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Nas últimas décadas, o papel desenvolvido pela hemodinâmica computacional no campo
das doenças cardiovasculares tem sido fundamental devido à demonstrada correlação
entre quantidades próprias do escoamento (tais como velocidade, pressão, tensões
cisalhantes, entre outras) e a localização e evolução de alterações na mecanobiologia
da parede arterial.
Embora altamente promissoras, o uso de uma abordagem computacional na prática
médica tem sido altamente limitado devido ao balanço entre a qualidade (e quantidade)
de informação que metodologias atuais podem prover e o custo computacional que tais
estratégias demandam (em termos de tempo e recursos físicos). Exemplos clássicos desse
balanço são os modelos unidimensionais que, embora não sendo computacionalmente
custosos, são incapazes de prover informação sobre as tensões cisalhantes exercidas
pelo sangue sobre o endotélio, e os modelos 3D os quais, mesmo sendo capazes de dar
informação detalhada da dinâmica sanguínea, tem seu uso restrito a pequenas regiões do
sistema cardiovascular devido ao enorme custo computacional envolvido. Tal contexto
tem motivado a procura por novas metodologias capazes de prover informação relevante
para o uso clínico mas com uma redução significativa no custo computacional.
Nesse trabalho, um novo esquema numérico é proposto para a discretização das equações
de Navier-Stokes. Essa abordagem, denominada Transversally Enriched Pipe Element
Method (TEPEM), tem se demonstrado capaz de fornecer informação relevante do
escoamento sanguíneo empregando uma fração do tempo utilizado em simulações 3D
baseadas no FEM. As capacidades desta abordagem são exploradas e os resultados
demonstram sua eficácia em termos de manter uma precisão aceitável, reduzir os recursos
computacionais necessários e o tempo de simulação.
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In the last decades, the role of the computational hemodynamics in the domain of
cardiovascular diseases has become fundamental due the large evidence of the correlation
between flow-related quantities (such as velocity, pressure, wall shear stresses among
others) and the localization and onset of alterations in the mechanobiology of the arterial
wall.
These promising capabilities are still strongly limited for massive usage in the daily
medical practice due to the trade-off between the quantity/quality of information
provided by the current methodologies and their computational costs (in terms of
time and physical resources). Classical examples are the cheap one-dimensional models,
unable to provide insight about wall shear stresses, and the full 3D models with
extensive predictive capabilities but highly prohibitive for massive use due to the large
computational cost.
In this work, a novel numerical technique is proposed for the discretization of the Navier-
Stokes equations. This approach, coined as Transversally Enriched Pipe Element Method
(TEPEM), is able to provide hemodinamically relevant information at a fraction of the
time of full 3D simulations with standard finite element methods. The capabilities of this
methodology are studied and the results confirm the effectiveness in terms of maintaining
satisfactory accuracy and of reducing the computational resources and execution time.
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Chapter 1

Introduction

Since early in the seventies, numerical methodologies such as the Finite Element Method
(FEM) started to be employed in the field of computational fluid dynamics. These days,
in the hemodynamics realm, the FEM has been established as a standard strategy to
simulate patient-specific blood flow, ensuring low risk (zero physical risk if compared
with invasive studies) and at the same time provides fundamental information that can
be employed in the medical practice. Accurate description of blood velocity, pressure
distribution, wall shear stress, fractional flow reserve among others flow-related indexes
is of utmost importance in the clinical practice.The accuracy of model predictions is
fundamental for the correct assessment of some related vascular problems. In fact, the
medical literature has systematically reported a strong positive correlation between the
preferred sites for the genesis and development of cardiovascular diseases and regions
featuring disturbances in some flow-related quantities [Caro et al. 1975, Nerem and
Cornhill 1980, Yoshida et al. 1988, Glagov et al. 1988]. Some relevants biomechanical
factors that may be responsible for the localization/progression of atherosclerosis are:

• Velocity flow profiles: Several authors have pointed out the departure from axially
aligned, unidirectional laminar flow, in regions where an increase in the internal
arterial wall thickening and atherosclerosis development occurs. See, for example,
the works of [Giddens et al. 1993, Karino and Goldsmith 1983, Karino 1985,
Zarins et al. 1983, Morbiducci et al. 2007, Cebral et al. 2011].

• Pressure spatial distribution: The hypothesis that pressure-induced high stress
areas are related to the sites of atherosclerotic plaques was introduced in
[Thubrikar and Robicsek 1995]. Several other works ([Salzar et al. 1995,
Giannoglou et al. 2002]) provided further evidence to confirm this correlation.

• Wall shear stress (WSS): The role of the wall shear stress in atherosclerosis
progression and wall thickening has been extensively studied in different works,
for example [Caro et al. 1971, Zarins et al. 1983, Friedman et al. 1986, Gibson
et al. 1993]. It is well known that both low WSS and high oscillatory patterns
of WSS are related to intimal wall thickening.

• Oscillatory shear index (OSI): As reported in [Ku et al. 1985], there is a positive
correlation between the plaque localization and regions wherein the OSI achieves
lower values. At this point, it is important to highlight that, for medical practical
applications, it is much more important to accurately identify the regions with
high/low values in OSI and WSS rather than the exact value of these indexes.

1
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The correlation between the onset of several cardiovascular diseases and the flow
dynamics becomes more relevant if we recall that diseases such as atherosclerosis are
the leading cause of death worldwide (around 31% of total deaths on 2017, according the
World Health Organization) in front of diseases such as neoplasms, neurological diseases,
among others (see Figure 1.1).
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Figure 1.1: Cardiovascular diseases (highlighted in red) represent the leading cause of
death in most countries. Data from Global burden of disease study 2016 (GBD 2016).
Available from http://vizhub.healthdata.org/gbd-compare/.

Aiming to deal with the pressing need for improving diagnosis strategies, several
successful proofs of concept have been appears in the literature demonstrating that
numerical simulations can provided a terrific insight into physiopathological dynamics,
with a potential impact on diagnosis, prognosis, and ultimately in the clinical universe
(see, for example, [Taylor et al. 1998b, Coşkun et al. 2006, Botnar et al. 2000, Maurits
et al. 2007, Olufsen et al. 2000]).
Unfortunately, the massive penetration of scientific computing techniques in the medical
practice is not yet a reality due to the insufficient capability of numerical methodologies
to effectively deal with large-scale problems of the size of whole cardiovascular
network in a reasonably and timely manner. This restriction imposed by the current
methods/resources has been clearly stated in [Grinberg et al. 2009] where the authors
point out that the simulation of one single cardiac cycle in the whole cardiovascular
system demands a total of 27 hours and 40 000 processors, a computational burden that
certainly makes prohibitive their use in daily medical practice.
Within the context exposed in the previous paragraph, the main goal of this work is to
develop a new numerical methodology to efficiently accommodate the trade-off between
computational burden and accuracy, and which is tailored specifically for its use within
the scope of hemodynamic simulations. The numerical approach, coined as Transversally
Enriched Pipe Element Method (TEPEM), closely follows the classical structure of FEM
strategies (domain partition into small pieces, or elements, geometrical mapping to a
reference element, field approximation in finite-dimensional spaces, etc.) but providing a
goal-oriented selection for geometry/field interpolants by exploiting the available a priori
information for the problems in which we are interested in.
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Coming up next, in this chapter, a brief revision on the most common alternatives
to model the blood flow. Also is addressed a state-of-art review of the numerical
methodologies available in the literature. This revision is focused in highlight the
predictive capabilities and provide an idea on the computational burden associated to
each approach. Finally, a detailed description of the specific goals of this thesis is outlined
and the structure of the document and contributions are commented.

1.1 Blood flow modeling

Considering the blood as a Newtonian fluid, the blood flow can be effectively modeled
by the Navier-Stokes (NS) equations. Let us consider Ω ⊂ R3 a domain representing the
internal region of the vessel (or system of vessels) in which the blood flow is studied.

Figure 1.2: Model geometry for the blood flow.

In this domain, like the one presented in Figure 1.2, the blood flow is described through
the velocity u and pressure p fields, solution of the problem:

ρ

(
∂u
∂t

+ (u · ∇)u
)

+∇p− 2µ∇ · (∇u)s = f inΩ, t ∈ (0, T )

∇ · u = 0 inΩ, t ∈ (0, T )

(1.1)

where ρ and µ stand for the blood density and viscosity, respectively, T a positive and
fixed real value and the vector field f : Ω × (0, T ) → R3 indicates the body forces.
To complete the problem description, suitable initial and boundary conditions must be
described. The initial condition of the fluid velocity, provided by the function u0 reads
u(x, t = 0) = u0(x) for each x ∈ Ω while several options are available for the boundary
conditions that can be imposed over the inlet boundaries Γin and outlet boundaries Γout.
Over the lateral boundary Γl, for a rigid wall model, no-slip condition is imposed (u = 0).
From a theoretical point of view, it is not possible to analytically solve the Equation 1.1,
and therefore we must resort to numerical strategies to find approximate solutions. The
Newtonian assumption in the blood constitutive model is suitable for larger and middle
size vessels, wherein it is reasonable neglect the shear thinning and viscoelastic effects
[Quarteroni et al. 2000]. For smaller vessels and capillaries it is necessary to abandon
the Newtonian assumption because the continuum hypothesis becomes questionable
and in certain cases absolutely invalid. Medical literature, see for example the work
of [LaBarbera 1990], report that the average radius for middle size vessels is nearly 0.2
cm while the larger artery in the human body, the aorta, has a radius of 1.5 cm. For a
detailed description of the geometrical characteristics of the most representative arteries
in the cardiovascular system, the reader is referred to [Avolio 1980, Watanabe 2013].
In practice, the high potentialities of modeling the blood flow through the 3D Navier-
Stokes model, which have been demonstrated in the accurate prediction of several flow-
related quantities, are in contrast with the high computational cost in real life problems.
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Numerical methods aimed to solve the NS equations, which will be addressed in the next
section, struggle to deal with the high computational effort that represent the numerical
simulation of the whole, or at least large portions of the cardiovascular system when
considered as a three-dimensional structure.
Hence, in order to reduce the computational cost, in detriment of the accuracy of the
model, several alternatives to model the blood flow appeared as a way of reducing
both the complexity and the computational cost but also trying to keep as close as
possible the predictive capabilities compared to those delivered by the three-dimensional
model. Perhaps some of the most popular numerical schemes developed to reduce the
computational burden are grouped under the label of dimensionally-reduced models, in
which the high complexity associated to the NS model is tackled by reducing the 3D
dynamics to lower-dimensional models by introducing suitable kinematic and geometric
assumptions, such as the cylindrical morphology of the vessels or the one-directional
nature of the blood flow.
Even under the imposition of several hypotheses on the dynamics and their apparent
deviation from the real problem, when compared with the original full 3D model, these
reduced models are capable of providing reliable numerical results at a low computational
cost. Unfortunately, these models are not able to provide some three-dimensional details
which are crucial for decision-making in the clinic, such as recirculation patterns, spatial
heterogeneity of the pressure, detailed spatial description for the wall shear stress,
among others, essentially, three-dimensional features.

Two-dimensional models Under hypothesis of geometrical symmetry (with respect to
a straight axis), the computational domain can be reduced to a two-dimensional one and,
neglecting the angular component of the external loads, also the velocity of the fluid can
be reduced to axial and radial components. This process directly reduces the size of the
problem without losing three-dimensional features (owing to the symmetry hypothesis)
and without any assumption on the velocity profile.
Theoretical and practical results available in the literature, see for example [Bernardi
et al. 1999, Deparis 2004, Belhachmi et al. 2006], highlight the advantages of these
models and the effective reduction of complexity of 3D NS equations maintaining model
capabilities proper to be employed in the study of blood flow simulations. However,
such symmetry assumptions are extremely restrictive when considering the simulation
of blood flow in real patient-specific arterial vessels.

One-dimensional models Initially studied by [Euler 1844] and rationally introduced
in [Hughes and Lubliner 1973], these models are a simplification of the 3D NS equations
by imposing assumptions on the geometry, considering the axis of the vessel as a straight
segment, and considering that the axial flow velocity along the elastic vessels is much
greater than the flow velocity perpendicular to the longitudinal axis. The resulting model
is a nonlinear coupled system of equations, comprising mass and momentum conservation
laws

∂tA+ ∂xq = 0

∂tq + ∂x

(
q2

A

)
+
A

ρ
∂xp = −f

(1.2)

where x is the axial coordinate and t the temporal variable. These equations involve
the cross-sectional area of the vessel A(x, t), the flow rate q(x, t) and the average
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internal pressure over a cross-section p(x, t). To close the system, a constitutive law
is needed to relate the internal pressure p(x, t) with the cross-sectional area A(x, t).
Although their simplicity, this type of model can easily provide useful information about
the global dynamics of the system, with an excellent compromise between descriptive
capabilities concerning wave propagation phenomena in the cardiovascular network and
low computational cost in comparison with full 3D models [Hughes 1974, Avolio 1980,
Stergiopulos et al. 1992, Formaggia et al. 2003, Xiao et al. 2014].
Regarding the geometry of this type of 1D model, a popular representation of the
whole cardiovascular system is the arterial network proposed by Avolio in [Avolio
1980], constructed based on the anatomical branching structure of the arterial tree and
composed by 128 segments. A high improvement in the anatomical modeling appeared
with the ADAN model ([Watanabe et al. 2013, Watanabe 2013, Blanco et al. 2014a,b]),
currently the most detailed description of the arterial circulation and composed by more
than 2 000 arteries. A comparison of these both representative schemes for this type of
model is shown in Figure 1.3.

Figure 1.3: Representative schemes of one-dimensional models. Left: Arterial network
proposed in [Avolio 1980]. Right: ADAN model proposed in [Blanco et al. 2014b]. Figures
inspired in the ones proposed in the corresponding references.

The search for enriched one-dimensional models, aiming to increase the descriptive
capabilities in the direction of 3D models, has experimented little advancement. For
example, in [Reymond et al. 2009] a Womersley approximation is considered to improve
the modeling of viscous dissipation and convective acceleration (the latter only valid in
the case of unidirectional flow), and in [Carapau and Sequeira 2006, Green and Naghdi
1993, Green et al. 1993, Robertson and Sequeira 2005] the so-called Cosserat models are
considered. However, we have not been aware, until very recently (as explained before)
of the existence of a systematic and, more importantly, hierarchical strategy to go from
1D models to 3D models.
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Zero-dimensional models Also known as lumped models, they can be derived directly
by introducing further simplifications into the 1D models, thus establishing an analogy
between the cardiovascular system and electrical circuits [Lee et al. 2004, Huberts et al.
2009, Liang and Liu 2005]. In this type of model, each segment of the system is modeled
by the concept of compartment yielding a set of ordinary differential equations in the
time domain.
The complex network that comprises the human circulatory system can be simulated
even more efficiently in this way. The main disadvantage of these 0D models is that
they are unable to take into account some important features of cardiovascular function,
such as accurate wave propagation and reflection phenomena along vessels. Evidently,
as happens with 1D models, 0D models are completely unable to provide spatial
information about the fields.

Dimensionally-heterogeneous models The use of dimensionally-heterogeneous
models is being seen with increasing frequency in the specialized literature due to the
natural ability to couple the best of both worlds. This type of models are capable of
coupling the advantages of 3D models ,concerning the predictive capabilities to accurately
simulate a region of interest, and reduced 1D/0D/2D models to deal with the surrounding
vascular domains or even the whole cardiovascular system where simplistic hypotheses
are reasonable ([Formaggia et al. 2001, Lagana et al. 2002, Urquiza et al. 2006, Blanco
et al. 2009, 2010]).
The main attractive of this class of models is the coupling between reduction of
complexity and high predictive capabilities provided by 3D models focused only on
some selected regions of interest, see Figure 1.4, dealing at the same time with the
complex problem of imposing boundary conditions when such 3D portion of the arterial
system has been isolated from the rest of the system to carry out numerical simulations.
Nevertheless, in this approach the 3D regions of interest are limited to small regions of
the cardiovascular system, being that, as explained above, large 3D simulations are still
prohibitive in real life problems.

Figure 1.4: Coupling of dimensionally-heterogeneous models. A three-dimensional region
is coupled to a 1D model. Figure extracted from [Blanco et al. 2009].
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1.2 Numerical techniques for the 3D fluid flow

The predictive capabilities of the dimensionally reduced models are, at some level,
restricted by the kinematic assumptions considered for their formulation, if compared
with the full three-dimensional Navier-Stokes equations. As said, these reduced models
are able to provide excellent insight about the hemodynamics at different scales
but completely fail to describe in detail the spatial behavior or heterogeneities in
velocity/pressure fields.
The valuable information inherent to the three-dimensional Navier-Stokes equations,
and particularly in the hemodynamics realm, together with the almost impossible task
to analytically solve the problem in real patient-specific geometries, makes it mandatory
to develop numerical strategies able to provide approximate solutions with significant
information about flow-related entities which can be useful in medical practice.
From the practical point of view, two major characteristics concerning the choice of a
numerical method for hemodynamics applications are the accuracy in the approximate
solution and the computational burden associated to the numerical simulation. This
dichotomy between accuracy and efficiency has inspired the development of several
strategies aiming to improve the quality in one or both of these aspects. In this
section we present a brief classification of the most representative numerical strategies
in computational hemodynamics based on the counterbalance between accuracy and
efficiency:

(i) Methods based in the concept of elements. General enough to be applied
in several areas of scientific computing and to which the accuracy and
computational cost are strongly correlated. And

(ii) Goal-oriented strategies. Here the sophistication of the numerical approximation
is substantially higher by employing efficient techniques for the approximation
spaces, but that at the same time reduce the range of applicability.

We will present the following strategies focusing solving the spatial description of the
physical fields we are interested in, leaving the time dependence treated by a general
time-advancing scheme, constructing the solution at the time tn+1 = tn + ∆t based on
the approximation of the field obtained at previous time steps.

1.2.1 General purpose element-based methods

The most traditional alternatives to numerically solve the Navier-Stokes equations are
based on a subdivision of the computational domain Ω into a grid. The solution is
approximated by the field uh which depends on a finite number of parameters as, for
example, the values of the approximation at the nodes of the grid. The index h in the
approximation stands for an indicator of the grid refinement and drives the accuracy of
uh and also the computational burden associated to the computing of the approximation.
Further details of these approaches can be found in [Morton and Mayers 2005, Quarteroni
and Valli 2008, Thomas 2013].
Four general approximating strategies (Finite difference method, finite element method,
finite volume method and spectral element method) are briefly described here, exposing
the main characteristics of each method and highlighting the existing dependence
between the accuracy and the size of the problem at the discrete level.
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Finite difference method Possibly, the first technique adopted for spatial
discretization, the finite difference method (FDM), approximates the solution uh in the
nodes of the computational grid as the solution of the system of equations generated
by replacing the differential operators, in the strong formulation of the problem, by
finite differences. This discrete equivalence between a differential operator L and finite
differences, is performed through the concept of stencils, approximations of the type

Lu(xi) ≈
N∑
j=1

αiu(xj) (1.3)

where the value of Lu(xi), with xi a selected node in the grid, is approximate based on
the value of the field u at selected neighbor nodes.
Different stencils can be proposed by each differential operator, modifying the structure
of the resulting linear system as well as the convergence properties, but generally the
accuracy is strongly correlated with the grid spacing h, that is, the finest the mesh the
better the quality of the approximation.
Currently, these techniques are little employed mainly due to the difficulty to construct
stencils for non uniform and unstructured meshes. Even so, some applications of the
FDM in computational hemodynamics can be found in the literature ([Tang et al. 2001,
Peyret and Taylor 2012]).

Finite volume method Proposed for problems that can be recast in a conservation
form, i.e. problems of the form

divF(u) = f (1.4)

where F is the flux vector, the finite volume method (FVM) is based on a domain
division into the so-called control volumes where the physical field u is approximated
by the solution of a system of linear (or non-linear) equations obtained by integrating
within each control volume C the conservation equation and by employing the relation∫

C
divF(u) dx =

∫
∂C

F(u) · n dγ ≈
∑
j

Fj(uh) · nj (1.5)

where Fj is an approximation of the flux vector on the j-th side of C, and nj is the
corresponding normal vector. Naturally, the size of the discrete system depends on the
number of control volumes considered.
Establishing a parallel with the FDM, explained before, if we introduce the parameter
h as being the maximum size of the control volumes we can relate the accuracy in
the FVM with the value of this parameter: The smaller h the more accurate the
approximation and the greater the computational cost. A detailed description of the
FVM in computational fluid dynamics can be found in [LeVeque 2002, Versteeg and
Malalasekera 2007].
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Finite element method The most widely used spatial discretization technique in the
computational mechanics domain, the Finite Element Method (FEM), is based on the
discretization of the geometrical domain into subregions called finite elements and on the
variational formulation of the physical problem stated in general form as follows: Find
u ∈ U such that

a(u, v) = F (v) ∀ v ∈ V (1.6)

with suitable spaces for the field and where V is the generator of the linear manifold U .
Lets assume, without loss of generality, that U = V.
The discrete counterpart to this problem is obtained by replacing the space V with a
finite-dimensional space Vh = span{ϕi, i = 1, . . . , Nh}. Hence, assuming the linearity of
the form a(·, ·), the continuous problem can be written in the form of a linear system of
equations Au = b, where

Aji = a(ϕi, ϕj) bj = F (ϕj) (1.7)

For the FEM, the finite-dimensional spaces Vh are constructed taking into account
the discretization of the computational domain into a grid, defining the space as
generated by piecewise polynomials with compact support and a given degree within
each element. Numerical and mathematical properties, different types of meshes and
variants of the finite-dimensional spaces are largely studied at literature, exposing their
high potentialities in the fluid mechanics domain, including the field of hemodynamics
([Zienkiewicz and Taylor 1977, Girault and Raviart 1986, Perktold et al. 1991, Taylor
et al. 1998a, Cebral et al. 2002]).
In FEM, the computational cost is directly dependent on how fine the discrete mesh
is. Denoting by h the characteristic size of the finite elements employed to construct
the mesh, the accuracy (and also the computational burden) is also correlated with this
value. As happens with the FVM and FDM, the smaller the value of h the better the
approximation but at the same time the higher the computational cost and, for real
large-scale hemodynamics simulations, this may become an insurmountable difficulty.

Spectral approaches The last approach briefly described here is known as Spectral
element method (SEM). Similarly to the FEM, the SEM is based on a discretization of the
domain into finite subdomains and the construction of finite-dimensional spaces where
the approximated solution is sought. The main difference between these two approaches
is the way in which the basis functions for Vh are constructed.
The approximate solution in the SEM is commonly defined as a truncated Fourier series
defined in the whole domain or with piecewise polynomials of high order. For a fixed
mesh, the quality in the approximation is here defined by the chosen polynomial order p.
High theoretical convergence rates can be obtained for the SEM, achieving exponential
convergence in some cases, in situations where the solution is regular enough, which is a
condition often unreachable for most real problems. Further details for SEM can be found
in [Canuto et al. 1988, Maday and Patera 1989, Bernardi and Maday 1997, Karniadakis
and Sherwin 2013].
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1.2.2 Goal-oriented strategies

Although the excellent capabilities of the general purpose methods described before,
the accuracy in the solution directly depends on the problem size, sometimes achieving
unpractical requirements in terms of physical resources and computational effort to solve
the problem [Grinberg et al. 2009, 2011].
In this regard, the development of computationally cheap flow models (cost of the order
of solving reduced-order approaches as the 1D model) capable of predicting flow-related
quantities accurately (accuracy of the order of 3D models solved with high-fidelity
methods) is of the utmost relevance for academic studies and for their translation into
clinical practice [Quarteroni et al. 2001, Formaggia et al. 2009, Peiró and Veneziani 2009].

