion and accumulation of white blood cells (foam cell) and proliferation of intimal-
smooth-muscle cell creating an atheromatous (fibrofatty) plaque. 92, 96

atherosclerotic plaque

nucleation of materials in the vessel wall as consequence of the arteriosclerotic vas-
cular disease. 91, 94, 101, 102, 108

collagen

main structural protein in the extracellular space in the various connective tissues
in animal bodies. 91–93, 95–102, 107–109

coronary steal

phenomenon where an alteration of circulation patterns lead to a reduction in the
blood directed to the coronary circulation. 156

cytokine

any of a number of substances that are secreted by certain cells of the immune system
and have an effect on other cells. E.g. interferon, interleukin, and growth factors.
94, 95, 97, 102

differentiate

to change from relatively generalized to specialized kinds, during development. 97,
102

185
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elastin

highly elastic protein in connective tissue and allows many tissues in the body to
resume their shape after stretching or contracting. 91–93, 95–100, 107

extracellular matrix

collection of extracellular molecules secreted by cells that provides structural and
biochemical support to the surrounding cells. 91, 102, 107

fibronectin

high-molecular weight (≈440kDa) glycoprotein of the extracellular matrix that binds
to membrane-spanning receptor proteins called integrins. 91, 98

genotype

set of genes in an organism’s DNA which is responsible for a particular trait. 2

glycosaminoglycan

any of a group of compounds occurring chiefly as components of connective tissue.
They are complex polysaccharides containing amino groups. 91

homeostasis

tendency toward a relatively stable equilibrium between interdependent elements,
especially as maintained by physiological processes. 92, 93, 97, 99, 100

hyperemia

increase of blood flow to different tissues in the body. 148

hypertensive

having or denoting a high blood pressure. 110

lamella

thin plate-like structure. 95–99

laminin

high-molecular weight (≈400 to ≈900 kDa) protein of the extracellular matrix. It is a
major component of the basal lamina (one of the layers of the basement membrane),
a protein network foundation for most cells and organs. 91

leukocyte

colorless cell that circulates in the blood and body fluids and is involved in counter-
acting foreign substances and disease; a white (blood) cell. 93, 94, 97, 102

morphogenesis

origin and development of morphological characteristics. 92

normotensive

having or denoting a normal blood pressure. 99, 100, 110



pathogenesis

biological mechanism (or mechanisms) that leads to the diseased state. The term
can also describe the origin and development of the disease, and whether it is acute,
chronic, or recurrent. 92

phenotype

set of observable characteristics of an individual resulting from the interaction of its
genotype with the environment. 2, 92, 94–97, 101

physiological

characteristic of or appropriate to an organism’s healthy or normal functioning. 91,
94, 99, 107–109

protease

any of a group of enzymes that catalyze the hydrolytic degradation of proteins or
polypeptides to smaller amino acid polymers. 97

proteoglycan

compound consisting of a protein bonded to glycosaminoglycan groups, present es-
pecially in connective tissue. 91, 98, 101

protrusion

something that extends from, above or beyond a surface or boundary. 96, 98

stenosis

abnormal narrowing in a blood vessel or other tubular organ or structure. 8, 15, 23,
96, 109

thrombocyte

component of blood whose function (along with the coagulation factors) is to stop
bleeding by clumping and clotting blood vessel injuries; a platelet. 93

tunica

layer, coat, sheath, or similar covering. 92, 93, 96–102, 107–111

vasoconstrictor

agents that promote constriction of blood vessels plural. 92

vasodilation

dilatation of blood vessels. 94

vasodilator

agents that promote dilatation of blood vessels. 92

vasomotor tone

amount of tension in the smooth muscle inside the walls of blood vessels, particularly
in arteries. 3, 92, 94
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para avaliação de imagens de angiotomografia de coronárias. Arquivos Brasileiros
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Feijóo, R. A., Detailed reconstruction for coronary arteries integrating angiographies
and IVUS studies, XXXIV Congresso da Sociedade Brasileira de Computação (2014),
Brasilia, Brazil.

• Maso Talou, G. D., Bulant, C. A., Blanco, P.J., Larrabide, I., Guedes Bezerra, C.,
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