Order-reduction techniques A popular way to deal with the high computational
cost involved in the approximation of the three-dimensional fluid flow problem is to
express the approximate solution as a function of only a few well selected modes.
Among the strategies within this class, there are two popular choices: Proper Orthogonal
Decomposition (POD) and Reduced Basis (RB) methods. POD techniques, introduced
in [Lucia et al. 2004] in the context of fluid dynamics, reduce the dimensionality of a
system by transforming the original unknowns into a new set of Nr variables such that
the first few modes retain most of the physical phenomena in the problem. Basically,
the method relies on the approximation of the solution by a linear combination of some
spatial modes computed after offline simulations. On the other hand, the goal of the
Reduced Basis technique is to compute a low-dimensional approximation by seeking a
linear combination of well-chosen solutions corresponding to specific choices of certain
parameters of the problem [Patera and Rozza 2007].
Both of them (POD and RB techniques) are based on a strong offline-online paradigm,
share several features and have an extensive theory behind them that allow their
application in several fields (see for example, [Quarteroni and Rozza 2014]), but the
linear nature of these methods together with the high computational cost of the
offline step make them unpractical for the current goal of simulating the blood flow in
patient-specific 3D geometries in a cheap and accurate way.

Hierarchical modeling techniques Another very useful way to obtain reduced models
is based on an a priori definition of the behavior of the physical model across certain
physical spatial direction. The main idea behind these techniques is that the physics in
the problem is dominantly determined across a certain dimension of the domain where the
physics unfolds. By adopting different approximation strategies for the different spatial
dimensions one can reduce the dimension of the problem, just as a 3D solid can become
a 2D plate/shell or a 1D beam/bar under certain hypotheses [Kraus 1967].
In recent years, a methodology called Hierarchical Modeling (HiMod) has refloated this
idea in the general context of elliptic problems [Ern et al. 2008]. In such cases, based
on the presence of a spatial dimension that predominates over the others, the authors
propose a hybrid numerical approximation to the problem by combining finite element
functions for the dominant direction with spectral approximants for the transversal
directions. Since its appearance, many theoretical contributions of the HiMod method
have been reported. For example, in [Perotto et al. 2010], the HiMod method was
combined with domain decomposition strategies to allow for different degrees of spectral
approximation in different regions of the domain of analysis. In turn, in [Perotto and Zilio
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2013], different numerical approaches are presented towards performing the reduction
of the problem using modal functions. More recently, in [Perotto 2012, 2014, Perotto
and Veneziani 2014] several procedures to select the number of modal functions in an
automatic manner are discussed.
In 2014, Guzzetti [Guzzetti 2014] showed the first application of the HiMod method
to approximate the Navier-Stokes equations but still restricted to academic cases, thus
highlighting the potentialities of HiMod in the domain of computational hemodynamics
and also pointing the difficulties to be circumvented in order to accomplish this task for
real life problems.

1.3 Objectives

Current limitations of the numerical techniques together with academical and medical
needs point out the need for the development of efficient numerical schemes to be
employed in computational hemodynamics. The main goal of this thesis work is to
contribute towards the translation of scientific computing into the clinic through the
development of a new numerical approximation for the three-dimensional Navier-Stokes
equations, especially tailored for computational hemodynamics.
This new methodology, coined as Transversally Enriched Pipe Element Method
(TEPEM) is aimed at filling the gap between (cheap) 1D models and (computationally
expensive) full 3D models. Furthermore, is provided solid evidence of the numerical
capabilities while offering a substantial reduction in the computational burden when
addressing patient-specific blood flow simulations.
Accomplishing this major goal, implies in several specific goals also addressed along this
work and which are listed below.

• TEPEM definition

(1) Regarding the geometry, a novel geometrical meshing strategy is proposed
in order to exploit the pipe-like structure of the domains of interest. Also,
suitable geometric mapping is described which features enough accuracy for
the problems under consideration.

(2) High order field interpolants are constructed, and accurate numerical
integration recipes are proposed and employed.

(3) As for the computational implementation of TEPEM, this is carried out
into the same distributed computing framework in which FEM is also
implemented in order to report consistent comparisons between these
methodologies utilizing the same computational paradigm.

• Scalar transport problems

(1) The study of the TEPEM approach in the approximation of elliptic
problems is first addressed. Here we focus on situations which follow the
main hypotheses: pipe-like domain of definition and presence of mainstream
direction.

(2) Numerical verification of TEPEM capabilities is reported using controlled
geometries and compared to standard FEM solutions.
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• Fluid-flow problems

(1) Study of combinations for the approximation spaces for velocity and
pressure is performed, as well as the investigation into the inf-sup stability
condition.

(2) Numerical verification for velocity, pressure and also derived indexes such
as wall shear stress in stationary and transient cases is presented by using
analytical and reference FEM solutions.

• Patient-specific hemodynamics

(1) A study of pipe meshing strategies to guarantee a similar TEPEM topology
in comparison with real vascular domains is performed.

(2) The establishment of a computational pipeline to perform a semi-automatic
discretization of patient-specific geometries and deliver a pipeline discrete
mesh is described.

(3) Implementation of boundary conditions, classical boundary conditions as
dictated by hemodynamic problems, within the TEPEM scope is also
developed.

(4) The verification of the approach in several patient-specific hemodynamic
situations and for increasing large-scale arterial structures is performed.

The computational implementation of this novel formulation to solve elliptic problems
(Section 3), Navier-Stokes equations (Section 4) as well as the corresponding boundary
conditions for hemodynamic simulations (Section 5.2) was executed in the context of an
in-house general purpose parallel solver called SolverGP ([Urquiza and Vénere 2002]),
and which is under continuous development by the HeMoLab research group [HeMoLab
2015].

1.4 Thesis structure

Aiming at a comprehensive presentation of the TEPEM, their potentialities in large-
scale hemodynamic simulations and looking into the list of specific goals appointed in
the previous section, this document is outlined in the following way:

• Chapter 2. This chapter is focused in the introduction of the basic ingredients
for the definition of the proposed methodology. The geometric setting, reference
element, physical interpolants as well numerical details that are relevant for the
computational implementation are described for the two- and three-dimensional
versions of the TEPEM. The algebraic structure rendered by the proposed
method is here detailed in a general scope without further restrictions than
that established by a pipe-like domain of analysis and a dynamics with a clear
dominant direction.

• Chapter 3. Although the motivation behind the TEPEM is its application in
computational hemodynamics, it is actually a general methodology that can
be applied for the simulation of several problems whenever assumptions in the
geometry and the presence of a dominant direction hold. In this sense, this
chapter is devoted to studying the performance of the TEPEM when applied
to advection-diffusion-reaction problems. The discrete structure of the resulting
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algebraic system is presented and the numerical advantages in certain situations
over classical finite element approaches are studied and discussed in relation to
the accuracy of the solution as well as to the problem size.

• Chapter 4. In this chapter, the application of the TEPEM to the numerical
approximation of the Navier-Stokes equations is studied. The definition of
feasible finite-dimensional spaces for velocity-pressure fields as well as a
numerical approach for the inf-sup condition are presented. Finally, several
numerical examples that demonstrate the model predictive capabilities in two
and three dimensional problems are documented. The numerical examples
reported in this chapter are defined in synthetic domains in order to develop
a controlled convergence study.

• Chapter 5. As said before, utilizing the TEPEM in complex patient-
specific geometries requires the development of new, although simple, meshing
algorithms for a precise approximation of the topology based in pipe-type
elements. In this chapter we present: (i) a geometrical pipeline able to discretize
patient-specific structures from the image segmentation step to a final pipe-
based mesh and (ii) a discussion of different boundary conditions suitable for
hemodynamic simulations and their implementation in the scope of the TEPEM.
The chapter is finalized with several numerical simulations with increasing
complexity.

• Chapter 6. The contributions, open problems and future works related with
the context brought by the TEPEM are summarized in this final chapter.

1.5 Scientific contributions

Relevant results obtained from this work were presented in the form of manuscripts
published in indexed journals as well as articles in conference proceedings.
Articles in peer-reviewed journal. Three papers were submitted to indexed journals.
These works, listed as references [Blanco et al. 2015, Mansilla Alvarez et al. 2017a, 2018-
submitted] at the bibliography chapter, cover in detail the development of TEPEM from
2D to 3D cases, the application on patient-specific geometries (including domains with
several bifurcations) as well as an extensive comparison between TEPEM and FEM in
terms of accuracy and computational burden. These works are listed below.

• P.J. Blanco, L.A. Mansilla Alvarez, R.A. Feijóo. Hybrid element-based
approximation for the Navier-Stokes equations in pipe-like domains. Computer
Methods in Applied Mechanics and Engineering, v. 283, p. 971-993. 2015.

• L.A. Mansilla Alvarez, P.J. Blanco, C.A. Bulant, E.A. Dari, A. Veneziani, R.A.
Feijóo. Transversally Enriched Pipe Element Method (TEPEM). An effective
numerical approach for blood flow modeling. International Journal for Numerical
Methods in Biomedical Engineering, v. 33, n. 4. 2017.

• L.A. Mansilla Alvarez, P.J. Blanco, C.A. Bulant, R.A. Feijóo. Towards fast
hemodynamics simulations in large-scale circulatory networks. Submitted to
Computer Methods in Applied Mechanics and Engineering.
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Articles in conference proceedings. Some preliminary results reporting the
consolidation of the TEPEM as an efficient numerical methodology were presented in
national and international conferences. These works, referenced as [Aletti et al. 2014,
Mansilla Alvarez et al. 2015, Aletti et al. 2016, Mansilla Alvarez et al. 2017d,c,b, 2018],
also reflect the collaboration with other strong research groups in the same field.

• M. Aletti, L.A. Mansilla Alvarez, P.J. Blanco, S. Perotto, A. Veneziani.
Hierarchical model (HiMod) reduction for incompressible fluid dynamics in rigid
and deformable pipes. In: WCCM 2014, World Congress on Computational
Mechanics, 2014, Barcelona.

• L.A. Mansilla Alvarez, P.J. Blanco, R.A. Feijóo. Pipe-oriented finite elements
for the three-dimensional blood flow simulation; In: USNCCM13, US National
Congress on Computational Mechanics, 2015, San Diego.

• M. Aletti, L.A. Mansilla Alvarez, P.J. Blanco, S. Guzzetti, S. Perotto, A. Reali, P.
Rusconi, A. Veneziani. Hierarchical Model Reduction Methods for Incompressible
Fluids: Basics, IsoGeometric formulation, Applications. In: HOFEIM 2016. High
Order Finite Element and Isogeometric Methods, 2016, Jerusalem.

• L.A. Mansilla Alvarez, P.J. Blanco, R.A. Feijóo. Fast patient-specific blood flow
simulations: The transversally enriched pipe element method (TEPEM). In: EMI
2017. 3rd Engineering Mechanics Institute International Conference, 2017, Rio
de Janeiro.

• L.A. Mansilla Alvarez, P.J. Blanco, R.A. Feijóo. An efficient method for the
numerical solution of blood flow in 3D bifurcated regions. In: CNMAC 2017.
XXXVII Congresso nacional de matemática aplicada e computacional, 2017,
São José dos Campos.

• L.A. Mansilla Alvarez, P.J. Blanco, C.A. Bulant, R.A. Feijóo. Fast blood flow
simulation in three-dimensional arterial trees. In: CILAMCE 2017. XXXVIII
Ibero-Latin American Congress on Computational Methods in Engineering,
2017, Florianópolis.

• L.A. Mansilla Alvarez, P.J. Blanco, R.A. Feijóo. On enhanced reduced models
for advection-diffusion problems. In: EAMC 2018. XI Encontro Acadêmico de
Modelagem Computacoinal, 2018, Petrópolis.



Chapter 2

The Transversally Enriched Pipe Element
Method

One of the major challenges in modern scientific computing is the controlled reduction
of the computational cost without sacrificing accuracy. The improvement of computing
strategies, architectures and massive use of high performance computing (HPC) facilities
is only a partial answer to this need [Grinberg et al. 2009], turning mandatory the
coupling between HPC strategies with novel customized models that can effectively
provide the trade off between efficiency and accuracy. As discussed in the introduction,
most of the numerical methodologies aimed at reducing the computational cost, achieve
this in detriment of substantial loss in the spatial description of the physical fields or
even reducing its versatility, not being applicable to complex patient-specific geometries.
It is evident the need to work in the development of new methodologies capable to deal
with the following three aspects:

(i) Reduction of the computational burden. Understanding this as computational
time and physical resources needed to perform numerical simulations.

(ii) Capacity to provide spatially detailed information of hemodynamics fields:
Focusing in an proper description of the spatial heterogeneities of flow-related
quantities such as wall shear stress (WSS).

(iii) Versatility so that they can be applied to complex domains as those appearing
in the cardiovascular network, specially, in the case of patient-specific vascular
regions.

In this scenario, the Transversally Enriched Pipe Element Method (TEPEM) emerges
as an attempt to find a practical trade-off between the accuracy of 3D modeling and
the efficiency, in terms of diminished computational burden, of reduced-order models.
This methodology is specially designed for problems in computational hemodynamics
and deals with the three key aspects commented in previous paragraph by making use
of a priori knowledge in its conception. This a priori knowledge consists of two natural
assumptions for our field of study: (i) As for the geometrical domains we are interested
in, the blood flow mainly occurs (except within the heart) in a large network of pipes and
(ii) In these inter-connected tubular regions, the flow is basically one-dimensional, that
is, it flows dominantly across the axial direction of each pipe. However, the transversal
dynamics is in many cases important to be retained, and this will naturally be accounted
for through the field interpolants constructed in the pipe elements.

15
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In this chapter, we present the basic ideas and key ingredients behind the
proposed approach in the two- and three-dimensional cases. As a novel methodology,
aspects related to the geometrical description of the computational domains, the
field interpolation strategy and finite-dimensional spaces defined for the discrete
approximation are described in detail in this chapter. The TEPEM fundamentals closely
follow the ones observed in classical FEM: starting from the variational formulation
of the physical problem, and based on a partition of the domain of analysis, each
physical field is approximated by a function living in a finite-dimensional space and
computed as the solution of a problem defined by the collection of local contributions.
Because of this similarity, and for ease of clarity in this chapter, each component in
the TEPEM will be introduced while performing a comparison between the proposed
approach and the analogous component in the context of the FEM. Some comments
on mesh generation, numerical details in the TEPEM implementation and relation with
some other methodologies are also addressed.

2.1 An interpolation problem

To expose the idea of dominant direction and the way in which the TEPEM proposal
tackles problems with this characteristic, let us focus first in an interpolation problem
on a two-dimensional domain. Let Ω = [−2, 2] × [−0.25, 0.25] ⊂ R2 denote the domain
of analysis, then the function to be interpolated is defined as:

u : Ω→ R
(x, y) 7→ u(x, y) = f(x)g(y)

(2.1)

where

f(x) = (1− 0.25x2) cos(6πx) exp
(
−πx2

)
g(y) = 1− 16y2

This function, displayed in Figure 2.1 together with each component f(x) and g(y), has
a more complex dynamic over the x−axis when compared with the dynamics over the
y−axis: While, for a fixed value x = x0, the solution is simply a quadratic function, the
opposite case (the behavior for y = y0) is more complicated to be expressed as a simple
polynomial function. This quality of one direction being more “interesting” than other
(or others, in the 3D case) is directly related with what we call as dominant direction: The
direction, not necessarily aligned with a coordinate axis, which presents more information
of the dynamics than the others. Hereafter, this main direction will be referred to as axial
direction in contrast to transversal direction for the other directions. However, we note
here that we do not want to completely miss the important information contained in
the transversal component of the function. Going back to the interpolation problem, let
us focus on the following two approaches: (i) an interpolation on an uniform triangular
mesh, considering linear piecewise basis functions with the exact value at each mesh
node; and (ii) a spectral interpolation with Ω as a single domain and Fourier basis with
coefficients that ensure a best approximation in a finite dimensional space. The intention
is to know how difficult is, for each case, to obtain a visually precise approximation and
the number of parameters required in each case.
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Figure 2.1: Function to be interpolated and their horizontal and vertical components. The
region [−0.5, 0.5]×[−0.25, 0.25] (delimited in blue) is employed for a detailed examination
of the interpolation strategies.

The first approach consists in piecewise interpolating the function in an analogous way
using a classical finite-dimensional space utilized in a typical finite element methodology:
For a fixed triangular partition Th of Ω we will compute the values of u(x, y) at each
mesh node (vertices of every triangle on the partition) and the interpolant function will
be constructed as a linear piecewise function in each triangle and with these values. In
other words, the interpolant function (uh) will be defined as the only function coincident
with the function u(x, y) on each vertex of each partition element and belonging to the
finite-dimensional space:

Uh = {u ∈ C0(Ω) : u|τ∈ P1, ∀τ ∈ Th(Ω)}. (2.2)

The parameter h, which characterizes the partition, stands for a characteristic size of the
elements composing the partition of Ω into the triangular elements. Reducing the element
size, the approximation (interpolant function in this case) becomes naturally more
accurate but, at the same time, the problem size and computational cost increase. Let us
start considering a coarse mesh, composed by 922 nodes and 1 662 triangular elements,
and let us successively refine this mesh until we obtain a satisfactory result. In Figure 2.2
we show the interpolant function, focused on the central region of Ω, obtained with four
different meshes. As expected, it is clear the improvement in the interpolant obtained
with each mesh refinement. It was necessary approximately 34 000 nodes (vertices) to
obtain a (visually) accurate interpolant function, this quantity increases considerably
when thinking of 3D problems. It is important to note that we are using uniform meshes
without taking advantage of any a priori knowledge of the original function. Different
mesh types (composed by quadrilateral or hexagonal elements, among others) can equally
be employed but with the same qualitative result: A better interpolation is linked with
an increase on the number of elements (therefore, number of vertices or nodes), needing
a large quantity of these for a satisfactory result.
On the other hand, opposedly to the use of not-so-regular piecewise polynomial
functionals, we have the idea of using regular functions to devise a spectral interpolation.
Instead of a partition, for the single domain case of the spectral method, we consider
the whole domain as a unique element where a finite-dimensional space is defined and
which is spanned by, typically, a family of continuous functions such as polynomials,
trigonometric functions, etc.
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(a) Interpolation with 922 nodes. (b) Interpolation with 3 560 nodes.

(c) Interpolation with 14 214 nodes. (d) Interpolation with 34 264 nodes.

Figure 2.2: Linear interpolation, using FEM, over different triangular meshes with
increasing number of nodes (vertices). The comparison is focused in the center region of
the original domain (blue region in Figure 2.1).

The cost in the spectral case is given by the quantity of elements utilized to form the
basis to get a good interpolation, the more elements spanning the discrete space the more
accurate will be the interpolant function but, at the same time, more computationally
expensive will be the calculation of the parameters needed by the interpolant. These
parameters are the coefficients, in the linear combination of the elements on the space
basis, which define each function in the space. Without loss of generality, a basis related
to the Fourier series will be chosen to generate the finite-dimensional space. Indexed
by the parameter m ∈ N, we define the discrete space where the interpolant lives as
Um × Um ⊂ C0(Ω), where

Um = span{sin(iπx), cos(iπx) : i = 0, . . . ,m}. (2.3)

As happened in the previous piecewise polynomial approach, it is important to emphasize
that no special consideration is taken into account to choose the basis functions. For each
m ∈ N, the interpolant function um has a form

um(x, y) =

(
m∑
i=0

asi sin(iπx) + aci cos(iπx)

) m∑
j=0

bsj sin(jπy) + bcj cos(jπy)

 (2.4)

That is, a total of (2m + 1)2 parameters obtained via solving a linear system yielded
from by inner product of u(x, y) with each element of the basis. In Figure 2.3 we show
the interpolating function for increasing values of m, this is, each time a larger space.
As expected, a better interpolation is obtained when increasing m but with a number of
unknowns around 1 100 and without considering the needed of assembling and solving
the system of equations associated to the coefficients.
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Figure 2.3: Interpolation using the spectral method and the same number of modes for
each direction (axial and transversal). The total number of degrees of freedom is equal
to (2m+1)2. The comparison is focused in the center region of the original domain (blue
region in Figure 2.1).

The interpolation problem is closely related to solving problems such as the Laplace
equation via classical finite element method or spectral-type strategies. In both
approaches the solution is sought in a finite-dimensional space, and the discrete problem
becomes the problem of solving a linear algebraic system. This approximate solution
shares similar properties shown above:

(i) For the classical finite element method, the solution is as accurate as the mesh
size allows, sometimes needing several refinements to get the desired precision.

(ii) For spectral methods, the approximate solution improves in accuracy when
increasing the number of elements in the basis; generally a large quantity of
elements are needed to correctly approximate a complexly behaved function, as
seen above.

In both cases, a good approximation demands a large number of unknowns and an
elevated computational cost.
Back to the inteprolation problem, a possible way to reduce the computational cost,
number of unknowns and, therefore, the size of the linear system, but keeping accurate
results is to take into account the presence of a dominant direction in the function to
be interpolated. As the behavior on the axial direction (x−axis) is more complex than
the other it seems reasonable to treat independently the space on where interpolate the
axial component and the space where the transversal component lives. For example in the
spectral approach case, we can interpolate the function in the discrete space Um×U3 ⊂
C0(Ω) keeping accurate results (as shown in Figure 2.4) and reducing considerably the
computational cost. Although the transversal behavior is satisfactorily interpolated in
U3 (with a reduction up to five times than the original interpolation on Um), the axial
component still requires a large number of basis functions to get an accurate result.
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Figure 2.4: Interpolation with different number of modes for each direction: three for
the transversal direction and m for the axial direction. The total number of degrees of
freedom is equal to 7(2m + 1). The comparison is focused in the center region of the
original domain (blue region in Figure 2.1).

The TEPEM approach is based on the idea of diversifying the choice for the axial
and transversal interpolating functions. Using the a priori knowledge of the presence
of a dominant direction, we approach each component (axial and transversal) through
different ways as dictated by physical and also practical issues.
The transversal component is hypothesized to be less complex because the physics is
confined to unfold in the cross-section of the domain of analysis which, in general,
precludes large variations of the fields from occurring. Therefore, we postulate that
the approximation can be effectively achieved by using a few number of high-order
interpolants. To be more general, we choose high-order Lagrange polynomials for this
component instead of trigonometric functions, which are more difficult to be dealt with
at the implementation level. Concerning the axial component, a low-order polynomial
interpolation is employed due to its versatility and capacity of correctly approximating
complex patterns.
It is clear than neither a classical triangular partition nor considering the whole domain as
a single element correspond to the proposed interpolation splitting. That is, the partition
must be adapted in order to accommodate aligned finite elements necessary to interpolate
the axial direction with crossing mono-elements to account for the spectral interpolation
in the transversal direction. This special partition strategy, fundamental to the TEPEM
scope, will be denominated as pipe-type partition, or equivalently slab-type partition,
and can be understood as a first step to severely reduce the number of elements when
compared with classical finite element meshes (as can be observed in the example in
Figure 2.5). This type of partitioning, naturally allows a differentiation between the
axial and the transversal directions which is fundamental to exploit the idea exposed
above for tackling in an independent way the interpolation of each component (axial and
transversal) of the physical field.
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Figure 2.5: Comparison between FEM and TEPEM meshes. The FEM mesh (left) is
composed by tetrahedral elements and TEPEM mesh (right) by slab-type elements.

The formalization of these ideas into an element-based methodology has been coined as
Transversally Enriched Pipe Element Method, for being constructed based on a pipe-
type domain discretization and for having the characteristic of effectively controlling the
transversal predictive capabilities according to the problem needs.
Coming up next, we present the TEPEM ingredients in the context of a generic
variational problem defined in a domain Ω ⊂ Rd (d = 2, 3). The variational equation
reads as follows: Find u ∈ U such that

(Ru, û)Q′×Q = f(û) ∀ û ∈ V, (2.5)

with the set of admissible solutions defined by

U = {u ∈ Q : Bu = g}. (2.6)

Here the boundary operator B is related with the essential boundary conditions and V is
the space of admissible variations. In this problem, Q is a functional space defined in Ω
with its algebraic dual space Q′, (·, ·)Q′×Q is a duality product defining the equilibrium
and involving the (generic) operator R(·) : Q → Q′. Moreover, assuming the case in
which the case is linear and the essential boundary conditions are homogeneous, i.e.
g = 0, the problem can be rewritten as: Find u ∈ V such that

a(u, û) = f(û) ∀ û ∈ V, (2.7)

where a : V × V → R is a bilinear form related to the (now linear) differential operator
R and f : V → R is a linear functional. We also assume that the well posedness of the
problem is guaranteed.
As it is usual in the literature [Ciarlet 1978, Atkinson and Han 2005, Brenner and Scott
2007], a d−dimensional finite element is defined as a triple (K0,P0,N0), where

(i) K0 is a closed bounded subset of Rd with nonempty interior and a piecewise
smooth boundary.

(ii) P0 is a finite-dimensional vector space of functions defined on K0.

(iii) N0 = {φi, i = 1, · · · , N} is a basis of the dual space P ′0.
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The function space P0 is the space of the shape functions and the elements of N0 are the
nodal variables (degrees of freedom). One of the most common choice for the degrees of
freedom is the form φ 7→ φ(ai) for each φ ∈ P0 and where the points ai belong to the
finite element and are denominated as nodes of the finite element.
In the next section, the components of the finite element proposed in the TEPEM
framework are detailed for the two-dimensional case while the three-dimensional case
is addressed in Section 2.3. As previously commented, in the development of this
methodology we consider two assumptions: A pipe-like structure is featured by the
geometrical domain, and there is the presence of a mainstream direction where the
physical phenomena is developed.

2.2 Basis functions in 2D

For the description of the approach in the two-dimensional case, we consider a pipe-like
geometrical domain Ω, with boundary Γ = Γi ∪ Γo ∪ ΓL, where Γi and Γo stand for the
inlet and outlet boundaries, respectively, while ΓL is the lateral boundary. Example of
this type of geometry is outlined in the Figure 2.6

Figure 2.6: Geometrical setting for the TEPEM in 2D. The dotted line stand by the
centerline while the lateral boundary ΓL is defined as ΓL = Γ− {Γi ∪ Γo}.

We also assume that axial boundaries Γi and Γo are planar surfaces, while ΓL is a
piecewise smooth boundary. This geometric structure is inspired in the geometries of
application we are interested in: domains representing isolated arterial segments where
the characteristic axial length (La) is much larger than the transversal length (Lt) and
where the centerline (dotted line) defines the mainstream direction in each tubular region.
Domains with multiples inlet/outlet boundaries are also allowed.

2.2.1 Geometrical setting: Parallelogram elements

In the context of classical finite element approach, domains are partitioned by using
triangular or quadrilateral elements due their flexibility in representing arbitrary
geometries. Commonly, focusing on the case of triangular meshes, the computational
domain is divided through a structured or unstructured mesh composed by several small
elements forming the triangulation.
In the TEPEM approach, we make use of the pipe-like structure of the geometry to
propose a sort of clever, problem-oriented, discretization, capable of reducing the number
of elements and exploiting the a priori knowledge about the existence of a dominant
geometrical and phenomenological direction.
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Let us first suppose Ω ⊂ R2 as being a single tubular domain, i.e. a tubular region without
branches nor inner holes. For this domain we perform a partition where each element Ki

(i = 1, . . . , nel) is a quadrilateral and the distribution of these elements is aligned with
the dominant direction in the geometry, as outlined in Figure 2.7. In each element it is
easy to differentiate both geometrical/phenomenological directions: dominant (axial) and
secondary (transversal). This partitioned domain, which is denoted as Th(Ω), where the
parameter h stands for the characteristic axial length of the elements, closely resembles
a one-dimensional discretization and allows us to lump the transversal dynamic within
a single (or, as can be seen next, a few) pipe element and turn the mesh refinement task
into a very natural and direct process.

Figure 2.7: Geometrical discretization of domain Ω through pipe-type elements. Also,
the geometrical mapping between an arbitrary element K and the reference element K0

is outlined. Vector ~s correspond to the axial direction in the actual configuration.

Each pipe element K (in the xy-plane) is mapped to the reference element, K0 = [−1, 1]2

in the ξη-plane, through the following transformation

χK(ξ, η) =
2∑
i=1

2∑
j=1

xijLi(ξ)Lj(η) =
2∑
i=1

2∑
j=1

xijGij(ξ, η) (2.8)

where {xij , i, j = 1, 2} are the geometrical nodes in the element K and the set {L1, L2}
is the set of basis functions for the space of polynomials up to degree one (i.e. linear
polynomials) defined in [−1, 1] (space hereafter denoted as P1), this is

L1(t) =
1

2
(1− t), L2(t) =

1

2
(1 + t) t ∈ [−1, 1] (2.9)

For such tubular domains, this meshing strategy is good enough to perform an accurate
discretization while maintaining bounded the total number of elements when compared
with classical triangulations.
Moving a step forward, it is also natural to think into the nesting of more than one pipe-
element in the transversal direction either for the whole domain or for restricted areas
of interest, a sort of local h-refinement of the mesh in the TEPEM scope. This process
of transversal refinement is performed through the introduction of a transition element,
which is capable of naturally densify (or condensate) pipe-type elements. Introduced
in the two-dimensional case in [Gupta 1978] and largely explored in later works as for
example [McDill et al. 1987, Morton et al. 1995], this element splits into two parts one
axial boundary of the actual element configuration to achieve conformity in the mesh,
as outlined in Figure 2.8.
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Figure 2.8: Detail of transversal refinement through the inclusion of a transition element.
Also is outlined the geometrical mapping between a transition element K∗ and the
reference element K∗0.

The transition element is characterized by five geometrical nodes instead of the four nodes
that characterize the simple pipe-element (here we use simple pipe-element to refer to the
pipe element introduced in Figure 2.7). The mapping between the actual configuration of
the transition element and the reference transition element K∗0 = [−1, 1]2 is constructed
to ensure that, by following the notation from Figure 2.8, the segment [x11,x21] is mapped
to the line {η = −1,−1 ≤ ξ ≤ 1}, the segment [x12,x0] to {η = 1,−1 ≤ ξ ≤ 0} and
the segment [x0,x22] into {η = 1, 0 ≤ ξ ≤ 1}. In other words, the geometrical mapping
χK∗ : K∗0 → K∗ is defined as follows

χK∗ (ξ, η) = x11L1(ξ)L1(η) + x21L2(ξ)L1(η)

+ x12L1(2ξ + 1)1ξ≤0(ξ)L2(η) + x0L2(2ξ + 1)1ξ≤0(ξ)L2(η)

+ x0L1(2ξ − 1)1ξ>0(ξ)L2(η) + x22L2(2ξ − 1)1ξ>0(ξ)L2(η)

(2.10)

where the function 1I(t) stands for the characteristic function of the set I, i.e. 1I(t) = 1
if t ∈ I and zero otherwise. This map can be expressed in a more compact way, similar
with the simple pipe-element mapping, as:

χK∗ (ξ, η) =

2∑
i=1

2∑
j=1

xijG̃ij(ξ, η) + x0G̃0(ξ, η) (2.11)

where

G̃11(ξ, η) = L1(ξ)L1(η) G̃12(ξ, η) = L1(2ξ + 1)1ξ≤0(ξ)L2(η)

G̃21(ξ, η) = L2(ξ)L1(η) G̃22(ξ, η) = L2(2ξ − 1)1ξ>0(ξ)L2(η)

G̃0(ξ, η) = (1− |ξ|)L2(η)

(2.12)

The use of transition elements within a pipe-like meshing procedure introduces several
advantages not only as a strategy to provide local transversal refinement for the mesh
but, primarily, to make possible the discretization of more complex geometrical domains
such as, for example, branched or perforated domains.
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For a domain Ω, being a junction of tubular regions, the meshing strategy is based on
the identification of simple tubular regions which can be discretized in a straightforward
way (as explained at the beginning of this section) and on the discretization of junction
regions by employing a combination of transition and simple pipe elements. In Figure
2.9, two examples of the use of transition elements to perform a pipe-like discretization
for complex domains are outlined.

Figure 2.9: Examples of pipe-type meshes and the use of transition elements (highlighted
in red) to discretize branched (left) and perforate (right) domains.

The geometrical mapping, for both simple and transition elements, consists in a pair
of linear transformations for the axial direction and for the transversal direction. These
transformations could be straightforwardly improved by, for example, considering higher
order mapping functions for the axial/transversal directions.

2.2.2 Field interpolation: Transversal enrichment

Once a pipe-type partition Th(Ω) is established, composed by both simple and transition
elements, we need to approximate the solution of the model (Equation (2.7)). Typically in
the finite element method, the approximate solution is obtained through the definition of
a finite-dimensional space Vh ⊂ V spanned by functions with compact support. Hence,
the approximate solution, say uF, is computed as a linear combination of the basis
functions chosen for Vh, that is

uF =

nF∑
n=1

dnφn(x), (2.13)

where {dn, n = 1, . . . , nF} is the set of unknown or degrees of freedom (DoFs) and
{φn, n = 1, . . . , nF} is the basis chosen for the space Vh.
The main characteristic of this basis is the locality of the support. For example, in the
case of piecewise linear finite elements, each element in the basis is defined as the unique
piecewise linear function with value one in the corresponding node of the triangulation
and zero at all the other nodes.
For the TEPEM, the interpolation strategy follows the same structure than that of
the FEM, just with the proper modification in the field interpolants to deal with
the geometric mesh constructed as described in the previous section, and with the
differentiation between the axial and transversal dynamics. Let us see this in detail
next.
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Interpolants in simple pipe-elements Each pipe-element K ∈ Th(Ω) is mapped to
the reference element K0 in such way that the axial direction in the dynamics is aligned
with the η-axis (in the reference configuration) while the transversal direction is aligned
with the ξ-axis. In the reference element, the interpolants are constructed by the product
of polynomials defined for each axis, splitting in this way the dependence and allowing
for an independent enrichment in each direction according to the problem needs.
Formally, considering integer values s and p and for an arbitrary simple pipe-element in
the partition Th(Ω), we approximate any scalar field u by the function uT defined by

uT ◦ χK(ξ, η) =
s+1∑
j=1

p+1∑
i=1

uhijφi(ξ)ϕj(η), K ∈ Th(Ω) (2.14)

where {φi : i = 1, . . . , p + 1} is a basis for the space Pp of polynomials up to degree p
in [−1, 1] and {ϕj : j = 1, . . . , s + 1} is a basis for the space Ps. We identify the basis
φi(ξ) as transversal interpolants and the basis ϕj(η) as axial interpolants. The integers,
s (axial order) and p (transversal order), command the enrichment capabilities of our
numerical model, being possible a natural and independent enrichment.
For practical purposes, and since we are interested in problems where the axial dynamics
is dominant in relation to the transversal one, we combine a small axial order s (s =
{1, 2}) with a moderate high transversal order p. In this manner, the axial dynamics is
easily accounted for through a large number of versatile low order interpolants, while
the transversal dynamics is captured by the unique (except for transition elements) high
order transversal polynomial defined in the pipe element.
Even when, in principle, there are no restrictions in the way in which the basis functions
for Pp and for Ps are defined, we employ a special polynomial set as basis. For axial and
transversal interpolants, Lagrange polynomials defined in the Chebyshev-Gauss-Lobatto
(CGL) nodes are considered. This is, for an arbitrary integer r, as a basis of Pr we consider
the set {ψj(t) : j = 1, . . . , r + 1} where each element in the basis has the form

ψj(t) =

r+1∏
i=1
i 6=j

t− xj
xi − xj

j = 1, . . . , r + 1, t ∈ [−1, 1] (2.15)

where each node of the CGL set {xi, i = 1, . . . , r + 1} is defined as

xi = − cos

(
(i− 1)π

r

)
. (2.16)

Note that the CGL set for s = {1, 2} coincides with the classical set of equidistant nodes.
Then, the axial interpolants are, for s = 1

ϕ1(t) =
1

2
(1− t), ϕ2(t) =

1

2
(1 + t), (2.17)

and for s = 2

ϕ1(t) =
1

2
(t2 − t), ϕ2(t) = (1− t2), ϕ3(t) =

1

2
(t2 + t). (2.18)
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This particular choice of nodes to define the polynomial interpolants is considered
because this set mitigates the appearance of spurious oscillations when using high order
polynomials. This unacceptable behavior, known as Runge phenomenom, and the impact
of the use of CGL points to define the Lagrange polynomials can be appreciated in Figure
2.10 where the interpolation of the function f(x) =

1

1 + 25x2
is displayed.

Figure 2.10: Comparison of Runge function (blue) and its polynomial interpolantion
(red) of order p with Lagrange polynomials defined in equidistant points (top row) and
in the CGL points (bottom row).

The oscillating behavior in the interpolation of certain type of functions through high
order polynomials (defined in an equidistant set of points) can also affect in a hybrid
order approximation strategy like the TEPEM. In [Blanco et al. 2015], an initial version
of this technique was explored and its applications in a three-dimensional fluid flow
modeling problem reveals oscillations in the velocity profiles for high order polynomials
of order between 8 and 14.
An example of field interpolants for the particular combination p = 2 and s = 1 is
featured in Figure 2.11. The choice of Lagrange polynomials as interpolant functions
permits to relate the degrees of freedom (unknown coefficients) in Equation (2.14) with
the nodal values of the approximate solution. In fact we have

uhij = uT ◦ χK(ξi, ηj) 1 ≤ i ≤ p + 1, 1 ≤ j ≤ s + 1, (2.19)

where

ξi = − cos

(
(i− 1)π

p

)
ηj = − cos

(
(j − 1)π

s

)
. (2.20)
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Figure 2.11: Field interpolants for the pipe-element and for the particular combination
for axial/transversal order s = 1 (along η) and p = 2 (along ξ).

Regarding the geometrical distribution of the degrees of freedom in the reference element,
we can rewrite Equation (2.14) in a compact form by

uT ◦ χK(ξ, η) =
N∑
n=1

uhnψn(ξ, η), (2.21)

where N = (s + 1)(p + 1), and the interpolant functions in this form are defined as

ψn(ξ, η) = φi(ξ)ϕj(η), (2.22)

with n = (j − 1)(p + 1) + i. By using this notation, the degrees of freedom for the field
interpolation are distributed as depicted in Figure 2.12.

Figure 2.12: Geometrical distribution of the degrees of freedom for three types of pipe
elements.
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With the Lagrangian interpolation as defined before, we define the two-dimensional pipe-
element for the TEPEM approach as composed by the tuple (K0,P0,N0) where

(i) K0 = [−1, 1]2 is the reference element defined in the ξη−plane.

(ii) P0 = {φi(ξ)ϕj(η) : i = 1, . . . , p + 1; j = 1, . . . , s + 1} is the function space
composed by interpolants of different orders for each direction as defined in the
reference element.

(iii) The degrees of freedom defined through the relation ψ 7→ ψ(ξi, ηj), ψ ∈ P0,
where the nodes (ξi, ηj), are those defined in Equation (2.20).

Next, we define the TEPEM interpolation employed for the transition pipe-element.
Interpolants in transition pipe-elements The geometric structure of the transition
element allows to conformally refine a pipe mesh in the transversal region in a very
straightforward way, which requires slightly modified geometrical interpolants.
We extend the idea of transversal enrichment in the interpolation of physical fields by
adapting the interpolants employed in the pipe-element to enable the continuity in the
field at the axial boundaries of the element. This is, we define the field interpolants
for the transition element by ensuring that the approximation uT is continuous at the
boundaries Γ1 (related with the segment η = −1 in the reference configuration), Γ2

(corresponding with {η = 1,−1 ≤ ξ ≤ 0}) and Γ3 (related with {η = 1, 0 ≤ ξ ≤ 1}). The
geometrical structure of the transition element, as well as the axial boundaries in which
we are interested into ensure the continuity, are outlined in Figure 2.13.

Figure 2.13: Geometrical structure of the transition element. Axial boundaries in the
actual transition element are denoted as Γ1, Γ2 and Γ3.

As seen in previous section, the transition element acts as a link between one simple
element (corresponding to η = −1) and two pipe elements, corresponding to η = 1 in
the reference element. Denoting by s and p the axial and transversal order employed for
the definition of interpolants in the pipe-element, we define the field interpolants on the
transition element by ensuring the following conditions

uT ◦ χK∗ (ξξξ)|Γ1∈ Pp, uT ◦ χK∗ (ξξξ)|Γ2∈ Pp, uT ◦ χK∗ (ξξξ)|Γ3∈ Pp. (2.23)

This means that, the restriction at each axial boundary must be a polynomial up to
degree p, and the approximate solution at these boundaries must be expressed as a linear
combination of the basis functions φi chosen for Pp. This ensures a unique representation
for the field uT in the elements sharing the boundary Γi (i = 1, 2, 3).
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For an arbitrary transition-pipe element in the partition Th(Ω), we approximate any
scalar field u by the function uT defined by

uT ◦ χK∗ (ξ, η) =
s∑

j=1

p+1∑
i=1

uhijφi(ξ)ϕj(η) +

p+1∑
i=1

(
ǔhi,s+1φ̌i(ξ) + ûhi,s+1φ̂i(ξ)

)
ϕs+1(η),

(2.24)

where {φi : i = 1, . . . , p+1} is the set of Lagrange polynomials basis, defined in the CGL
nodes, for the space Pp, {ϕj : j = 1, . . . , s + 1} is the set of Lagrange polynomials for Ps

and the functions φ̂i and φ̌i are defined as follows

φ̌i(ξ) = φi(2ξ + 1)1ξ≤0, φ̂i(ξ) = φi(2ξ − 1)1ξ>0 (2.25)

An example of the interpolant functions defined in the transition element K∗ is presented
in Figure 2.14.

Figure 2.14: Field interpolants for the transition element and the particular combination
for axial/transversal orders s = 1 and p = 2.

The choice of interpolant functions in the transition element as variations of the
interpolants employed in the pipe element allows us to impose the continuity in the
approximation uT in a very straightforward way. In fact, let us focus in the boundary Γ2:
Let us denote by K2 the pipe element sharing the boundary Γ2 with the actual transition
element K∗ and also let us assume that, for K2, the boundary Γ2 is in correspondence
with the segment {η = −1} at the pipe reference element K0. Then for an arbitrary
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point x ∈ Γ2 there is ξ0 ∈ [−1, 1] such that

x = χK2
(ξ0,−1) = χK∗

(
ξ0 − 1

2
, 1

)
(2.26)

where the last part follows from the definition of the geometrical mapping in the
transition element K∗. Then, the approximate solution uT satisfies

uT(x)|K2= uT ◦ χK2
(ξ0,−1) =

p+1∑
i=1

uhi1|K2φi(ξ0)

uT(x)|K∗= uT ◦ χK∗
(
ξ0 − 1

2
, 1

)
=

p+1∑
i=1

ǔhi,s+1φ̌i

(
ξ0 − 1

2

)
=

p+1∑
i=1

ǔhi,s+1|K∗φi(ξ0)

(2.27)

and the continuity at Γ2 follows from the fact that uhi1|K2= ǔhi,s+1|K∗ , for each i =
1, . . . , p + 1. Similar conditions can be obtained for the boundaries Γ1 and Γ3.
The imposition of the continuity can be better understood when explored the relation
between the degrees of freedom in the transition element and the nodal values of the
approximate field uT. Notably, the use of Lagrange polynomials implies

uhij = uT ◦ χK∗ (ξi, ηj) 1 ≤ i ≤ p + 1, 1 ≤ j ≤ s

ǔhi,s+1 = uT ◦ χK∗ (0.5(ξi − 1), 1) 1 ≤ i ≤ p + 1

ûhi,s+1 = uT ◦ χK∗ (0.5(ξi + 1), 1) 1 ≤ i ≤ p + 1

(2.28)

where

ξi = − cos

(
(i− 1)π

p

)
ηj = − cos

(
(j − 1)π

s

)
. (2.29)

Then, the continuity through the whole boundary Γ2 (and also the other axial
boundaries) depends upon the imposition of continuity at the nodes xi = χK2

(ξi,−1)
once

uhi1|K2= uT(xi)|K2 and ǔhi,s+1|K∗= uT(xi)|K∗ . (2.30)

The geometrical distribution of the degrees of freedom, for three transition elements, is
displayed in Figure 2.15.

Figure 2.15: Geometrical distribution of the degrees of freedom for the transition element
and three combinations of transversal and axial interpolation orders.
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Thus, the two-dimensional transition element for the TEPEM approach is defined by the
triple (K∗0,P∗0 ,N ∗0 ) where

(i) K∗0 = [−1, 1]2 is the reference element defined in the ξη−plane.

(ii) P∗0 = {φi(ξ)ϕj(η), φ̂i(ξ)ϕs+1(η), φ̌i(ξ)ϕs+1(η) : i = 1, . . . , p + 1; j = 1, . . . , s} is
the function space composed by interpolants of different order for each direction
as defined in the reference element.

(iii) The degrees of freedom defined through the relations in Equation (2.28).

It is important to highlight that the field interpolation is independent from the
mesh structure. Once defined a pipe-type partition, it is possible to obtain a family
of interpolation strategies to the desired problem without the modification of the
approximated geometry.

2.3 Basis functions in 3D

The description of the TEPEM approach in the three-dimensional case follows the same
structure exposed for the two-dimensional case, in the sense of performing a pipe-type
discretization of the geometrical domain and building an approximation for the physical
fields through interpolants of different order according to each direction, but with proper
modifications to deal with the additional transversal dimension in the problem.
Let us consider the three-dimensional domain Ω, with boundary Γ = Γi ∪ Γo ∪ ΓL, as
presented in Figure 2.16. Here Γi and Γo stand for the inlet and outlet boundaries,
respectively, while ΓL is the lateral boundary which is considered smooth enough and
represents the arterial wall in the case of hemodynamics applications.

Figure 2.16: Schematic setting for the model problem in 3D. Here the dotted line
represents the axial direction for the geometry and phenomenology.

Both Γi and Γo are surfaces in the space, which are considered planar and with regular
boundary. Moreover, we can assume that these surfaces as well as any transversal section,
denoted by C, obtained from slicing the domain Ω (see the curves highlighted in red in
Figure 2.16) have a regular boundary that can be geometrically well approximated by
the mapping χC : [−1, 1]2 → R3 defined as

χC(ξ, η) =

12∑
n=1

xnSn(ξ, η) (2.31)

where {xn, n = 1, . . . , 12} are selected nodes over the boundary of the planar section
C and functions {Si} are the cubic Serendipity functions ([Arnold and Awanou 2011]),
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defined by

S1(ξ, η) =
1

32
(1 + ξ)(1− η)(9(ξ2 + η2)− 10) S2(ξ, η) =

1

32
(1 + ξ)(1 + η)(9(ξ2 + η2)− 10)

S3(ξ, η) =
1

32
(1− ξ)(1 + η)(9(ξ2 + η2)− 10) S4(ξ, η) =

1

32
(1− ξ)(1− η)(9(ξ2 + η2)− 10)

S5(ξ, η) =
9

32
(1 + ξ)(1− η2)(1− 3η) S6(ξ, η) =

9

32
(1 + ξ)(1− η2)(1 + 3η)

S7(ξ, η) =
9

32
(1− ξ2)(1 + 3ξ)(1 + η) S8(ξ, η) =

9

32
(1− ξ2)(1− 3ξ)(1 + η)

S9(ξ, η) =
9

32
(1− ξ)(1− η2)(1 + 3η) S10(ξ, η) =

9

32
(1− ξ)(1− η2)(1− 3η)

S11(ξ, η) =
9

32
(1− ξ2)(1− 3ξ)(1− η) S12(ξ, η) =

9

32
(1− ξ2)(1 + 3ξ)(1− η)

(2.32)

In other words, we are supposing that transversal sections can be approximated
by piecewise cubic polynomials. This assumption seems plausible for hemodynamics
simulations, where the domain represents a vascular region and transversal sections C
(of tubular non-branching regions) are smooth and with nearly circular shape.
In what follows we will define the 3D counterparts for the pipe and transition elements
defined for the 2D case. These elements are defined following the same idea to
differentiate the way in which different dynamics are approximated. Always, we employ
the Serendipity functions defined above for the geometrical approximation.

2.3.1 Simple pipe element

To introduce the three-dimensional pipe-element let us consider the computational
domain Ω as being a tubular non-branched domain as shown in Figure 2.17. In this
domain, the elemental discretization can be performed by slicing the geometry along the
centerline (dotted curve in the mentioned figure).

Figure 2.17: Tubular domain and pipe-element discretization in 3D.
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The sequential slicing of the domain defines a partition Th(Ω) = {Ki, i = 1, . . . ,nel} of
pipe-like elements, where the index h is associated to the axial length of the elements.
Note that each resulting slab K ∈ Th(Ω) is constructed such that it is axially bounded
by two closed planar surfaces and can be mapped to the reference element K0 = [−1, 1]3,
in the ξηζ-space, through the transformation

χK(ξ, η, ζ) =
2∑

k=1

12∑
n=1

xknSn(ξ, η)Lk(ζ) (2.33)

where {Lk : k = 1, 2} is the classical Lagrangian basis for P1, the set {Sn : n = 1, . . . , 12}
the Serendipity cubic basis and {xkn : n = 1, . . . , 12 k = 1, 2} is a set of points picked over
the transversal section mapped from the section ζ = 2k − 3 (k = 1, 2) in the reference
element. That is, each cross-section in the pipe element is geometrically approximated
as piecewise cubic element while a linear mapping is considered for the axial direction.
As commented in the 2D case, quadratic polynomials can be considered for the axial
direction in the pipe-element, for which a middle transversal section must be added in
both the actual and reference elements and the linear basis {Lk} must be replaced by
the quadratic basis {Qk, k = 1, 2, 3} of P2.
The geometrical mapping is constructed such that the axial dynamics, in the pipe element
K, corresponds with the ζ-axis in the reference element K0. Conversely, the transversal
dynamics is now placed, over the reference element, in the ξη-plane.
The field interpolants are defined in K0 seeking to differentiate between axial and
transversal dynamics. For integer values s (axial order) and p (transversal order), we
approximate any scalar field u by the function uT defined by

uT ◦ χK(ξ, η, ζ) =
s+1∑
k=1

p+1∑
i=1

p+1∑
j=1

uhijkφi(ξ)φj(η)

ϕk(ζ) K ∈ Th(Ω) (2.34)

where the sets {φi : i = 1, . . . , p + 1} and {ϕi : i = 1, . . . , s + 1} are basis of Pp and
Ps, respectively, constructed such that each element is a Lagrange polynomial defined
in the CGL set of nodes. In this manner, we split the axial and transversal predictive
capabilities of the model, allowing for an independent enrichment over each direction
according the problem needs. The functions φij(ξ, η) = φi(ξ)φj(η) are denominated as
transversal interpolants and an example of these, for a particular value of p, are shown
in Figure 2.18. In turn, the functions ϕk(ζ) are called axial interpolants.
The degrees of freedom in Equation (2.34) are the nodal values of the function uT by
virtue of the Lagrangian nature of the interpolants, that means

uhijk = uT ◦ χK(ξi, ηj , ζk) 1 ≤ i, j ≤ p + 1, 1 ≤ k ≤ s + 1 (2.35)

where the point (ξi, ηj , ζk) ∈ K0 is defined as

ξi = − cos

(
(i− 1)π

p

)
, ηj = − cos

(
(j − 1)π

p

)
, ζk = − cos

(
(k − 1)π

s

)
(2.36)

The spatial distribution of these degrees of freedom, in the 3D pipe-element, is shown in
Figure 2.19.
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Figure 2.18: Transversal interpolants in the three-dimensional pipe-element for the
particular case p = 2.

Figure 2.19: Geometrical distribution of the degrees of freedom for the three-dimensional
pipe element and two combinations of axial and transversal order.
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Hence, the three-dimensional pipe element is defined as the triple (K0,P0,N0) where
each component is defined as

(i) K0 = [−1, 1]3 is the reference element defined in the ξηζ−space.

(ii) P0 = {φi(ξ)φj(η)ϕk(ζ) : i, j = 1, . . . , p+ 1; k = 1, . . . , s+ 1} is the function space
composed by interpolants of different order for each direction as defined in the
reference element.

(iii) The degrees of freedom defined through the relations given in Equation (2.35).

Notice that, similarly to the 2D case, the increase of model capabilities is achieved
through the modification of parameters p and s (for the transversal and axial directions,
respectively) without the need of modifying the geometrical partition of Ω in pipe-
elements.

2.3.2 Transition pipe element

The pipe element introduced before meets the requirement to perform an accurate
geometrical discretization of tubular regions. Nevertheless, the element is unable to
deal with the topological changes occurring at a bifurcation. To extend the abilities
of TEPEM to be employed in 3D hemodynamics simulations, where the presence of
bifurcated regions is commonplace, we introduce a variation of the transition pipe element
introduced in Section 2.2.1 in the context of a pipe discretization in 3D space.
Let us consider a simple branching domain Ω, as presented in Figure 2.20, which can be
initially subdivided into tubular regions and the bifurcation area as

Ω = ω ∪
( ⋃
i=A,B,C

Ωi

)
(2.37)

where the notation follows the introduced in the aforementioned figure.

Figure 2.20: Geometric approximation for a branching pipe. (a)-(b) Division into tubular
subdomains and bifurcation region ω. (c) Lateral view of the partition of ω and
the inclusion of transition elements K∗i . (d) Geometrical mapping between actual and
reference transition element.
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This initial subdivision allows to deal with the geometrical discretization and the field
interpolation in each tubular region Ωi (i = A,B,C) directly with the use of standard
pipe-elements. For each region Ωi a geometrical discretization is performed in a partition
Th(Ωi) such that each element K ∈ Th(Ωi) is a pipe-element, related to the reference
element K0 = [−1, 1]3 and where each physical field is approximated with a combination
of p-order polynomials for the transversal in-plane directions and s-order polynomials for
the axial direction.
For the junction region denoted by ω, a pipe partition is performed as illustrated in panel
(c) from Figure 2.20 for which the inclusion of transition elements K∗i (i = A,B,C) is
fundamental to connect the inner pipe-discrete structure with the tubular regions Ωi.
Each of these transition elements is composed by three planar sections, colored in red,
blue and green in the panel (d) in Figure 2.20, and related to ζ = −1 (red region),
{ζ = 1,−1 ≤ η ≤ 0} (blue region) and {ζ = 1, 0 ≤ η ≤ 1} (green region) in the reference
element K∗0 = [−1, 1]3.
Each transition element is related to the reference element K∗0 through a mapping χK∗
constructed such that the conformity in the mesh is satisfied. This mapping is defined
as

χK∗ (ξ, η, ζ) =
3∑

k=1

12∑
n=1

xknŜn,k(ξ, η, ζ) (2.38)

where {xkn, n = 1, . . . , 12; k = 1, 2, 3} is a set of points on the transversal sections mapped
from the section ζ = −1 (k = 1), {ζ = 1,−1 ≤ η < 0} (k = 2) and {ζ = 1, 0 ≤ η ≤ 1}
(k = 3) in the reference element, and the functions Ŝn,k are modifications of the cubic
Serendipity basis and are defined as

Ŝn,1(ξ, η, ζ) = Sn(ξ, η)L1(ζ) n = 1, . . . , 12.

Ŝn,2(ξ, η, ζ) = Sn(ξ, 2η + 1)L2(ζ)1η<0 n = 1, . . . , 12.

Ŝn,3(ξ, η, ζ) = Sn(ξ, 2η − 1)L2(ζ)1η≥0 n = 1, . . . , 12.

(2.39)

where 1η<0 (1η≥0) is the characteristic function in the set defined by η < 0 (η ≥ 0).
From the definition of the geometric map, and postulating the following relations between
the geometric nodes lying at the intersection S2 ∩ S3 (surfaces described in Figure 2.21)

x2
2 = x3

1, x2
3 = x3

4, x2
7 = x3

12, x2
8 = x3

11 (2.40)

we ensure that the mapping in Equation (2.38) is totally continuous inside the transition
element. Moreover, the way in which the geometric mapping is defined guarantees the
total conformity of the mesh due the use of the same set of geometrical nodes for
the approximation of interfacial curves (curves S1, S2 and S3 in Figure 2.21) for both
the adjacent pipe-elements and the transition element. Geometric degrees of freedom
associated to the transition pipe-element are outlined in Figure 2.21.
For the complete definition of the transition element, it is required the proper
modification of the interpolant functions in the reference element such that ensures
the continuity of physical fields of interest. As said, the reference element acts as a link
between one simple pipe element (corresponding with ζ = −1 in K∗0) and two simple pipe
elements (corresponding with two planar interfacial boundaries at ζ = 1), thus in the
reference element K∗0 any scalar field u is approximated through the function uT defined
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Figure 2.21: Outline of the transversal mesh refinement process through the inclusion of
a transition element. Also, the geometric nodes for the approximation of each transversal
section are shown.

by

uT ◦ χK∗ (ξ, η, ζ) =
s∑

k=1

p+1∑
i=1

p+1∑
j=1

uhijkφi(ξ)φj(η)

ϕk(ζ)

+

p+1∑
i=1

p+1∑
j=1

ûhijφi(ξ)φj(2η + 1)1η<0

ϕs+1(ζ)

+

p+1∑
i=1

p+1∑
j=1

ǔhijφi(ξ)φj(2η − 1)1η≥0

ϕs+1(ζ),

(2.41)

where the sets {φi : i = 1, . . . , p + 1} and {ϕi : i = 1, . . . , s + 1} are basis for Pp and Ps,
respectively, constructed such that each element is a Lagrange polynomial defined in the
CGL set of nodes.
Moreover, denoting by

φij(ξ, η) = φi(ξ)φj(η), (2.42.1)
φ̂ij(ξ, η) = φi(ξ)φj(2η + 1)1η<0, (2.42.2)
φ̌ij(ξ, η) = φi(ξ)φj(2η − 1)1η≥0, (2.42.3)

for 1 ≤ i, j ≤ p+1, we can identify the functions φij as the same transversal interpolants
in the pipe-element and the functions φ̂ij and φ̌ij as variations of these same interpolants.
In fact, for the functions φ̂ij in (2.42.2) the polynomial interpolants in direction η
are obtained by properly changing the domain of definition from [−1, 1] to [−1, 0] and
extended by zero to the complementary half.
In a similar way, interpolants in the direction η for the functions φ̌ij in (2.42.3) are
redefined to [0, 1] and extended by zero in the interval [−1, 0). Panel (a) in Figure 2.22
shows the interpolants in direction η, as well as their variants where the domain of
definition is modified, for the particular case p = 3. Also in the panel (b) of the same
figure, the transversal interpolants φ̂ij and φ̌ij are outlined.
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Following the notation in Figure 2.21, it is easy to see that the proposed modification
in the interpolants guarantees the continuity of the function uT through the interfacial
boundaries S2 and S3. Furthermore, notice that for each i = 1, . . . , p + 1 it holds

lim
η→0−

φ̂i,p+1(ξ, η) = φ̌i,1(ξ, 0) for all ξ ∈ [−1, 1] (2.43)

which, together with the relations

ûhi,p+1 = ǔhi,1 i = 1, . . . , p + 1 (2.44)

ensures a continuous interpolation, with discontinuous normal derivatives, over the
surface S2 ∩ S3.
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(a) Transversal interpolants φj defined in η (top row) and their variants φ̂j(η) =
φj(2η + 1)1η<0 (bottom left) and φ̌j(η) = φj(2η − 1)1η≥0 (bottom right).

(b) Detail of the transversal interpolants associated to nodes over the line η = 0.

Figure 2.22: Transversal interpolants for the transition element and for p = 3.
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Finally, regarding the degrees of freedom in the transition element, they are the nodal
values of the approximation uT through the relations

uhijk = uT ◦ χK∗ (ξi, ηj , ζk) 1 ≤ i, j ≤ p + 1, 1 ≤ k ≤ s,

ûhij = uT ◦ χK∗
(
ξi,
ηj − 1

2
, 1

)
1 ≤ i, j ≤ p + 1,

ǔhij = uT ◦ χK∗
(
ξi,
ηj + 1

2
, 1

)
1 ≤ i, j ≤ p + 1,

(2.45)

with

ξi = − cos

(
(i− 1)π

p

)
, ηj = − cos

(
(j − 1)π

p

)
, ζk = − cos

(
(k − 1)π

s

)
. (2.46)

2.3.3 The transversally enriched space

For a pipe type partition Th(Ω) of the geometrical domain (here recall that h stands for
the characteristical axial length of the partition) and fixed parameters s, p ∈ N, which
control the axial and transversal enrichment of the fields, respectively, we introduce the
finite-dimensional space

Tp,s
h =

{
wh ∈ L2(Ω) : wh ◦ χK(ξ, η, ζ) =

s+1∑
k=1

wp
k(ξ, η)ϕk(ζ), K ∈ Th(Ω)

}
(2.47)

where {ϕk : k = 1, . . . , s + 1} is the classical Lagrangian basis for Ps (s ∈ {1, 2}) and the
functions {wp

k : k = 1, . . . , s+ 1} are defined according to the type of element K ∈ Th(Ω).
For a simple pipe element, the functions wp

k are defined by

wp
k(ξ, η) =

p+1∑
i=1

p+1∑
j=1

whijkφij(ξ, η) k = 1, . . . , s + 1, (2.48)

while, for a transition pipe element, they have the form

wp
k(ξ, η) =



p+1∑
i=1

p+1∑
j=1

whijkφij(ξ, η) 1 ≤ k ≤ s,

p+1∑
i=1

p+1∑
j=1

ŵhijφ̂ij(ξ, η) + w̌hijφ̌ij(ξ, η) k = s + 1,

(2.49)

where the transversal interpolants φij , φ̂ij and φ̌ij (1 ≤ i, j ≤ p + 1) are constructed by
product of the Lagrange polynomials in the basis {φi : i = 1, . . . , p + 1} of space Pp and
following the structure presented in Equation (2.42).
The introduction of this space allows us to express in a compact way the interpolation
strategy in the scope of the TEPEM, and is employed in the next chapters to introduce
the discrete spaces where the solution of the problem under consideration is to be sought.
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2.4 Further aspects of the pipe-element discretization

In the development of the TEPEM, some numerical details regarding the mesh generation
and/or the way in which the approximation of the physical fields is carried out are worth
of specific mention.

2.4.1 On the geometrical approximation

Cross-section approximation. The accuracy in the geometrical approximation is
closely related to the capabilities of approximating the transversal sections of Ω. The
mapping introduced in expression (2.31) between the region [−1, 1]2 and a generic
transversal section C is postulated to be as an efficient strategy to approximate the
transversal sections commonly encountered when the domain Ω represents a vascular
region.
An illustration of the capabilities of the proposed geometrical approximation for
transversal sections, are exposed in Figure 2.23 where four luminal areas from a patient-
specific arterial geometry (blue dots) are approximated (red line). For typical arterial
vessels, the proposed approach delivers reasonable and satisfactory approximations of
the transversal sections.

Figure 2.23: Approximation of different cross-sections of patient-specific arterial vessels
through the use of Serendipity cubic mapping. In each panel: blue points define
each cross-sectional area as given by medical images, solid red line stands for the
approximation and green points refer to the geometrical nodes. These four luminal
regions correspond to the patient-specific vasculature presented in Section 5.3.1.

A possible undesirable consequence of the mapping of (regular) transversal sections from
the two-dimensional region [−1, 1]2 is the introduction of four kinks (angular points) in
the geometry of the section C. Such additional regularity in the approximated section
can be imposed with a modification in the computation of the geometrical nodes which
define the mapping. A detailed description of how these nodes are determined is given
in Chapter 5.
Another alternative to circumvent the regularity issue is the choice of splines to
approximate the transversal geometry or a reformulation of the problem based in
cylindrical coordinates. In this last case, explored in [Guzzetti 2014], the accuracy of
the map to circular-like transversal shapes generally improves, however at the price of a
much more complicated representation of the basis functions (particularly in the absence
of symmetry) which could make it difficult to use in patient-specific cases.
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Mesh generation. Domain discretization based on simplices, triangular elements in
the two-dimensional case and tetrahedral in the three-dimensional, is perhaps the most
employed strategy in FEM approaches. For the two-dimensional case, it is also frequent
to discretize the domain of the problem into (structured or unstructured) quadrilateral
elements, specially for the case where the domain of definition of the problem is a
simple and analytically defined region. Such popularity is accompanied with an extensive
algorithm/software development technology, looking for the automatic discretization of
complex domains, while minimizing the computational effort.
The TEPEM relies on a meshing strategy which is very different from the observed in
the literature and which is constructed to take advantage of the nature of the problem,
discretizing the domain simply by slicing it along the centerline. The novelty of this
meshing approach poses the need to develop correct algorithms to perform an automatic
(or, at least, semi-automatic) pipe-discretization for the kind of domains which could
appear in the field of interest. For academic examples, for which the domains are
constructed in a controlled way to test the capabilities of a certain numerical approach,
the geometric partition can be easily constructed in an ad hoc way, manually defining
the slices without further difficulties.
Concerning the ultimate application of the TEPEM in the simulation of blood flow
in patient-specific arterial geometries, the manual definition of a pipe-mesh becomes an
impractical and complicated task which could also definitely introduce errors in the mesh
generation and, therefore, in the accuracy of the results. A pipe-like mesh generation
strategy for patient-specific geometries is described in Chapter 5, where a procedure to
accomplish this task is proposed.

2.4.2 On the computation of elemental contributions

The pipe-type finite element introduced by the TEPEM differs from other finite element
techniques encountered in the literature also for the large number of degrees of freedom.
In fact, for axial and transversal interpolants of order s and p, respectively, the total
number of degrees of freedom per element scales with (s + 1)(p + 1)d−1, with d the
dimension of the problem. This, together with the fact that p is chosen to be large,
implies that the simulation time is to be largely dominated by the matrix assembling
procedure. At the same time, the large number of degrees of freedom per element is
related to the ability of the pipe elements to represent complex transversal dynamics
rendering a substantial reduction in the total number of unknowns in the problem, and
therefore in the conformation of the system of equations.
It is important to emphasize that the set of Chebyshev-Gauss-Lobatto nodes is employed
in the formulation of the TEPEM only for the definition of the Lagrangian interpolants
aiming to control the spurious oscillations which naturally appear when an interpolation
is performed with high-order polynomials defined at equidistant nodes. For the numerical
integration of high-order transversal polynomials, a high-order Gauss quadrature is
employed ([Stroud and Secrest 1966]).
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2.4.3 On alternative choices for field interpolants

A key aspect in the field interpolation within the TEPEM scheme is the clever
combination of high-order polynomials to deal with the transversal dynamics and
low-order polynomials for the axial dynamics. In the TEPEM we consider Lagrange
polynomials as interpolants, both for axial and transversal directions, due to the
flexibility of these functions and also because they provide a clear physical interpretation
for the degrees of freedom: the nodal value of approximate solution are the values of the
field at the corresponding nodes.
Concerning the choice of CGL nodes for the definition of the Lagrange polynomials
employed in the transversal interpolation in contrast with equidistant nodes, a detailed
comparison showing the good approximation properties of this choice can be found
in [Pena 2009] where an analysis is made based on the Lebesgue number for each
interpolant strategy. This number, similar to the condition number, measures the quality
in an approximation performed through Lagrange polynomials and Lagrange bases in
tensorized geometries. In the aforementioned work, the advantage of the use of CGL
nodes to define the Lagrange polynomials is clearly highlighted in comparison to the
classical Lagrange polynomials defined at equidistributed points.
Other choices for the definition of interpolants are also possible. In [Mansilla Alvarez
2014] it was explored the approximation of two-dimensional problems by combining low
order polynomials for the axial direction with high-order polynomials for the transversal
one, constructing this last set of functions only by satisfying the boundary conditions
at lateral boundary, therefore losing a physical meaning for the degrees of freedom in
the finite element. In [Guzzetti 2014] the problem formulation is recast in cylindrical
coordinates and then the field interpolants are constructed also in this system of
coordinates, which considerably increases the complexity in their definition but manages
to deliver a good quality in the approximation.

2.4.4 Dealing with boundary layers

The accurate approximation of boundary layers in the modeling of blood flow is of the
utmost importance. because the accuracy in the approximation of flow-related quantities,
such as the WSS, depends directly on the behavior of the solution near the arterial wall.
Crosswind boundary layers, which typically develop in fluid flow simulations near walls
where no-slip conditions are prescribed, are accounted for by the transversal interpolants.
That is, provided the degree of transversal interpolants is adequately chosen, boundary
layers will be accurately simulated. However, since the thickness of the boundary
layers depends on the flow regime, the a priori definition of the degree of transversal
approximation could be debatable.
In Chapter 4, the boundary layer approximation is assessed for Womersley numbers in the
range often encountered in hemodynamic simulations with excellent results for moderate
polynomial orders in the transversal interpolants. In turn, if the pipe discretization is
performed such that a boundary or stagnation point coincides with the axial boundary
of one pipe-element, boundary layers taking place in the streamline direction can occur.
In such cases, a Petrov-Galerkin finite element approximation or an axial refinement of
the mesh can be employed to circumvent spurious oscillations.
For the case of hemodynamics applications (Chapter 5), we propose a meshing algorithm
to perform pipe discretization of vascular regions ensuring that only crosswind boundary
layers are possible.
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2.5 On the transversal adaptivity

The pipe transition element, introduced in the two- and three-dimensional cases,
naturally allows for a local adaptive mesh refinement in the transversal direction in
order to gradually divide the partition at junctions.
In the three-dimensional case the transition element is conceived by splitting one plane
boundary in the reference element K∗ orthogonal to the axial η direction. Despite this,
a further modification make it possible the same splitting in the ξ direction, allowing for
an uniform transversal densification by consecutively employing the transition element
wherever is needed, even in non-branching domains as outlined in Figure 2.24.

Figure 2.24: Uniform transversal refinement of the pipe-mesh through the consecutive
arrangement of transition pipe elements.

The sequential refinement in the mesh, through the coupling between transition and pipe
elements in both transversal directions, naturally increases the model capabilities in the
selected region, acting like a h-refinement in the scope of standard FEM methods.
Another strategy to improve the transversal capabilities at selected regions is to split the
domain of definition of the problem Ω in many subdomains where different transversal
orders are selected to approximate the physical field. This type of local adaptivity was
explored in [Perotto et al. 2010], in the context of the HiMod technique, where a domain
decomposition approach was proposed to couple regions with different enrichment.
Moreover, adaptivity techniques based on a posteriori measures of the error in the
approximate solution have also been developed in order to adaptively choose the
transversal order ([Perotto and Veneziani 2014]). Thus, according to the complexity of
the phenomenology, the transversal order is defined at different portions of the domain
in an automatic manner. This requires the coupling of pipe elements with different order,
which is out of the scope of the present thesis and require significant development.
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2.6 Relation with other methodologies

The assumptions for which the TEPEM is expected to perform satisfactorily, particularly
the existence of a direction where the phenomenology is richer than in the others, are
standard hypotheses introduced in many approaches present in computational mechanics.
To emphasize some characteristics of the proposed approach, here we comment on the
similarities and differences of the TEPEM with some well-established techniques.
The p-version of FEM Proposed in [Babuska et al. 1981], the p-version of the FEM
consists in fixing a discrete mesh and increasing the model capabilities by augmenting
the degree p of the piecewise polynomial approximation.
The TEPEM can be understood as a variant of the p-FEM, assembled on top of a pipe-
element partition of the domain of definition of the problem and where the order in
the interpolation is modified according to the expected phenomenological dynamics, and
where the model capabilities controlled by the polynomial order p is only related to the
transversal dynamics.
Unlike the p-FEM, in the TEPEM the polynomials utilized for the approximation of the
physical field discretization are not complete, which prevents the latter from featuring
the convergence rates of the former.
Semi-analytical FEM The idea of defining a priori the behavior of the physical model
across a certain direction, aiming at a reduction in the dimensionality of the domain of
definition of the problem, is very old in mechanics. These techniques can be grouped
under the name of Semi-analytical finite element processes ([Ziekiewicz 1971]) which
reduce the computational size of a two- or three-dimensional problem by synthesizing
the dynamics across one selected direction through an approximation accomplished by
analytical functions, such as that given by a Fourier expansion.
Similar ideas are employed in the TEPEM, in the sense that the a-priori knowledge of the
dynamics allows us to choose one direction as the dominant one which is approximated
by using a classical FEM approach while the transversal component of the dynamics is
also approximated with high-order polynomials, rather than lumped in an approximated
analytical way.
Hierarchical model reduction Similar to the TEPEM, the Hierarchical Model
Reduction (HiMod) efficiently deals with problems featuring a dominant direction by
performing a differentiation in the way in which the fields are approximated, prioritizing
the axial (dominant) dynamics through the choice of interpolant functions. For the
transverse dynamics, HiMod pursues an educated basis approach, where the transverse
basis functions are constructed to directly incorporate physical information about the
problem, such as the governing equations (or the dominant part of those) and boundary
conditions ([Aletti et al. 2017]).
This approach substantially reduces the number of degrees of freedom required in
detriment of the presence of an offline-step where the transversal basis functions are
computed through the solution of Sturm-Liouville eigenvalue problems, which may be
non-trivial for non Dirichlet boundary conditions and for general geometries.
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2.7 Further remarks

As seen throughout this chapter, even if no specific physical problem was still addressed,
the basic idea behind the Transversally Enriched Pipe Element Method (TEPEM)
approach is to combine a very special partitioning of the computational domain into pipe-
elements and the use of low order polynomials for the physical fields in the longitudinal
direction of the pipe with high order polynomials for the description across the transversal
direction of the domain.
The ingredients presented in this chapter place the TEPEM in-between the orbit of
general purpose Finite Element Method (FEM) and the territory of very specific reduced-
order strategies, such as HiMod techniques with educated basis functions. Noteworthy,
as it will be seen, the TEPEM manages to keep considerable versatility to deal with
patient-specific geometries and to yield a reasonably accurate results, while rendering a
substantial reduction in the computational cost.
Some of the more remarkable features of the proposed approach are listed below.
The TEPEM family. The family of TEPEM interpolation functions, characterized by
the parameters s and p, approximate the physical fields in such a way that it allows to
cautiously tune the model capabilities by adapting the transversal (or axial) polynomial
order.
Geometry discretization. The geometrical grid in the TEPEM is composed by pipe-
like elements which are defined, in the three-dimensional case, as a combination of
piecewise cubic polynomials for the transversal sections with a linear transformation for
the axial direction. This approach can easily deal with complex transversal geometries,
which is the case of patient-specific arterial vessels in computational hemodynamics.
Moreover, it allows a natural and localized mesh adaptation and also a straightforward
h-refinement due the simplicity and one-dimensional nature of the mesh.
Boundary conditions. The use of Lagrange polynomial interpolants permits (as it will
be seen) the imposition of any kind of boundary condition over the lateral surface of the
domain in a very easy and straightforward way. This facilitates the application of the
TEPEM in the context of classical computational fluid dynamics in tubular domains, as
well as the extension to incorporate fluid-structure interaction phenomena.
Computational cost. The number of degrees of freedom per element in the TEPEM
is significantly larger than that of standard FEM. This implies that the simulation
time is to be dominated by the matrix assembling procedure (which is highly
parallel). Nevertheless, the total number of degrees of freedom in the final system of
algebraic equations of the TEPEM is significantly smaller than the case of classical FEM.

The capabilities of the TEPEM approach are exhaustively tested in several examples in
the context of scalar transport (Chapter 3) and fluid flow modeling problems (Chapter 4),
with particular emphasis in the modeling of the blood flow (Chapter 5).



Chapter 3

TEPEM for transport phenomena

The Transversally Enriched Pipe Element Method (TEPEM), as a generic methodology
based in the concept of elements, is developed targeting the application to problems
defined in pipe-like regions and featuring a dominant phenomenological direction. Under
these assumptions, we claim that the combination of a geometric discretization based on
pipe-elements and the transversal enrichment approximation of the physical fields yields a
reasonably accurate numerical method with a major reduction in the computational cost
when compared with classical FEM strategies, measuring this cost in terms of problem
size, computational time and resources needed in the simulation.
In order to highlight the main features of the proposed methodology, in this chapter
we apply the TEPEM to approximate the solution of problems in the context of
scalar transport phenomena. In particular, we focus our study on the approximation of
advection-diffusion problems defined in the two-dimensional space. A detailed description
of several aspects of the methodology (such as the discrete structure, elemental
contributions of the global problem and sparsity of resulting linear system) is illustrated
in this case. Furthermore, convergence studies are carried out.
With the notation and spaces introduced in Chapter 2, in the next section the
main characteristics of the discrete problem obtained when employing the TEPEM
as approximating strategy are presented. After that, several numerical examples are
addressed to study the convergence of the TEPEM against analytical solutions (when
available) or a reference solution obtained with FEM in a sufficiently fine triangular
mesh with linear interpolants. Also, as a way to study the performance of our approach,
a comparison between the accuracy of the TEPEM approximation and that of the FEM
approximation in terms of the number of degrees of freedom employed in each strategy is
presented. The chapter ends with some final comments summarizing the capabilities of
the TEPEM in the scope of scalar transport problems which also hold in other physical
situations such as fluid flow modeling.

47
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3.1 The advection-diffusion equation

Let us consider an advection-diffusion-reaction problem set on a generic two-dimensional
domain Ω with a dominant direction. Assuming the standard notation for Sobolev spaces,
let µ ∈ L∞(Ω), with µ ≥ µ0 > 0 a.e. in Ω, the diffusivity coefficient and βββ ∈ [L∞(Ω)]2

the convective field. Furthermore, we assume ∇ · βββ = 0 in Ω and a forcing term f .
Then, the problem reads: Find u ∈ C2(Ω) such that

−∇ · (µ∇u) + βββ · ∇u = f inΩ

Bu = ū onΓD

µ∂nu = g onΓN

(3.1)

with ΓN and ΓD portions of the boundary ∂Ω, B an operator defining the Dirichlet
boundary conditions and g defined over ΓN stands for the Neumann data.
The former equation can be recast in a variational form, resulting in the problem: Find
u ∈ U such that

(Lu, û)Q′×Q = F (û) ∀ û ∈ V (3.2)

where U = {u ∈ Q : Bu = ū} is the set of admissible solutions, V the subspace of
admissible variations, L : Q → Q′ stands for the differential operator Lu = −∇·(µ∇u)+
βββ · ∇u, from the Hilbert space Q ⊂ U (whose definition depends on the boundary
conditions) to its dual Q′, and Bu = ū denotes essential boundary conditions, possibly
coexistent on different portions of ∂Ω. Moreover, (·, ·)Q′×Q is a duality product defining
the equilibrium state involving the operator L(·). Assuming the case in which the essential
boundary conditions are homogeneous, i.e. ū = 0, the problem can be rewritten as: Find
u ∈ V such that

a(u, û) = F (û) ∀ û ∈ V (3.3)

where a : V ×V → R is a bilinear form related to the differential operator L, F : V → R
is a linear functional depending on the data f defined in Ω and g, defined in ΓN , is
naturally embedded in the problem. This is, the Equation (3.3) can be explicitly as∫

Ω

(
µ∇u · ∇û+ (βββ · ∇u) û

)
dΩ =

∫
Ω
fû dΩ +

∫
ΓN

gû dΓ ∀ û ∈ V (3.4)

where ΓN is the portion of the boundary of Ω where the natural boundary conditions
are considered. With the assumptions imposed over the coefficients, the well posedness
of the problem follows from the Lax-Milgram Lemma ([Evans 1997, Brezis 2010]).

3.1.1 The discrete problem

To employ the Transversally Enriched Pipe Element Method to approximate the solution
of the former problem, the first step is to perform a pipe-discretization of the domain,
aligning the elements along the dominant direction according to the phenomenology. To
this, let us assume that the geometrical domain Ω follows the setting presented in Figure
3.1, where the dominant direction is coincident with the dotted line and the partition is
constructed following the schematic division of the domain shown in such figure.
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Let us denote by Th(Ω) = {Ki; i = 1, · · · , nel} such partition. In this case we have only
considered simple pipe elements, but transition pipe elements are also allowed. This mesh
must satisfy the relations

Ω =
⋃

Ki∈Th(Ω)

Ki and K◦i ∩ K◦j = ∅ i 6= j (3.5)

Figure 3.1: TEPEM mesh of domain Ω based on pipe-type elements. The dotted line
in Ω stands for the dominant direction of the dynamics. Vector ~s stands for the axial
direction which is related with the η−axis in the reference element.

Once the pipe discretization of the domain Ω to approximate the solution of the
continuous problem statement in Equation (3.4) is established, for a fixed integer value
p, the discrete space is defined as

Vh = V ∩ Tp,1
h ∩ C(Ω) (3.6)

where Tp,1
h is the space of transversally enriched functions defined in each pipe element

of Th(Ω), of order p in the transversal direction and where the interpolation in the axial
direction is performed through linear polynomials. This space, introduced in the Chapter
2, is characterized as

Tp,1
h =

{
v ∈ H1(Ω) : v ◦ χ(ξξξ) =

2∑
k=1

p+1∑
i=1

vikφi(ξ)ϕk(η), K ∈ Th(Ω)

}
(3.7)

with χ the geometrical mapping between a pipe-element K and the reference element
K0, {ϕk, k = 1, 2} the Lagrangian basis for P1 and {φi, i = 1, . . . , p + 1} the Lagrangian
basis for Pp, both defined at the CGL nodes in [−1, 1].
With the introduction of the discrete space where an approximate solution is to be
sought, the discrete counterpart of Equation (3.4) reads as: Find uT ∈ Vh such that∫

Ω

(
µ∇uT · ∇û+ (βββ · ∇uT) û

)
dΩ =

∫
Ω
fû dΩ +

∫
ΓN

gû dΓ ∀ û ∈ Vh (3.8)

The well-posedness here immediately stems from the conformity of the discrete space
Vh ⊂ V and the well-posedness of the continuous problem. Here, as usual, the notation
uT stands for the approximation of the field u when utilizing the TEPEM as the
approximation scheme. From here, the process to obtain a matrix structure equivalent
to the discrete problem follows the same procedure than FEM schemes, that is, the
computation of elemental contributions by exploiting the locality of the compact support
of field interpolants (axial interpolants in the TEPEM case).
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3.1.2 Elemental contributions

The discrete problem in compact form can be expressed in term of the restrictions in Vh
of the bilinear form a : V × V → R and the functional F : V → R as: Find uT ∈ Vh such
that

a(uT, û) = F (û) ∀ û ∈ Vh (3.9)

where each term can be computed through the corresponding contribution in each pipe-
element. For example, the bilinear form is expressed as

a(uT, û) =
∑

K∈Th(Ω)

aK(uT, û) ∀ û ∈ Vh (3.10)

where aK : V × V → R is the restriction of a(·, ·) to the pipe-element K. As detailed in
Figure 3.1, and also as introduced in Section 2.2, each pipe-element K is determined by
four geometrical nodes. Denoting these nodes by {xi : i = 1, . . . 4}, the relation between
K and the reference element K0 is established through the mapping

χ(ξξξ) =
4∑
i=1

xiGi(ξξξ) (3.11)

where

G1(ξξξ) = −0.25(1− ξ)(1− η) G2(ξξξ) = 0.25(1 + ξ)(1− η)

G3(ξξξ) = −0.25(1− ξ)(1 + η) G4(ξξξ) = 0.25(1 + ξ)(1 + η)
(3.12)

Each term in the aK(·, ·), defined in the actual pipe-element K, can be recast in the
reference element K0 = [−1, 1]2 through the geometrical mapping χ : K0 → K and the
relations become∫

K
µ(x)∇xuT · ∇xû dK =

∫
K0

µ ◦ χ(ξξξ)J−T∇ξξξuT · J−T∇ξξξû |det J | dK0∫
K

(βββ(x) · ∇xuT) û dK =

∫
K0

(
βββ ◦ χ(ξξξ) · J−T∇ξξξuT

)
û |det J | dK0

(3.13)

where ∇x(·) (∇ξξξ(·)) stands for the gradient in the reference element configuration. The
transformation of the pipe-element to the material coordinates is carried out through
the jacobian matrix J expressed as

J = ∇ξξξχ =

4∑
i=1

xi∂ξGi(ξξξ) xi∂ηGi(ξξξ)

yi∂ξGi(ξξξ) yi∂ηGi(ξξξ)

 (3.14)

where

∇ξξξG1 =

[
−1

4
(1− η),−1

4
(1− ξ)

]
∇ξξξG2 =

[
1

4
(1− η),−1

4
(1 + ξ)

]

∇ξξξG3 =

[
−1

4
(1 + η),

1

4
(1− ξ)

]
∇ξξξG4 =

[
1

4
(1 + η),

1

4
(1 + ξ)

] (3.15)
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By the definition of the discrete space Vh, for each function v ∈ Vh there exist real values
{vik : i = 1, 2; k = 1, . . . , p + 1} such that in the pipe-element K the following relation
holds

v ◦ χ(ξξξ) =
2∑

k=1

p+1∑
i=1

vikφi(ξ)ϕk(η) =

2(p+1)∑
j=1

vjψj(ξξξ). (3.16)

Thus, by expressing

uT ◦ χ(ξξξ) =

2(p+1)∑
j=1

ujψj(ξξξ) ûT ◦ χ(ξξξ) =

2(p+1)∑
i=1

ûiψi(ξξξ), (3.17)

we can recast the form aK(uT, û), employing the relations in Equation (3.13), as

aK(uT, û) =

∫
K

[
µ(x)∇xuT · ∇xû+ (βββ(x) · ∇xuT) û

]
dK

=

∫
K0

[
µ̂(ξξξ)J−T∇ξξξuT · J−T∇ξξξû+

(
β̂ββ(ξξξ) · J−T∇ξξξuT

)
û
]
|det J | dK0

=

2(p+1)∑
i=1

2(p+1)∑
j=1

uj ûiA
K
ij

with

AKij =

∫
K0

[
µ̂(ξξξ)J−T∇ξξξψj · J−T∇ξξξψi +

(
β̂ββ(ξξξ) · J−T∇ξξξψj

)
ψi

]
|det J | dK0 (3.18)

Here the notation (̂·) stands for the field in (·) expressed in the reference element
coordinates, this is (̂·)(ξξξ) = (·) ◦ χ(ξξξ).
Analogously, the elemental contribution of the forcing term F : V → R can be written
as

FK(û) =

∫
K
fû dK +

∫
ΓN∩K

gû dΓ

=

∫
K0

f ◦ χ(ξξξ)û|det J | K0 +

∫
Γ0

g ◦ χ(ξξξ)û‖JTn0‖|det J | ds

=

2(p+1)∑
i=1

ûiF
K
i

(3.19)

where Γ0 is the portion of ∂K0 such that χ(Γ0) = ΓN ∩ K, n0 the outward unit normal
to Γ0, and

FKi =

∫
K0

f ◦ χ(ξξξ)ψi|det J | K0 +

∫
Γ0

g ◦ χ(ξξξ)ψi‖JTn0‖|det J | ds. (3.20)
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3.1.3 Numerical integration

An important numerical aspect in the discretization of the scalar transport problem by
employing the TEPEM is the correct numerical quadrature rules to exactly integrate the
elemental contributions. Because of the polynomial nature of the interpolants, we can
perform the numerical integration using standard Gauss quadrature rules for both axial
and transversal directions.
Even when the numerical quadrature is a standard process in schemes based on the
element concept, special attention must be given to the quadrature along the transversal
direction due to the use of high-order interpolants. For example, let us consider the
elemental contribution of the convective velocity (second integral in Equation (3.13)).
Considering the convective field (βββ) constant in K, the integrating term in K0 is an
element of the space conformed by polynomials up to degree 2 along the axial direction
and up to degree 2p on the transversal direction (space denoted as P2,2p) and the
numerical rule to integrate this term has the form∫

K0

v(ξ, η) dK0 =

2∑
i=1

p+1∑
j=1

ωiαjv(ξi, ηj) (3.21)

where {(ωi, ξi), i = 1, 2} is the classical pair of weights and points for the Gauss
quadrature rule of order n = 2, this is

(ω1, ξ1) =

(
1,
−1√

3

)
(ω2, ξ2) =

(
1,

1√
3

)
(3.22)

and {(αj , ηj), j = 1, . . . , p+1} is the pair of weights and points for the Gauss quadrature
rule of order n = p + 1. These quadrature rules have been reported in literature, see for
example [Stroud and Secrest 1966]. As it can be appreciated, the numerical integration of
a function within the TEPEM scope requires a large number of evaluations if compared
with classical low order hFEM strategies. Nevertheless, it results in a reduction in
the number of elements in the pipe-element mesh compared with the elements in a
triangular mesh in the two-dimensional case, and therefore in the total number of
unknowns in the problem. Furthermore, since the assembling procedure can be efficiently
parallelized, this step is not regarded as being a bottleneck. These ponderations will be
confirmed through the numerical experiments, where the reduction in the problem while
maintaining accurate results will be shown.

3.1.4 System of algebraic equations

From an algebraic viewpoint, the TEPEM discretization leads to a system of linear
equations that is written in matrix form as:

Ad = F (3.23)

where A ∈ RD×D is the stiffness matrix, d ∈ RD is the vector of unknown coefficients,
F ∈ RD is the load vector associated to the linear functional F and D = (nel+1)(p+1).
Each of these entities is computed by assembling the local contributions at each element
(pipe-element in the TEPEM case) of the mesh.
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The ordering of the degrees of freedom in this problem is performed such that we obtain
a block tridiagonal matrix as shown in Figure 3.2. This is possible by noting the (almost)
1D architecture of the pipe-mesh. This algebraic structure is formed when considering
the transversal interpolation as an inner summation in the assembling procedure and the
axial interpolation as the outer one.

Figure 3.2: Algebraic structure of the global matrix in the 2D ADR problem. Here the
dotted square stands for the local contribution computed at each pipe-element of the
geometrical discretization.

Measuring the sparsity in the linear system as the ratio between the zero entries of the
matrix and the total number of elements, we can compute directly this quantity for the
TEPEM by the relation

sparsity = 1− 3nel + 1

(nel + 1)2
(3.24)

i.e., the sparsity of the system provided by the TEPEM is only dependent on the axial
discretization. The transversal order p characterizes the matrix bandwidth. A comparison
between the matrix sparsity when employed the TEPEM against the FEM is shown in
Figure 3.3.
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Figure 3.3: Comparison in the sparsity of the global matrix obtained when the TEPEM
and FEM schemes are employed.
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3.2 Approximation properties

The well posedness of the continuous problem: Find u ∈ V such that

a(u, û) = F (û) ∀ û ∈ V (3.25)

is guaranteed by ensuring that both the bilinear form a : V × V → R and the functional
F : V → R satisfy the hypotheses in the Lax-Milgram lemma:

i) a(·, ·) is continuous, i.e., there exist M > 0 such that |a(w, v)|≤M‖w‖V‖v‖V for
all w, v ∈ V.

ii) a(·, ·) is coercive, i.e., there exist α > 0 such that a(v, v) ≥ α‖v‖2V for all v ∈ V.

iii) F ∈ V ′, i.e. F (·) is a linear and continuous functional.

In this scenario, it is possible to guarantee the existence of a unique solution u0 ∈ V of
the continuous problem. Moreover, this function u0 satisfy

‖u0‖V≤
1

α
‖F‖V ′ . (3.26)

For the discrete problem: Find uT ∈ Vh such that

a(uT, û) = F (û) ∀ û ∈ Vh (3.27)

where Vh = V ∩Tp,1
h ∩C(Ω), once the conformity of the discrete space holds (i.e. Vh ⊂ V)

the continuous and coercive characteristics of the bilinear form are maintained also for
the finite-dimensional space. This also holds for the functional F : Vh → R. With this,
it is guaranteed the existence of a unique solution uT ∈ Vh for the discrete problem.
The relation between u0 and uT, the approximation error, can be expressed in terms of
the continuity and coercive constants as

‖u0 − uT‖V≤
M

α
inf
v∈Vh
‖u0 − v‖V (3.28)

By virtue of this last estimate, the convergence of the TEPEM follows from the fact that
Vh is dense in V. This is, for each v ∈ V it is satisfied:

lim
h→0

lim
p→∞

inf
vh∈Vh

‖v − vh‖V= 0. (3.29)
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3.2.1 Convergence estimates

An interesting characteristic of high-order schemes, and possibly one of the major
reasons for their popularity, is the capacity to achieve exponential convergence rates.
The interpolation error of a function u ∈ Hm(Ω) in the L2-norm and H1-norm is

‖u− uI‖L2(Ω)≤ cp−m‖u(m)‖L2(Ω), ‖u− uI‖H1(Ω)≤ cp1−m‖u(m)‖L2(Ω). (3.30)

These results, available in [Canuto et al. 1988, 2010], reveal that we can achieve an
exponential decay in the interpolation error if the approximating function is smooth
enough.
Regarding a mixed-order interpolation scheme, like the one proposed in the TEPEM, no
a priori estimates are available in the literature yet, but some similar schemes can provide
insights about the convergence behavior. Specifically, in [Canuto et al. 1982] it was
proposed a hybrid finite element and Fourier interpolation scheme and it was established
upper bounds for the approximation error, in function of the axial characteristic length
(h) and the degree of trigonometric polynomials (N), as

‖u− uh‖L2(Ω)≤ c
(
h2 +N−2

)
‖u‖H2(Ω),

‖u− uh‖H1(Ω)≤ c
(
h1 +N−1

)
‖u‖H2(Ω),

(3.31)

with uh the approximate solution and c a constant independent of h, N and u. That
is, in the hybrid FEM/Fourier scheme, we can infer a convergence rate to be quadratic
for the L2-norm and linear for the H1-norm, with respect to both N−1 and h. Similar
estimates are also available within the Hierarchical Modeling (HiMod) technique, where
estimates also follow the relation quadratic and linear for the L2-norm and H1-norm, in
terms of the polynomial order employed for the transversal interpolants (p−1) and the
finite element mesh size (h) (see, [Aletti et al. 2017]).
It is important to highlight that in these both contexts, in the combined finite
element/Fourier interpolation as well as in the HiMod, the estimates in L2 and H1-
norm were achieved for a general elliptic problem without considering the presence of
a dominant direction or a sort of mixed regularity for the approximating function u.
For the TEPEM, whenever a full decoupling between axial and transversal dynamics
occurs, we can expect a combination of linear convergence in terms of the axial mesh
size (h) with an exponential convergence order in terms of the the polynomial order
employed for the approximation of the transversal dynamics (p). For a general case, we
can infer a convergence rate like in the estimates given by Equation (3.31) with a possible
improvement due to the nature of the problems in which we are interested in. Several
numerical examples will be addressed in next section to provide a complete picture of
the convergence rates of the TEPEM for scalar problems.
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3.2.2 Stabilization techniques

When approximating the solution of the advection-diffusion equation, it is well-known
that the Galerkin method can provide unstable results when the diffusion term is largely
dominated by the convection one and the element characteristic size h is not small
enough to properly model boundary layers. This is explained considering the optimal
error estimate in Equation (3.28) since, up to a constant, the upper bound is determined
by

M

α
=
‖µ‖L∞(Ω)+‖βββ‖L∞(Ω)

µ0
, (3.32)

which grows with ratio
‖βββ‖L∞(Ω)

‖µ‖L∞(Ω)
. A non-dimensional parameter, which measures the

extent of the domination of the diffusion term over the convection term at the discrete
level, is the local Péclet number, defined as

PeK =
‖βββ‖L∞(Ω)hK

2‖µ‖L∞(Ω)
(3.33)

where hK = diam(K) is the element dimension in the mesh, defined for the element K.
When Pe � 1, the standard Galerkin formulation produces an unstable discretization
of the differential non-symmetric operator if the solution presents regions with high
gradients. Although a detailed description of stabilization schemes within the TEPEM
context is out of the scope of this work, it is important to stress the possibility to
integrating the proposed methodology with stabilization techniques available in the
literature.
A popular alternative to overcome the unphysical solutions in convection dominated
problems is the so-called Streamline Upwind Petrov-Galerkin (SUPG) method proposed
in [Hughes and Brooks 1979, Brooks and Hughes 1982]. In the SUPG, the admissible
variation is modified and the weighted formulation has the form:(

−∇ · (µ∇u) + βββ · ∇u− f, û+
ks
‖βββ‖2βββ · ∇û

)
L2(Ω)

= 0 ∀ û ∈ V. (3.34)

Here, the parameter ks is defined in terms of the Péclet number αs related with the
dominant direction ~s as

ks = µαs

[
cothαs −

1

αs

]
, αs =

1

2µ
βββ ·~sh. (3.35)

Note that the stabilization is performed in a similar way that stabilization in one-
dimensional problems, considering that the high gradients in the solution are presented
only in the axial direction.
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3.2.3 Condition number

The ratio between the maximum and minimum eigenvalues of a matrix A is defined as
the spectral condition number of the matrix. It plays crucial roles in many aspects of
scientific computing. Classical estimates of the condition number are available in the
literature when considering the matrix A as being the mass matrix associated to the
discretization of a bilinear form a : Vh × Vh → R ([Fried 1972, Ciarlet 1978, Melenk
2002]). For the h- and p-version of the FEM, the condition number c(A) is bounded by
the following relations

c(A) ≤ ch−2, c(A) ≤ cp4 (3.36)

where h is the element size in and p the polynomial order.
For a mixed-interpolation scheme like the TEPEM, in which the accuracy on the
approximation depends upon both axial element size and the transversal order of the
interpolants, the condition number is expected to depend on these two parameters. To
numerically test this hypothesis, the condition number for the matrix A is computed
on the domain Ω = [0, 1]2 and considering the pipe meshes constructed as presented in
Figure 3.4. In Figure 3.5, is observed a linear increase of the condition number in terms
of the transversal order and quadratic in terms of the axial length. In the same figure, it
is also possible to appreciate an almost linear relation between the condition number and
the total number of degrees of freedom when increasing both h and p in the TEPEM.

Figure 3.4: Geometry for the condition number test. Pipe element meshes are also
outlined.
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Figure 3.5: Condition number of the mass matrix for the TEPEM approach: Comparison
against axial length of the pipe-mesh (h), transversal polynomial order p and degrees of
freedom (DoFs).
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3.3 Numerical verification

In order to highlight the convergence properties of the TEPEM, several numerical
experiments are reported in this section. Specifically, we are interested in analyzing
the sensitivity of the TEPEM approximation with respect to the axial discretization
size h and the transversal order p. This sensitivity is measured in each example by the
computation of the approximation error when compared against the analytical solution,
when available, or with a reference solution obtained by the FEM approach with a very
fine triangular mesh.
The efficiency of the proposed approach is also measured by comparing the computational
cost in the numerical simulation against FEM approximations when varying the
elemental size. The comparison is performed by counting the total number of degrees of
freedom in each approach and the accuracy achieved by the solution as a function of this
parameter.
Regarding the computational implementation, the TEPEM approach is implemented in
an in-house general purpose parallel solver, written in FORTRAN language and which is
under continuous development by the HeMoLab research group. For the construction of
the pipe-type mesh, in each example the geometrical discretization is performed ad-hoc,
manually slicing the geometry along the defined mainstream direction. For the FEM
approximation, it is employed the FreeFem software ([Hecht et al. 2005, Pironneau
et al. 2006, Hecht 2012]) which is specially developed for the resolution of partial
differential equations by the finite element method, and also provides an integrated
meshing algorithm to perform triangular discretization on complex geometries.
For a convergence study, classical norm for the L2-space and seminorm for the H1-space
are employed for scalar functions. For a scalar field u ∈ H1(Ω) we define

‖u‖2L2(Ω)=

∫
Ω
u2 dΩ |u|2H1(Ω)= ‖∇u‖2L2(Ω)=

∫
Ω
∇u · ∇u dΩ (3.37)

and, denoting by uT an approximation for the field u by the TEPEM approach, we
consider the following metrics for the relative approximation error as

‖u− uT‖=
‖u− uT‖L2(Ω)

‖u‖L2(Ω)
|u− uT|=

‖∇u−∇uT‖L2(Ω)

‖∇u‖L2(Ω)
(3.38)

These metrics are employed to measure the relative error, in L2-norm and H1-seminorm,
of TEPEM and also FEM solutions for steady state problems. We also consider transient
problems, for which the numerical approximation is obtained by combining a finite
difference based scheme for the temporal variable and the TEPEM approach for the
spatial dimension. Performing a subdivision of the temporal domain [0, T ] into a discrete
grid t0 = 0 < t1 < . . . < tNT = T , at each temporal step ti the TEPEM is employed
to obtain the approximated field uT(ti) = uT(x, ti). The former metrics are employed
for frozen temporal instants to measure the relative error at these instants. For a global
metric of the quality of approximation along the whole simulation, we define the discrete
average time error

‖u− uT‖2(0,T )=

NT∑
n=0

∆tn

(
‖u(tn)− uT(tn)‖L2(Ω)

‖u(tn)‖L2(Ω)

)2

(3.39)

where ∆tn = tn+1 − tn is the step between consecutive time instants.
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3.3.1 Discretization of curved domains

One important detail with respect to a consistent comparison between FEM and TEPEM
is to guarantee that both schemes are used to solve the same discrete problem and,
more difficulty to achieve, in the same geometrical domain. Both approaches, FEM and
TEPEM, perform a geometrical discretization of the real geometry Ω by subdividing into
finite/pipe elements with linear lateral boundaries which implies in a geometrical error
whenever Ω has curved boundaries. However, both methods yield the same approximated
geometry concerning the definition of the approximated boundary.
Recall the type of domains we are interested in, pipe-type geometries such as that
outlined in Figure 3.1. Then, if lateral boundaries of Ω are piecewise linear we can
guarantee an exact geometry representation through a pipe- or triangular-element
discretization. For domains with curved lateral boundaries, the adopted strategy is to
replace these lateral curves by piecewise linear segments coincident with an initial pipe-
element mesh fine enough to consider this new domain Ωh to be close enough to the
original one. This geometrical approximation step is shown in Figure 3.6 where a coarse
initial pipe-mesh is employed.

Figure 3.6: Approximation of a curved domain Ω (left) by a domain with piecewise
linear boundary Ωh, highlighted in red (right). The dotted lines demarcate the coarser
pipe-element mesh employed for the geometrical approximation.

The pipe-mesh refinement is then performed by axially splitting this initial pipe-mesh.
The FEM discretization matches with the Ωh rendering no geometrical discretization
error. An example of both FEM and TEPEM meshes is outlined in Figure 3.7.

Figure 3.7: Examples of pipe and triangular meshes, for TEPEM and FEM respectively,
constructed based in the domain with piecewise linear boundary Ωh.
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3.3.2 Convergence test: Poisson problem

Let us consider the domain Ω as the rectangular region outlined in Figure 3.8, and in this
domain we define three Poisson problems such that we manufacture analytical solutions:

(i) A field only with axial dynamics.

(ii) A field with only transversal dynamics.

(iii) A field defined as the product of both former problems.

The goal of this example is to analyze the convergence behavior of the TEPEM, in these
three scenarios.

Figure 3.8: Domain for the convergence test in the Poisson problem. The boundary ∂Ω is
divided in the four segments Γ1, Γ2, Γ3 and Γ4. A blue straight segment, denoted by A and
highlighted in blue, is selected for a detailed comparison of the TEPEM approximation.

These problems, say case 1, case 2 and case 3, correspond to the following variational
setting: Find u ∈ U such that∫

Ω
µ∇u · ∇û dΩ =

∫
Ω
fû dΩ ∀û ∈ V, (3.40)

where, as usual, V stands for the space of admissible variations and û is an element of
this space. The set of admissible solutions U as well as the source function f are defined
accordingly in each case.
In each problem, we consider a constant diffusion coefficient µ = 1. So, let us specify the
three problems next.
Case 1: Homogeneous Dirichlet boundary conditions over Γ1 ∪ Γ3 and the source term
f given by

f(x, y) =

[(
2 +

(
3π + 72π2

)
x−

(
5

2
π + 36π2

)
x2 − 1

2
π2x3 +

1

4
π2x4

)
cos(6πx)

+
(
24π − 24πx− 12π2x2 + 6π2x3

)
sin(6πx)

]
exp

(
−1

4
πx2

)
,

(3.41)

which yields the exact solution

u(x, y) = x(2− x) cos(6πx) exp

(
−1

4
πx2

)
. (3.42)
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Case 2: Homogeneous Dirichlet boundary conditions over Γ2 ∪ Γ4 and the source term
f given by

f(x, y) = (128 + 256π − 1024πy − 512π2y + 1024π2y2) exp(−4πy), (3.43)

which yields the exact solution

u(x, y) = 32(1− 2y)y exp(−4πy). (3.44)

Case 3: Homogeneous Dirichlet boundary conditions over the whole boundary ∂Ω and
the source term f given by the linear combination of the source terms defined in the
former cases, such that resulting in the exact solution

u(x, y) = [32(1− 2y)y exp(−4πy)]

[
x(2− x) cos(6πx) exp

(
−1

4
πx2

)]
(3.45)

Each case is constructed to accentuate a different dynamics, as can be appreciated in
the analytical solution plotted in Figure 3.9. In Case 1,the transversal dynamics can be
exactly approached by the constant component, so it suggest a convergence depending
solely on the axial refinement. In Case 2 we have the opposite situation because the
dynamics is strictly transversal, the axial component is exactly represented by the linear
approximation, so that the convergence will depend on the transversal order. Finally, in
Case 3 we combine the others two cases, with a more complex dynamics and for which
axial and transversal refinements are required to achieve convergence. Concerning to the
geometry, the rectangular domain is exactly represented by a pipe-type discretization.
This discrete mesh is composed by nel pipe-elements, with a single element spanning
the entire transversal cross-section.

(a) Case 1 solution. ‖u‖L2= 3.90246 · 10−1,
‖∇u‖L2= 7.39838 · 100

(b) Case 2 solution. ‖u‖L2= 5.55728 · 10−1,
‖∇u‖L2= 8.40078 · 100

(c) Case 3 solution. ‖u‖L2= 1.53347 · 10−1 (d) Case 3 magnitude of the gradient. ‖∇u‖L2=
3.71833 · 100

Figure 3.9: Analytical solutions for (a) Case 1, (b) Case 2 and (c-d) Case 3. In each
subfigure it is also reported the reference values employed to compute the relative error
in the convergence study.
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As previously commented, for each case convergence tests are performed with respect to
the axial length (h) and to the transversal enrichment order (p). For the axial dynamics in
the TEPEM, linear interpolation is employed. For the Case 1 the convergence is linear
with respect to the axial length and, as expected, independent from the transversal
order chosen. For the Case 2 the convergence with respect to the transversal order is
exponential and independent from the number of elements in the axial direction.
These results are reported in Table 3.1 where the relative errors are presented as well
as the number of degrees of freedom employed in each simulation (for the Case 1 it
was employed p = 2 and for Case 2 it was employed nel = 4). This information is
complemented with the Figure 3.10 where the convergence order for both cases are
displayed.

Table 3.1: Comparison of the relative error of TEPEM approximation in L2-norm and
H1-seminorm for Poisson problem, named Case 1 and Case 2. For each case, the number
of degrees of freedom (DoFs) is also reported.

Case 1 (p = 2) Case 2 (nel= 4)
nel DoFs ‖u− uT‖ |u− uT| p DoFs ‖u− uT‖ |u− uT|

8 27 1.10902 · 100 9.57259 · 10−1 4 25 2.18789 · 10−1 4.01216 · 10−1

16 51 4.60486 · 10−1 6.33569 · 10−1 5 30 7.83213 · 10−2 1.72332 · 10−1

32 99 1.26689 · 10−1 3.38389 · 10−1 6 35 2.30509 · 10−2 5.85753 · 10−2

64 195 3.24445 · 10−2 1.70788 · 10−1 7 40 5.74755 · 10−3 1.68462 · 10−2

128 387 8.13772 · 10−3 8.16761 · 10−2 8 45 1.24187 · 10−3 4.69831 · 10−3

256 771 2.01829 · 10−3 3.74502 · 10−2 9 50 2.38339 · 10−4 2.52622 · 10−3

512 1 539 4.93853 · 10−4 1.55572 · 10−2 10 55 1.05769 · 10−4 2.38255 · 10−3
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Figure 3.10: Convergence rates for Poisson problem. Errors in Case 1 (left) with respect to
the axial characteristic length (h) and in Case 2 (right) with respect to the transversal
enrichment order (p). In each figure, the relative error in the L2-norm (N) and H1-
seminorm (�) are reported.
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The Case 3 is a little more complex in the sense that it requires an increase in the
transversal order and also a refinement in the axial length to achieve convergence. A
convergence study is also performed in this case, demonstrating the good approximation
properties of the TEPEM. The errors in the approximation of the field and also of its
derivative, for different combinations of h and p, are documented in Table 3.2.

Table 3.2: Comparison of the relative error of TEPEM approximation in L2-norm and
H1-seminorm for the Case 3.

nel 64 128 256 512

h 3.125 · 10−2 1.5625 · 10−2 7.8125 · 10−3 3.90625 · 10−3

‖u− uT‖

p = 4 1.97314 · 10−1 1.97618 · 10−1 1.97999 · 10−1 1.98113 · 10−1

p = 6 3.29639 · 10−2 2.20338 · 10−2 2.12769 · 10−2 2.12556 · 10−2

p = 8 2.58202 · 10−2 6.50422 · 10−3 1.96229 · 10−3 1.23976 · 10−3

p = 10 2.57947 · 10−2 6.39766 · 10−3 1.56811 · 10−3 3.74061 · 10−4

|u− uT|

p = 4 3.21201 · 10−1 2.98247 · 10−1 2.92698 · 10−1 2.91462 · 10−1

p = 6 1.40748 · 10−1 7.54221 · 10−2 4.94369 · 10−2 4.16181 · 10−2

p = 8 1.34785 · 10−1 6.40329 · 10−2 2.94602 · 10−2 4.52886 · 10−3

p = 10 1.34755 · 10−1 6.39758 · 10−2 2.93389 · 10−2 2.62988 · 10−3

As expected, for a fixed axial discretization, the approximation is improved when the
transversal order is increased but with a lower threshold defined by the model capabilities
relatives to that axial mesh. The same pattern appears when analyzing the convergence
regarding the axial length, a threshold appears (for a fixed transversal order) which only
can be enhanced by increasing the value of p. This saturation behavior, that appears
in schemes where the capabilities are depending of more than one parameter (like hp-
FEM schemes), is better appreciate in the Figure 3.11 where the linear and exponential
convergence, regarding h and p respectively, are affected by a threshold controlled by
the other parameter.
The convergence in the TEPEM approximation as well as the predictive capabilities for
different values of p are highlighted in Figure 3.12. In that figure, the FEM and TEPEM
profiles along the straight segment A (see Figure 3.8) are compared for two different
pipe meshes: one the composed by 32 elements and the second one composed by 64
elements. The convergence, in the selected segment, for the field and its derivative are
clearly achieved.
For the FEM approximation, we perform a convergence study by analyzing the behavior
of the error (in L2-norm and H1-seminorm) when refining the triangular mesh. In Table
3.3, we present the error in both norms and also the geometrical characteristics of each
triangular mesh. A more direct comparison of the efficiency of the approximation scheme
against the TEPEM can be achieved by comparing the error in both schemes against
the number of degrees of freedoms. This comparison, outlined in Figure 3.13, expose the
larger predictive capabilities of the TEPEM approach when compared to the FEM, not
only for the approximation of the primary field but also in the approximation of the
derivative which, in the particular case of hemodynamic simulations, play a fundamental
role in the computation of some derived-bases quantities.
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(a) Convergence against axial length (h) for four different transversal polynomial orders.
From left to right: p = 4, p = 6, p = 8 and p = 10.
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(b) Convergence against transversal polynomial order (p) for four different axial elemental lengths.
From left to right: nel= 64, nel= 128, nel= 256 and nel= 512.

Figure 3.11: Convergence rates for the Case 3. Errors against axial characteristic length
(top row) and against transversal polynomial order (bottom row). In each figure, the
relative error in the L2-norm (N) and H1-seminorm (�) are reported.

Table 3.3: Comparison of the relative error of FEM approximation in L2-norm and H1-
seminorm for the Case 3 and different discretization sizes. Also, the number of triangular
elements and the total number of degrees of freedom are presented.

Element size
h 1.00 · 10−1 5.00 · 10−2 2.50 · 10−2 1.25 · 10−2 6.25 · 10−3

Elements 552 2 208 8 832 35 328 141 312

DoFs 317 1 185 4 577 17 985 71 297

‖u− uF‖ 1.9704 · 10−1 5.6992 · 10−2 1.4724 · 10−2 3.5667 · 10−3 7.3644 · 10−4

|u− uF| 3.8512 · 10−1 2.0941 · 10−1 1.0662 · 10−1 5.2356 · 10−2 2.3452 · 10−2
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(a) Comparison of field approximation for different axial mesh

(b) Comparison of the derivative of field approximation for different axial mesh

Figure 3.12: Poisson problem: Comparison of TEPEM solutions (for different polynomial
order p) in the Section A. In each panel, and from left to right, the axial mesh is composed
by 32, 64 and 128 pipe elements.
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Figure 3.13: Behavior of L2-norm (N) and H1-seminorm (�) for FEM (left panel).
Comparison of FEM (solid line) and TEPEM (dotted line) against the total number
of degrees of freedom in the L2-norm (middle panel) and H1-seminorm (right panel).
The notation ua stands for the approximation (TEPEM or FEM) of the field u.
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3.3.3 Advection-diffusion problem and SUPG stabilization

The second example is the approximation of an advection-diffusion problem defined in
the annular region Ω defined by the curves

Γ1 = {x = (x, y) ∈ R2 : x = 0, 0.5 ≤ y ≤ 1}
Γ2 = {x = (x, y) ∈ R2 : ‖x‖2= 0.25}
Γ3 = {x = (x, y) ∈ R2 : 0.5 ≤ x ≤ 1, y = 0}
Γ4 = {x = (x, y) ∈ R2 : ‖x‖2= 1}

(3.46)

Furthermore, this domain will be split by the curve {y = x} into two subdomains denoted
by Ω1 (corresponding to {y ≥ x}) and Ω2 (corresponding to {y < x}). In Ω, we consider
two cases defined by the variational problem: Find u ∈ V = {v ∈ H1(Ω) : v = 0 on Γ2 ∪
Γ4} such that:∫

Ω

(
µ(x)∇u · ∇û+ (βββ · ∇u)û

)
dΩ =

∫
Ω
fû dΩ ∀ û ∈ V (3.47)

where, defining θ = tan−1(y/x), we set βββ = [10 sin(θ),−10 cos(θ)]T and where the source
term is defined as follows

f(x) =

{
20 for x ∈ C1 = {(x, y) : (x− 0.25)2 + (y − 0.75)2 < 0.1}
10 for x ∈ C2 = {(x, y) : (x− 0.75)2 + (y − 0.25)2 < 0.1}

(3.48)

We consider the two cases:
Case 1: The same diffusion in both subdomains Ω1 and Ω2, i.e. µ(x) = 1 ∈ Ω.
Case 2: Different diffusion in each subdomain, say

µ(x) =

{
10−4 for x ∈ Ω1

101 for x ∈ Ω2

(3.49)

For the convergence study, we assume as a reference solution an approximation obtained
with FEM into a very fine triangular mesh composed by 1 985 946 elements, 994 974
degrees of freedom and linear interpolants for the field approximation. For the Case 1,
the mesh is uniform while for the Case 2 the mesh is refined along the curve {y = x}
to effectively deal with the inner discontinuity created by the difference in the diffusion
coefficient. The geometrical domain as well as the reference solution for both cases are
outlined in Figure 3.14.
The goal of this example is twofold. First we perform a convergence study for the Case
1 with respect to the axial length and also to the transversal enrichment. It is expected
a linear (exponential) convergence behavior corresponding to the axial (transversal)
parameter but with the characteristic saturation behavior shown in the previous example.
For the Case 2 we are interested in the impact of the stabilization into the TEPEM
scheme to deal with the internal discontinuity layer and the oscillations due to the high
local Péclet number. For the latter case, we consider a pipe mesh composing by 60
elements which results into a local Péclet number around of Pe≈ 1 000, while for the
Case 1 the coarser pipe mesh results into a very low local Péclet number (Pe≈ 0.1). For
both cases, the error in the geometry approximation is neglected.
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(a) Geometrical setting (b) FEM solution for Case 1. (c) FEM solution for Case 2.

Figure 3.14: Geometry and reference solution, for Case 1 and Case 2, computed by FEM
in a triangular mesh composed by 1 985 946 elements and 994 974 degrees of freedom.

For the numerical convergence study in Case 1 we use an uniform pipe-element mesh
characterized by nel∈ {40, 80, 160, 320} while for the transversal order we consider the
values p ∈ {4, 6, 8, 10}. In this range, the degrees of freedom associated to the TEPEM
approximation vary between 205 for the combination (nel, p) = (40, 4) and 3531 for
(nel, p) = (320, 10), which implies in an approximation with approximately 1% of the
degrees of freedom employed in obtaining the reference solution.
A comparison between the relative errors in the norm of L2 and the semi-norm of H1

is outlined in Table 3.4 and reflects the excellent capabilities of the TEPEM not only
in the approximation of the field but also of its derivative. The coupling between the
axial length and transversal enrichment order in the convergence behavior can be seen in
Figure 3.15. In this figure, besides the convergence order against h and p, is easy to see
(mostly in the first plots) the saturation in the model capabilities when either h or p are
fixed. Finally, a visual comparison between the reference solution obtained with FEM
and the TEPEM approximate solution is outlined in Figure 3.16 in which it is possible
to see that the TEPEM solution follows closely the reference one even with p = 6 and a
discretization with 80 pipe-elements.

Table 3.4: Comparison of the relative error of the TEPEM approximation in L2-norm and
H1-seminorm for the advection-diffusion problem (Case 1). As reference values for the
computation of the relative error it was employed: ‖u‖L2= 3.53774 · 10−1 and ‖∇u‖L2=
2.25367 · 100.

nel 40 80 160 320
h 2.95 · 10−2 1.475 · 10−2 7.375 · 10−3 3.6875 · 10−3

‖u− uT‖

p = 4 6.51163 · 10−3 2.21352 · 10−3 2.11244 · 10−3 2.22213 · 10−3

p = 6 2.57033 · 10−3 1.05408 · 10−3 8.04512 · 10−4 7.61254 · 10−4

p = 8 2.50315 · 10−3 1.25575 · 10−3 3.86286 · 10−4 3.35062 · 10−4

p = 10 1.20456 · 10−3 6.20852 · 10−4 3.00496 · 10−4 2.28154 · 10−4

|u− uT|

p = 4 2.46007 · 10−2 1.62465 · 10−2 1.42390 · 10−2 1.38171 · 10−2

p = 6 2.31825 · 10−2 1.12220 · 10−2 7.85558 · 10−3 6.88944 · 10−3

p = 8 2.15023 · 10−2 1.02384 · 10−2 5.86927 · 10−3 4.50414 · 10−3

p = 10 2.12954 · 10−2 9.75125 · 10−3 5.71621 · 10−3 3.76943 · 10−3
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(a) Convergence against axial length (h) for four different transversal polynomial orders. From left to right:
p = 4, p = 6, p = 8 and p = 10.
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(b) Convergence against transversal polynomial order (p) for four different axial element lengths. From left
to right: nel= 40, nel= 80, nel= 160 and nel= 320.

Figure 3.15: Convergence rates for the Case 1. Errors with respect to the axial
characteristic length (top row) and to the transversal polynomial order (bottom row). In
each figure, the relative error in the L2-norm (N) and H1-seminorm (�) are reported.

(a) Reference FEM solution (b) TEPEM p = 6,nel=80. (c) TEPEM p = 8,nel=160.

(d) Reference FEM solution (e) TEPEM p = 6,nel=80. (f) TEPEM p = 8,nel=160.

Figure 3.16: Comparison between the reference solution and TEPEM approximate
solutions. Top row: Primary field. Bottom row: Magnitude of the gradient field.
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A similar convergence study is performed for the FEM. In this case, due to the curved
boundaries of the geometrical domain, we perform a initial geometrical discretization
as explained in previous section by considering an initial pipe-mesh composed by 40
elements. In Table 3.5 and Figure 3.17 we present the error behavior and also the
geometrical characteristic of the triangulation.
Particularly, in Table 3.5, theoretical convergence order for the FEM in L2-norm and
H1-seminorm are achieved when compared with the axial length size (quadratic and
linear for L2 and H1). Regarding the convergence in terms of the number of degrees
of freedom, order 1 and 0.5 are obtained, respectively, for L2-norm and H1-seminorm.
Similar convergence rates are observed for the TEPEM but with improved predictive
capabilities, that is, it is possible to obtain solutions with the same level of accuracy but
with a considerable reduction in the problem size.

Table 3.5: Comparison of the relative error of FEM approximation in L2-norm and H1-
seminorm for the Case 1 and different discretization sizes. Also the number of triangular
elements and the total number of degrees of freedom are presented.

Element size
h 1.46 · 10−1 7.32 · 10−2 3.66 · 10−2 1.83 · 10−2 9.15 · 10−3

Elements 142 568 2 272 9 088 36 352

DoFs 90 321 1 209 4 689 18 465

‖u− uF‖ 3.1004 · 10−1 9.9101 · 10−2 2.1692 · 10−2 6.3436 · 10−3 1.6309 · 10−3

|u− uF| 1.5017 · 10−1 7.7559 · 10−2 3.9492 · 10−2 1.9954 · 10−2 9.8654 · 10−3
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Figure 3.17: Behavior of L2-norm (N) and H1-seminorm (�) for FEM (left panel).
Comparison of FEM (solid line) and TEPEM (dotted line) with respect to the number
of degrees of freedom in the L2-norm (middle panel) and H1-seminorm (right panel).
The notation ua stands by the approximation (TEPEM or FEM) for the field u.

For the second case, we use an uniform mesh composed by 60 pipe-elements which results
in a local Péclet number Pe ≈ 1 000 sufficiently high to generate spurious oscillations.
In this case, we perform a visual comparison of TEPEM approximate solutions without
stabilization and the results with SUPG, as commented in Section 3.2.2.
As expected, the solution provided by the standard TEPEM, which is reported in Figure
3.18(a;b), features numerical instabilities which completely pollute the numerical solution
and which increase as the transversal order increases. When considering the SUPG
formulation integrated to the TEPEM strategy, the numerical solution is physically
satisfactory even with low transversal polynomial order (p = 6), see Figure 3.18 (c).
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(a) TEPEM with p = 6. (b) TEPEM with p = 12. (c) TEPEM-SUPG with p = 6.

Figure 3.18: Comparison of approximate solutions for the advection-diffusion problem in
the Case 2 obtained with: standard TEPEM strategy with (a) p = 6, (b) p = 12, and
(c) with SUPG stabilization with p = 6. In each case, nel= 60 and Pe ≈ 1 000.

3.3.4 Convection in wavy channel

In this example, we are interested in the approximation of the advection-diffusion
problem: Find u ∈ U such that∫

Ω

(
µ∇u · ∇û+ (βββ · ∇u)û

)
dΩ =

∫
Ω
fû dΩ ∀ û ∈ V (3.50)

where the diffusion coefficient is considered constant (µ = 1) as well as the advection
vector βββ = [10, 0]T and the source term is f = 10. This problem is defined in the wavy
channel domain limited by the curves:

Γ1 = {x = (x, y) ∈ R2 : x = 0, 1 ≤ y ≤ 2}
Γ2 = {x = (x, y) ∈ R2 : 0 ≤ x ≤ 2, y = 1− 0.25 sin(2πx)}
Γ3 = {x = (x, y) ∈ R2 : x = 2, 1 ≤ y ≤ 2}
Γ4 = {x = (x, y) ∈ R2 : 0 ≤ x ≤ 2, y = 2 + 0.25 sin(2πx)}

(3.51)

Hence, the spaces involved in the problem definition are U = {u ∈ H1(Ω) : u = 0 onΓ2∪
Γ4} and V = U . In this case, no stabilization is employed.
As stated in the previous section, to measure the quality of the TEPEM approximations
and due to the lack of an analytical solution, we employ a FEM approximation computed
in a very fine triangular mesh as a reference solution. This solution, displayed in Figure
3.19 and denoted by uF, features lateral boundary layers which require, in the context
of the FEM, an extremely fine triangulation in order to get accurate solutions.
We perform a convergence study to analyze the capabilities of the TEPEM approach
employing an uniform pipe-type partition composed by nel = {64, 128, 256, 512} elements
and a moderate transversal polynomial order p in the range 4 ≤ p ≤ 10. For the coarser
mesh, a small local Péclet number is obtained (Pe≈ 0.1).



Chapter 3. Scalar transport phenomena 71

(a) Reference solution obtained with
FEM. ‖∇u‖L2= 1.53544 · 100

(b) Magnitude of the gradient of the
reference solution. ‖∇u‖L2= 6.10055 · 100

Figure 3.19: Reference solution, for the wavy channel problem, computed by FEM in an
uniform triangular mesh composed by 1 196 660 elements and 600 331 degrees of freedom.

The relative errors in the TEPEM approach for the approximation of uF are presented
in Table 3.6 and also in Figure 3.20 where convergence rates with respect to the axial
characteristic length and to the transversal order are presented. The convergence trend
features the characteristic saturation for schemes depending on more than one parameter.
For example, in the first panel in Figure 3.20(a) we can appreciate that the model
capabilities with p = 4 reach their limit for the first axial discretization and cannot
be improved just by axial refinement of the mesh. For higher values for the transversal
order, the saturation threshold is modified, improving the approximation.

Table 3.6: Comparison of the relative error of TEPEM approximation in L2-norm and
H1-seminorm for the wavy channel problem. As reference values for the computation of
relative error it was employed: ‖u‖L2= 1.53544 · 100 and ‖∇u‖L2= 6.10055 · 100.

nel 64 128 256 512
h 3.125 · 10−2 1.5625 · 10−2 7.8125 · 10−3 3.90625 · 10−3

‖u− uT‖

p = 4 7.28597 · 10−3 6.81256 · 10−3 6.98764 · 10−3 6.72181 · 10−3

p = 6 3.50336 · 10−3 3.39494 · 10−3 3.29214 · 10−3 3.22173 · 10−3

p = 8 1.38980 · 10−3 1.30385 · 10−3 7.91865 · 10−4 7.87471 · 10−4

p = 10 1.41741 · 10−3 1.30269 · 10−3 3.92861 · 10−4 2.63833 · 10−4

|u− uT|

p = 4 1.39822 · 10−2 1.30818 · 10−2 1.28848 · 10−2 1.28814 · 10−2

p = 6 1.21667 · 10−2 7.77318 · 10−3 7.70197 · 10−3 7.50230 · 10−3

p = 8 1.05482 · 10−2 6.42748 · 10−3 4.10823 · 10−3 2.79222 · 10−3

p = 10 8.65283 · 10−3 5.92177 · 10−3 3.04369 · 10−3 8.36958 · 10−4

For the FEM, we also perform a convergence study with respect to the element size of
the mesh. The number of elements employed in the triangulation, the number of degrees
of freedom as well as the relative error are displayed in Table 3.7. Note that, while for
the TEPEM the number of degrees of freedom is in the range of 325 (for p = 4 and
nel= 64) and 5643 (for p = 10 and nel= 512), the minimum number of unknowns for
the FEM is of the order of 1 · 103.
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A comparison of the convergence with respect to the number of degrees of freedom
for the TEPEM and FEM, as observed in Figure 3.21, reveals a linear convergence
for the relative error in the L2-norm and reduced to one half when measured in the H1-
seminorm. Moreover, and similar to the previous examples, a direct comparison indicates
better results for the TEPEM (in comparison with the FEM) for the same number of
degrees of freedom.
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(a) Convergence with respect to the axial length (h) for four different transversal polynomial orders. From
left to right: p = 4, p = 6, p = 8 and p = 10.

4 6 8 10

p

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

4 6 8 10

p

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

4 6 8 10

p

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

4 6 8 10

p

10−4

10−3

10−2

10−1

R
el

at
iv

e
er

ro
r

1

0.70

1
0.49

(b) Convergence with respect to the transversal polynomial order (p) for four different axial element lengths.
From left to right: nel= 64, nel= 128, nel= 256 and nel= 512.

Figure 3.20: Convergence rates for the wavy channel problem with respect to the axial
length and transversal polynomial order. In each figure, the relative error in the L2-norm
(N) and H1-seminorm (�) are reported.

Table 3.7: Comparison of the relative error of FEM approximation in L2-norm and H1-
seminorm for the wavy channel problem with different discretization sizes. The number
of triangular elements and the number of degrees of freedom are also reported.

Element size
h 8.57 · 10−2 4.28 · 10−2 2.14 · 10−2 1.07 · 10−2 5.35 · 10−3

Elements 2 008 8 032 32 128 128 512 514 048

DoFs 1 085 4 177 16 385 64 897 258 305

‖u− uF‖ 1.6115 · 10−2 4.1708 · 10−3 1.0794 · 10−3 2.7938 · 10−4 7.2309 · 10−5

|u− uF| 2.6468 · 10−1 1.3418 · 10−1 6.8031 · 10−2 3.4490 · 10−2 1.7485 · 10−2
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Figure 3.21: Behavior of L2-norm (N) and H1-seminorm (�) for FEM (left panel).
Comparison of FEM (solid line) and TEPEM (dotted line) with respect to the number
of degrees of freedom in the L2-norm (middle panel) and H1-seminorm (right panel).
The notation ua stands for the approximation of field u.

3.3.5 Heat conduction in an L-shaped domain

In this final numerical example, we are interested in studying the TEPEM approach
when applied to a transient problem. In particular, we analyze the approximation of the
problem: Find u(x, t) ∈ V × (0, T ) such that∫

Ω

(
∂u

∂t
û+ µ∇u · ∇û

)
dΩ =

∫
Ω
f(x, t)û dΩ ∀ û ∈ V (3.52)

where the diffusion coefficient is chosen to be µ = 0.1 and the source term is time-
dependent and given by f(x, t) = 5 cos(2πt). The geometrical domain is the L-shaped
region outlined in Figure 3.22 where the structure of the pipe-mesh employed in
the TEPEM approximation is also depicted. The problem is fully characterized by
considering homogeneous Dirichlet conditions over the whole boundary.

Figure 3.22: L-shaped geometry and source term profile for the transient heat conduction
problem. Two straight segments, denoted as A (in blue) and B (in red), are chosen for a
detailed comparison of the solutions.

For this problem, we fix an axial partition of the domain composed by 60 pipe-elements
and we study the model capabilities when the transversal order p is increased. As detailed
at the beginning of this section, the approximation is obtained by combining a finite
difference based scheme for the temporal domain and the TEPEM approach for the
spatial dimension. The period T = 1 defines the periodic characteristic of the source
term. The temporal range in the problem t ∈ [0, 2] is divided into a discrete uniform grid
of size ∆t = 1 · 10−3 (chosen to ensure the temporal convergence) and a forward explicit
Euler scheme is employed to discretize the temporal variation.
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For the convergence study, a FEM simulation with 19 243 degrees of freedom and 37 884
triangular elements is performed. In Table 3.8, we show the relative error for four different
time instants within the temporal cycle. For each time step, we can appreciate the
convergence against the transversal order in the same pattern that the one observed in
steady state problems. The same convergence is obtained when measuring the mean error
in the L2-norm and the H1-seminorm. It is important to note that these convergence
rates are obtained, for the TEPEM, with a total number of degrees of freedom in the
range between 305 (p = 4) and 671 (p = 10) which represents a relative reduction larger
than 96% in contrast to the FEM reference solution.

Table 3.8: Comparison of the relative error of TEPEM approximation in L2-norm
and H1-seminorm for the transient heat conduction problem in the L-shaped domain
measured at four time instants, and also the mean error in the TEPEM approximation.

Punctual error
t = 0.0T t = 0.3T t = 0.6T t = 0.9T

‖u− uT‖

p = 4 1.0131 · 10−1 1.1668 · 10−1 4.7464 · 10−2 5.4664 · 10−1

p = 6 9.6207 · 10−2 1.0957 · 10−1 3.6091 · 10−2 5.3381 · 10−1

p = 8 9.5217 · 10−2 1.0696 · 10−1 3.1622 · 10−2 5.3562 · 10−1

p = 10 9.4637 · 10−2 1.0530 · 10−1 2.9424 · 10−2 5.3152 · 10−1

|u− uT|

p = 4 2.2074 · 10−1 1.8214 · 10−1 1.6357 · 10−1 4.3651 · 10−1

p = 6 1.6585 · 10−1 1.5385 · 10−1 1.1103 · 10−1 3.7296 · 10−1

p = 8 1.4489 · 10−1 1.4409 · 10−1 8.7406 · 10−2 3.5799 · 10−2

p = 10 1.3324 · 10−1 1.4158 · 10−1 7.4689 · 10−2 3.4726 · 10−2

Mean error
p = 4 p = 6 p = 8 p = 10

‖u− uT‖(0,T ) 6.1289 · 10−2 5.9339 · 10−2 5.9122 · 10−2 5.8670 · 10−2

|u− uT|(0,T ) 7.5933 · 10−2 6.2013 · 10−2 5.7581 · 10−2 5.5025 · 10−2

DoFs reduction 98.41% 97.78% 97.14% 96.51%

For a visual comparison of the approximate TEPEM solution against the reference one,
in Figure 3.23 both solutions are outlined at four selected time instants. Also, in the
same figure, the magnitude of the gradient of both solutions is also compared. In each
case, it is easy to see the high quality delivered by the TEPEM approximation (for the
primal field as well as for its gradient) with a considerable reduction in the problem size.
A more detailed comparison between the FEM reference solution and the TEPEM
approximation (with p = 4 and p = 6) is addressed considering the straight segments
highlighted in Figure 3.22. In each segment is compared the solution profile and the
magnitude of its derivative, showing a high agreement in the approximation in both
segment A (Figure 3.3.5) and segment B (Figure 3.25).
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(a) Comparison against reference solution at time: t/T = 0

(b) Comparison against reference solution at time: t/T = 0.30

(c) Comparison against reference solution at time: t/T = 0.60

(d) Comparison against reference solution at time: t/T = 0.90

Figure 3.23: Comparison between TEPEM approximation (p = 6) and FEM reference
solution at four selected time instants. In each row, a comparison between the primal
field (left two panels) and the magnitude of the gradient (right two panels) is performed.
Scales are conveniently adjusted at each time instant.
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(a) Comparison against reference solution at time: t/T = 0

(b) Comparison against reference solution at time: t/T = 0.30

(c) Comparison against reference solution at time: t/T = 0.60

(d) Comparison against reference solution at time: t/T = 0.90

Figure 3.24: Comparison between TEPEM approximation (p = 4 and p = 6) and FEM
reference solution at four selected time instants and in the segment A. In each row, a
comparison between the primal field and the magnitude of the gradient is performed.
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(a) Comparison against reference solution at time: t/T = 0

(b) Comparison against reference solution at time: t/T = 0.30

(c) Comparison against reference solution at time: t/T = 0.60

(d) Comparison against reference solution at time: t/T = 0.90

Figure 3.25: Comparison between TEPEM approximation (p = 4 and p = 6) and FEM
reference solution at four selected time instants and in the segment B. In each row, a
comparison between the primal field and the magnitude of the gradient is performed.
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3.4 Further remarks

In this chapter, the Transversally Enriched Pipe Element Method (TEPEM), was
successfully applied in the approximation of the solution of scalar transport problems
(advection-diffusion-reaction problems, specifically) demonstrating a substantial
reduction in the problem size while maintaining an accuracy comparable with that
obtained with traditional general purpose strategies, such as the Finite Element Method
(FEM).

Some remarkable characteristics highlighted throughout this chapter are the following:
The numerical method. The TEPEM is constructed on top of a pipe-element mesh in
which proper interpolant functions are defined such that they span the whole transversal
direction of the domain. Controlling the order of these polynomial interpolants allows
to effectively control the ability of the numerical approach. The TEPEM is conceived
as a very special type of finite element. That is, we have started with the variational
formulation of the problem for which proper finite dimensional spaces have been defined.
Then, elemental contributions can be identified, numerical integration is required so that
we finally arrive at a system of algebraic equations to compute the unknown coefficients.
This property speaks about the versatility of the proposed method, which permits its
extension to other physical models and phenomenological conditions.
System of algebraic equations. After proper arrangement of the degrees of freedom,
the algebraic structure of the discrete problem results in a largely sparse system with
the global structure similar to the obtained in one-dimensional FEM discretizations (of
equal order of the employed for the axial dynamics) and where each block component
is a dense submatrix whose size is directly proportional to the transversal polynomial
order. Specialized algorithms for this type of system can be exploited to improve the
efficiency of this approach.
Integration with other strategies. The versatility in the conception of the TEPEM
definition allowed us to integrate it with stabilization techniques without further efforts.
The use of SUPG coupling was explored with satisfactory results in the approximation
of inner discontinuity layers.
Computational efficiency. Through several examples it has been demonstrated the
abilities of the TEPEM to reduce the size of the problem (achieving a reduction of most
than the 90% in the degrees of freedom) while providing excellent approximations for
the physical field in all tested cases.
The predictive capabilities of the model are effectively controlled by the parameter p,
which defines the transversal order of the interpolants, and by the mesh parameter h
which defines the axial pipe element length.
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The TEPEM for incompressible fluid flow

In the search for numerical techniques capable of being applied in the medical practice,
and specifically in the hemodynamics field, the solution of the Navier-Stokes equations
has caught a lot of attention. These equations provide a suitable model to describe the
blood flow in the cardiovascular system, although, the numerical simulation of three-
dimensional incompressible flows poses challenging problems. These challenges have
driven the research towards the reduction of the dimension of the problem, which is
nowadays a topic of paramount interest. In fact, many approaches are available at
literature which furnish a dimensional reduction based on, for example, the introduction
of kinematical constrains, in detriment of the lack on the representation of several three-
dimensional features.
The Transversally Enriched Pipe Element Method can be envisioned as a promising
strategy to deal with three-dimensional fluid flow problems, naturally reducing the
problem size at discrete level but maintaining an accuracy that is, to some extent,
comparable with full 3D FEM strategies. The advantage of the TEPEM scheme in the
approximation of Navier-Stokes equation relies in: (i) the structure of the linear system,
whose global algebraic structure is similar to the one obtained for one-dimensional models
allowing a natural parallelism in the assembly and solution and (ii) the major reduction
in the problem size as well as the natural way in which model capabilities are controlled,
as was highlighted in the last chapter. It is expected that the efficiency demonstrated in
the last chapter within the scope of a scalar transport problem is maintained in the vector
case, reducing the number of unknowns and reflecting this into accurate approximations
but with considerable reduction in the computational time, which is of fundamental
importance in real large-scale problems.
In this Chapter we explore the numerical advantages when the TEPEM is employed to
approximate the velocity and pressure fields. For the discretization of the Navier-Stokes
problem we have chosen to work with a combination of quadratic and linear polynomials
for the velocity/pressure pair, for the axial dynamics, while for the transversal dynamics
the pair velocity/pressure is approximated by polynomial orders given by Pp/Pp/2. In
practice, we propose a family of finite element spaces commanded by the parameter p
which controls the model capabilities. Inspired in classical inf-sup stable spaces employed
in FEM and spectral methods, the stability of this pair is numerically investigated
in this chapter. Several numerical examples are also addressed, both in 2D and 3D
domains, to confirm the stability of the discrete pair, as well as to perform a study of the
convergence properties and efficiency when compared against a traditional FEM scheme.
These numerical examples are performed in controlled academic domains, constructed
to ensure a correct convergence study and comparison with FEM reference solutions.

79
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4.1 The Navier-Stokes equations

Let us consider Ω ⊂ Rd (d = 2, 3) being an open and bounded domain with Lipschitz
continuous boundary ∂Ω, as the outlined in Figure 4.1. We will split the boundary
∂Ω in three disjointed parts Γi, Γo and ΓL. Inlet and outlet boundaries, Γi and Γo, are
considered as flat boundaries and where either Neumann or Dirichlet boundary conditions
can be prescribed.

Figure 4.1: Schematic setting for the fluid flow problem. Domain boundary is divided in
flat inlet/outlet boundaries Γi and Γo and the lateral surface ΓL.

Let T be a positive and fixed real value. The equations of motion of an incompressible
fluid, with density ρ and viscosity µ, are

ρ

(
∂u
∂t

+ (u · ∇)u
)

+∇p− 2µ∇ · (∇u)s = f inΩ, t ∈ (0, T )

∇ · u = 0 inΩ, t ∈ (0, T )

(4.1)

where u and p are the velocity and pressure fields, respectively. The problem is fully
characterized by considering a divergence free initial condition u(x, 0) = u0(x) and
suitable boundary conditions over the surface ∂Ω. Particularly, over the lateral boundary
(ΓL) homogeneous Dirichlet boundary conditions are considered (no-slip condition).
To recast the Navier-Stokes equations in a variational framework, we introduce the space

VVV =
{
u ∈ [H1(Ω)]d : u|ΓL= 0, (ΠΠΠu)|Γi= 0, (ΠΠΠu)|Γo= 0

}
(4.2)

of all [H1(Ω)]d functions with zero trace in ΓL and where the projector operator ΠΠΠ =
III − n ⊗ n is introduced to impose a fully developed flow over the surface of normal n.
This last assumption is justified considering that, in the field of hemodynamics, it is
natural to consider that the domain has been isolated from the rest of the system at
places where the flow is assumed to be fully developed.
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Given a divergence free datum u0 ∈ VVV and an external field f ∈ [L2(0, T ;H−1(Ω)]d,
we define the weak form for the Navier-Stokes problem as: Find the velocity field u ∈
[L2(0, T ;VVV) ∩ L∞(0, T ;L2(Ω)]d and pressure field p ∈ L2(0, T ;L2(Ω)) such that∫

Ω

[
ρ
∂u
∂t
· û + ρ(u · ∇)u · û + 2µε(u) · ∇(û)− p div û− p̂ divu

]
dΩ =∫

Ω
f · û dΩ +

∫
Γi

tin · û dΓi +

∫
Γo

ton · û dΓo ∀ (û, p̂) ∈ VVV × L2(Ω), (4.3)

with ρ and µ being the fluid density and viscosity, respectively, ε(·) = (∇(·))s, and (̂·)
denotes an admissible variation of field (·). Finally, ti and to are given data which stand
for the magnitude of the normal component of the traction vector imposed at Γi and
Γo, respectively. Mathematical properties of each part in the Navier-Stokes formulation,
as continuity of forms, can be seen in detail in [Teman 1977, Girault and Raviart 1986,
Evans 1997].
In hemodynamic applications, the vector field f is usually set to zero. This hypothesis
corresponds to consider negligible the effects of gravity. From a mechanical point of view,
the solution of the Navier-Stokes equation may develop instabilities called turbulence
due to the dynamics induced by the non-linear convection term and its relative strength
when compared against to the diffusive effects. This predominance of inertial effects over
viscous effects is characterized by the Reynolds number

Re =
ρDu∗

µ
, (4.4)

a dimensionless number that depends on the characteristic length of the vessel D
(typically the vessel equivalent diameter), the magnitude of the mean flow velocity u∗,
the density ρ and viscosity µ of the fluid. Values for Reynolds number up to Re = 800
are the encountered in the blood flow circulation.

4.2 The discrete scheme

A discrete formulation for the Navier-Stokes equation is addressed in this section. For
this purpose, we separate the process into three steps:

i) The time discretization to deal with the transient term in the continuous model.

ii) The adoption of a linearization scheme to overcome the nonlinearity implied by
the convective term (u · ∇)u.

iii) The spatial discretization of velocity and pressure fields, at each time step, for
which transversally enriched discrete spaces are introduced.

The result is an scheme which treat iteratively both the time and the nonlinear nature
of the problem described in Equation 4.3. Also, a penalization process for the pressure
is discussed to supplement the incompressibility constrain.
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4.2.1 Scheme for time discretization

We start by approximating the time derivative by a backward Euler scheme at the
following way: Given ∆t ∈ R, we set t0 = 0, tn = t0 + n∆t (n ≥ 1) and, denoting
un = u(tn), we consider the approximation for the time derivative as

∂u
∂t

(tn) =
un − un−1

∆t
, (4.5)

which allows us to recast the continuous-in-time problem as the following implicit
formulation: Given an initial velocity u0, for each n > 1 find the solution (un, pn) ∈
VVV × L2(Ω) of∫

Ω

[
ρ
un
∆t
· û + ρ(un · ∇)un · û + 2µε(un) · ∇(û)− pn div û− p̂ divun

]
dΩ =∫

Ω
ρ
un−1

∆t
· û +

∫
Γi

tni n · û dΓi +

∫
Γo

tnon · û dΓo ∀(û, p̂) ∈ VVV × L2(Ω), (4.6)

with the initial condition u0 = u0. Clearly, no initial pressure needs to be specified.

4.2.2 Linearization of the convective term

The convective term (u ·∇)u in the Equation (4.3), and their time-discrete counterpart,
introduces an evident nonlinearity in the problem. The usual approach to deal with this
aspect is to solve a linearized version of the equations at each time step. Two numerical
schemes stand out as the most popular methods for implicit time marching algorithms:
Picard iteration. A widely used scheme to linearize the convective term is based in
Picard (fixed-point) linearization. In this approach, the nonlinear term is substituted by

(uk+1 · ∇)uk+1 ≈ (uk · ∇)uk+1 (4.7)

where the vector field uk is the approximation of the velocity field in the k-th Picard
iteration.
Another apparently possible way to linearize the convective term, and still in a fixed-
point fashion, is to employ the approximation

(uk+1 · ∇)uk+1 ≈ (uk+1 · ∇)uk (4.8)

Physically speaking, understanding the term (u · ∇) as the convection operator and
solving for the flow at the (k + 1)th iteration: (uk · ∇)uk+1 implies an approximate
convection operator (uk ·∇) convecting the velocity field uk+1 while the term (uk+1 ·∇)uk
involves the exact convection operator (uk+1 · ∇) convecting a previously calculated
velocity field uk. The difference between both linearizing strategies is explored in detail
in [DeBlois 1997]. There, the author demonstrates that linearize the term (u · ∇)u by
employing the expression in Equation (4.8) leads to wrong fixed points and, therefore,
unfeasible solutions of the Navier-Stokes equations. For a proof of the global convergence
of this method, we refer to [Karakashian 1982].
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Newton iteration. Assuming that the approximated solution for the iteration k + 1
can be expressed as the previous iteration solution plus a correction, this is

uk+1 = uk + δuk (4.9)

so, the convective term can be written as:

(uk+1 · ∇)uk+1 = ((uk + δuk) · ∇)(uk + δuk)
= (uk+1 · ∇)uk + δ(uk · ∇)uk + δ2(uk · ∇)uk

= (uk+1 · ∇)uk + (uk · ∇)uk+1 − (uk · ∇)uk + δ2(uk · ∇)uk
(4.10)

where, by neglecting the quadratic term in δ, we obtain the Newton linearization of the
Navier-Stokes equation.
Although Newton methods features faster convergence rates, they typically have radii of
convergence smaller than Picard methods. Hence, in most applications and particularly
for our approach, the Picard iterative method is employed. This strategy gives rise, at
each time step n ≥ 1, to the so-called Oseen problem: Find the converged solution
(un, pn) ∈ VVV × Q such that un,k → un and pn,k → pn (when k → ∞) where, for each
k ≥ 1, it holds∫

Ω

[
ρ
un,k
∆t
·û+ρ(un,k−1·∇)un,k ·û+2µε(un,k)·∇(û)−pn,k div û−p̂divun,k

]
dΩ =∫

Ω
ρ
un−1

∆t
· û +

∫
Γi

tni n · û dΓi +

∫
Γo

tnon · û dΓo ∀ (û, p̂) ∈ VVV × L2(Ω),

(4.11)

with the initial solution un,0 = un.

4.2.3 Improving the condition of the system

The incompressibility nature of the velocity field imposed in the Navier-Stokes equations
makes the system difficult to solve numerically. From an algebraic point of view, the
discretization of the problem with this constrain results in a saddle-point system with
a zero diagonal block which may involve several numerical challenges. For a detailed
discussion of this type of problem see, for example, [Benzi et al. 2005].
A popular strategy to overcome this difficulty is to modify the continuous variational
formulation in Equation (4.3) in an appropriate way so that we arrive at the so-called
pseudocompressibility methods. One of the most popular of this kind is the penalty
method, introduced in [Courant 1943], where the left hand side in Equation (4.3) is
substituted by:∫

Ω

[
ρ
∂uε
∂t
· û+ρ(uε ·∇)uε · û+ 2µε(uε) ·∇(û)−pε div û− p̂divuε− εpεp̂

]
dΩ (4.12)

Notice that the equation is now defined in the variables (uε, pε) and also the term εpεp̂ was
introduced. At a continuous level, the solution (uε, pε) converges to (u, p), when ε → 0.
At the discrete level, this problem introduces an error commanded by the parameter ε.
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Another option is to penalize the Navier-Stokes equation by adding at the Equation (4.6)
the term

ε

∫
Ω
pn,kp̂ dΩ− ε

∫
Ω
pn,k−1p̂ dΩ (4.13)

where pn,k is the pressure field at the temporal step n and at the iteration step k.
This strategy leads to a variational consistent modification of the continuous model.
When needed, we will include this last term in the model to improve the conditioning
of the resulting discrete structure. The convergence of the pressure field is found along
the Picard iterations performed to deal with the nonlinearities already present in the
Navier-Stokes equations.

4.2.4 Spatial TEPEM discretization

After discretizing in time by backward Euler, and linearizing using Picard iterations, we
arrive at the following time-discrete linearized variational problem: For each n > 1 find
(un, pn) ∈ V ×Q solution of the iterative scheme:∫

Ω

[
ρ
un,k
∆t
·û+ρ(un,k−1·∇)un,k ·û+2µε(un,k)·∇(û)−pn,k div û−p̂divun,k

]
dΩ =∫

Ω
ρ
un−1

∆t
· û +

∫
Γi

tni n · û dΓi +

∫
Γo

tnon · û dΓo ∀ (û, p̂) ∈ VVV × L2(Ω),

(4.14)

defined for k ≥ 0 and with initial solution un,0 = un−1, pn,0 = pn−1. Here un,k and pn,k
are the fluid velocity and pressure at time t = tn and at the current iteration k.
For the spatial discretization of the Navier-Stokes equations, we employ the TEPEM
strategy to discretize both velocity and pressure fields at each time and at each Picard
iteration. For a pipe-type partition Th(Ω) of the geometrical domain and a fixed even
parameter p ∈ N, we introduce the finite-dimensional spaces to approximate the velocity
and pressure fields as

VVVh =
[
Tp,2
h

]d
∩ C(Ω) ∩VVV Qh = T

p
2
,1

h ∩ C∗(Ω) (4.15)

where C∗(Ω) stands for the space of functions which are continuous at interfaces
between adjacent simple pipe elements and are discontinuous at interfaces between
simple and transition pipe elements. Hence, the velocity is a continuous field while the
pressure presents discontinuities over the cross-sectional interfaces between transition-
pipe elements and simple pipe elements.
It is important to recall that the space Tp,s

h (for s ∈ {1, 2}) is constructed over the
partition Th(Ω) and is defined, in the three-dimensional case, as

Tp,s
h =

{
wh ∈ L2(Ω) : wh ◦ χK(ξ, η, ζ) =

s+1∑
k=1

wp
k(ξ, η)ϕk(ζ), K ∈ Th(Ω)

}
(4.16)

where {ϕk : k = 1, . . . , s+1} is the Lagrangian basis for Ps (s ∈ {1, 2}) and the functions
{wp

k : k = 1, . . . , s + 1} are constructed in terms of the basis {φi : i = 1, . . . , p + 1} for
the space Pp according to the definition provided in Section 2.3.3.
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With the combination of spaces for velocity and pressure proposed in Equation (4.15),
the velocity and pressure are considered continuous fields. We will denote by uT (pT)
the approximation of the velocity (pressure) field in the TEPEM spaces.

4.3 Further numerical and computational aspects

The former finite-dimensional combination of spaces for velocity and pressure yields an
approximation of the velocity, on the reference element, with quadratic polynomials in the
axial direction and polynomials up to degree p for the transversal direction. Equivalently,
the pressure field is approximated through the combination of linear polynomials for the
axial direction and polynomials up to p/2 for the transversal dynamics.
This special combination defines a finite-element with a higher number of degrees of
freedom if compared with the finite elements available in the literature for the same
problem. For the three-dimensional case, the case p = 4 defines a pipe-element with 75
degrees of freedom for each scalar component of the velocity and 18 for the pressure.
For the transition pipe-element, this number increases to 95 for velocity and 24 for the
pressure. The distribution of the velocity/pressure nodes for p = 4 is displayed in Figure
4.2. Note that considering order p/2 to define the discrete pressure space allows to match
the pressure nodes with a subset of the velocity nodes, reusing the mesh structure and
avoiding the need to consider two different meshes.

Figure 4.2: Velocity (red �) and pressure (blue ©) nodes in each transversal section of
the reference element for transversal order p = 4. Top: Nodes for a simple slab element.
Bottom: Nodes for a transition element.

Notwithstanding this increase in the degrees of freedom per element, it is expected that
the total number of unknowns is drastically reduced due the 1D-like structure of the
mesh, which allows to employ a reduced number of elements while maintaining a good
geometric approximation. Moreover, the use of a distributed computing paradigm can
be used to exploit the simple connectivity among elements to improve the efficiency of
the method. Several numerical examples are addressed in Sections 4.4-4.5 to evaluate
this efficiency by comparing against a FEM approach.
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4.3.1 Algebraic system of equations

As happens with finite difference ([Peyret and Taylor 2012]) and classical finite elements
schemes ([Quarteroni and Valli 2008, Elman et al. 2014]), the implicit discretization of
the Navier-Stokes equations employing the TEPEM with the previously defined finite-
dimensional spaces results in, for each n ≥ 1, a generalized saddle point system of the
form: (

An Bn

BT
n 0

)(
Un

Pn

)
=

(
Fn
0

)
(4.17)

where Un ∈ RNu·d and Pn ∈ RNp are the degrees of freedom for velocity un and pressure
pn in the time t = tn, with d the dimension of the problem and Nu and Np the dimension
of the finite-dimensional spaces for velocity and pressure, respectively. The matrix Bn =
[Bi]1≤i≤d is the discrete counterpart of the gradient operator, BT

n of the divergence
operator and matrix An = [Aij ]1≤i,j≤d accounts for the discretization of the diffusive
term, the linearized convective term and the mass matrix.
The algebraic system in Equation (4.17) is obtained by adding the elemental
contributions in the pipe-mesh partition as was detailed in Chapter 3 in the context
of scalar transport problems. The structure of each inner block, Aij ∈ RNu×Nu and
Bi ∈ RNu×Np (for 1 ≤ i ≤ d), features the global structure seen in one-dimensional FEM
discretizations with ordered numbering. By denoting pu = (p+1)d−1 and pp = (p2 +1)d−1,
the algebraic structure of these blocks is outlined in Figure 4.3. Note that by considering
the axial discretization at the outer level of approximation, blocks that form the global
matrices are block banded matrices with dense sub-blocks.

Figure 4.3: Algebraic structure of the block matrices in the discretization of Navier-
Stokes equations. Dotted regions stands for the local contribution computed in each
pipe-element.
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4.3.2 Inf-sup stability

From the theoretical point of view, it is well known the fundamental role that the inf-
sup condition plays in the theory of mixed and penalty methods. Also known as LBB
condition due to the works of Ladyzhenskaya-Babuska-Brezzi ([Ladyzhenskaya 1969,
Babuška 1971, Brezzi 1974]), this condition holds for the weak form of the continuous
problem, but it is not a priori guaranteed by the corresponding discrete formulation.
While the issue has largely been investigated for finite element and spectral methods
([Maday and Patera 1989, Bernardi and Maday 1997, Brenner and Scott 2007, Quarteroni
and Valli 2008, Canuto et al. 2010]), we are not aware of any theoretical result for hybrid
methods that involve both of techniques.
For the TEPEM, the pair of velocity/pressure finite-dimensional spaces was initially
inspired in some compatibility condition results for FEM and spectral schemes:

i) For FEM, a classical stable combination is the first element of Taylor-Hood
family: quadratic polynomials to interpolate the velocity and linear interpolants
for the pressure.

ii) In turn, a difference of two degrees in the approximation of velocity in contrast
with the pressure is also an usual pair that ensures the inf-sup stability in spectral
methods.

These approaches contribute to the conjecture that the combination

VVVh =
[
Tp,2
h

]d
∩ C(Ω) ∩VVV Qh = T

p
2
,1

h ∩ C∗(Ω) (4.18)

is a plausible inf-sup stable pair of spaces for the approximation of Navier-Stokes
equations precluding the appearance of unphysical phenomena. Even when an ultimate
proof for this combination is not yet available, it is possible to gain insight into
the compatibility of the pair through numerical tools. In this context, it is specially
interesting the so-called inf-sup test proposed in [Chapelle and Bathe 1993, Bathe 2001],
in which a numerical approximation of the inf-sup constant (here called IS) is obtained
as the solution of an eigenvalue problem.
Roughly speaking, the inf-sup test is described as follows: Let us denote by (UUUh,Ph) the
combination of finite-dimensional spaces for velocity and pressure that we are interested
in to test and also define the forms a : UUUh ×UUUh → R and b : Ph ×UUUh → R as

a(u, û) =

∫
Ω
ε(u) · ∇û dΩ b(p, û) =

∫
Ω
p div û (4.19)

Denoting byAh (Bh) the discrete representation of form a(·, ·) (b(·, ·)), byMh the pressure
mass matrix related to the L2-norm and defining Rh = M−1

h (BhA
−1
h BT

h ), we can obtain
a numerical value of the inf-sup constant (for a given fixed mesh) as

IS =
√
λ0 = inf

qh∈Ph
sup

uh∈UUUh

1

‖qh‖‖uh‖

∫
Ω
qh div uh dΩ (4.20)

where λ0 is the smaller non-zero eigenvalue of the problem

Rhvh = λvh (4.21)
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The stability of the pair (UUUh,Ph), in the inf-sup test, is now reduced to analyzing the
behavior of IS when the dimension of these spaces increases. If the value IS is bounded
away from zero, the velocity/pressure pair passes the test, otherwise it fails. Moreover, the
number of zero eigenvalues (denoted as kpm) immediately tells whether spurious modes
are possible to be manifested. The main attractive in this numerical test is that, since
its appearance in [Chapelle and Bathe 1993], it has been applied in several contexts
and finite elements with analytical proof (for stable and unstable discrete pairs) and
has provided in each case a numerical prediction matching with the theoretical one,
testifying his excellent reliability to assess the behavior of finite elements for which no a
priori theoretical results exist, like the case of the TEPEM family of spaces.
The inf-sup test is employed to evaluate the compatibility of the pair proposed in the
expression (4.18), denoted as S0, and three other combinations for the velocity/pressure
spaces, named:

i) Same axial/transversal order: S1 =

([
Tp,1
h

]d
∩ C(Ω) ∩VVV

)
×
(
Tp,1
h ∩ C∗(Ω)

)
ii) Same axial order: S2 =

([
Tp,1
h

]d
∩ C(Ω) ∩VVV

)
×
(
T

p
2
,1

h ∩ C∗(Ω)
)

iii) Same transversal order: S3 =

([
Tp,2
h

]d
∩ C(Ω) ∩VVV

)
×
(
Tp,1
h ∩ C∗(Ω)

)
recalling that, in the proposed context, a transversally enriched pipe element defined by
velocity and pressure must have the inf-sup constant IS bounded away from zero when
the number of pipe-elements increases (h decreases) and when the transversal polynomial
order increases (p increases).
The behavior of the IS value for the pair denoted as S0 is presented in the Figure 4.4. For
this choice, the IS value features a saturation when h decreases and when p increases,
allowing us to conclude that the pair of velocity/pressure spaces passes the inf-sup test.
Also, the absence of zero eigenvalues is confirmed, which implies the absence of spurious
modes.
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Figure 4.4: Behavior of the IS value for the velocity/pressure combination S0 when
decreasing the axial elemental length and increasing the transversal order.
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Similarly, the inf-sup test is applied in the pairs denoted by S1, S2 and S3. None of
these cases passed the numerical test. The value of IS and the number of spurious nodes
kpm, for each case, decreases with the decreasing of h and also with the increasing of p.
Figures 4.5-4.7 presents the behavior of IS and kpm for these three cases, making evident
the decrease of the numerical value of the inf-sup constant without the existence of a
threshold away from zero and the presence of spurious nodes.
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Figure 4.5: Behavior of the IS value and number of spurious nodes kpm for the
velocity/pressure combination S1 when decreasing the axial elemental length and
increasing the transversal order.
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Figure 4.6: Behavior of the IS value and number of spurious nodes kpm for the
velocity/pressure combination S2 when decreasing the axial elemental length and
increasing the transversal order.
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Figure 4.7: Behavior of the IS value and number of spurious nodes kpm for the
velocity/pressure combination S3 when decreasing the axial elemental length and
increasing the transversal order.

This numerical evidence, together with the absence of any spurious modes in all the
numerical cases addressed during the development of the TEPEM both in two- and
three-dimensional cases, leads us to consider the pair S0 as stable in the inf-sup sense.

4.3.3 Initial conditions for the velocity field

The numerical solution of the time-dependent Navier-Stokes equations requires the
consideration of an initial condition for the velocity field. In the field of hemodynamics
it is impossible to set the correct initial conditions because of the periodic nature of
the physiological flows. Instead, it is usually proposed to start with u(x, 0) = 0 and
then simulate several cardiac periods in order to erase the initial conditions and reach a
periodic state.
An alternative to setting null velocity is to solve a stationary Stokes problem. The velocity
solution is compatible with boundary/incompressibility condition and accounts already
for part of the physics of the problem, by neglecting the inertia effects. Another option is
to employ cheaper models to the assessment and then construct an initial data in base of
that low-cost solution. In the TEPEM, as the geometrical structure is independent of the
transversal order employed to approximate the velocity/pressure fields, the projection of
an approximate solution into richer spaces can easily be performed, and will be exploited
in some numerical simulations presented here. This is, in contrast to projections within
the context of FEM where the refinement in the approximate space is attached to a
modification in the geometry.
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4.3.4 Boundary conditions

The computational implementation of boundary conditions at inlet/outlet regions within
the TEPEM scope is performed taken into account that all the degrees of freedom
corresponding to the desired flat boundary are connected when considering one single
pipe-element for the transversal section. In practice, it is possible to understand each
inlet/outlet boundary as a single element composed by (p+ 1)2 nodes, as exemplified in
Figure 4.8.

Figure 4.8: Geometrical components of flat boundary Γ. In blue the geometrical nodes
and in red the nodes where physical fields are approximated (case p = 4).

The geometrical mapping χ2D is constructed in base of the Serendipity basis as

χ2D(ξ, η) =

12∑
i=1

xiSi(ξ, η) (4.22)

while the velocity field is approximated as

u ◦ χ2D |Γ0(ξξξ) =

(p+1)∑
i=1

(p+1)∑
j=1

uijφi(ξ)φj(η) (4.23)

where the set {φi : i = 1, . . . , p+1} is the basis of Pp where each element is a Lagrangian
polynomial defined in the CGL set of nodes and, for 1 ≤ i, j ≤ p + 1, uij ∈ R3 are the
degrees of freedom for the velocity field. Note that both the geometrical mapping and
the approximation of velocity field are constructed as a restriction of the field defined
for a pipe-element but restricted to one transversal slice.
Among different possible boundary conditions that could be imposed at inlet/outlet
boundaries, here we limit ourselves to two cases: (i) Non-homogeneous Dirichlet BC, in
particular the imposition of a parabolic profile for the velocity and (ii) The imposition
of non-homogeneous Neumann BC. In Chapter 5.2, some other types of boundary
conditions are addressed in the context of hemodynamics simulations.
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Dirichlet condition Considering Γ being a circular region of center x0 and radius R,
we are interested in imposing at Γ a velocity field with parabolic profile and maximum
velocity prescribed as α. This is, for each x ∈ Γ

u(x) · n = ±α
(

1− r2

R2

)
, u(x) · t1 = 0, u(x) · t2 = 0 (4.24)

where r2 = ‖x − x0‖2, n is the outward unit normal of Γ and the in-plane vectors t1

and t2 are such that t1 × t2 = n. The sign at the first equation is positive if Γ is an
outlet boundary and negative in the case of inlet boundary, this because the normal n
is chosen always to be outward. Note also that, when choosing this boundary as being a
flat surface, the vectors n, t1 and t2 are uniform in Γ.
The natural way to impose this condition is by computing the exact values of coefficients
uij ∈ R3 in the Equation (4.23) such that the last relations must be satisfied. Then,
these values are imposed in the discrete linear system in direct way, modifying the rows
corresponding to these degrees of freedom.
The computation of each velocity coefficient is trivially performed by appealing to the
Lagrangian nature of the interpolants. Defining for each 1 ≤ i, j ≤ p + 1 the values

ξi = − cos

(
(i− 1)π

p

)
, ηj = − cos

(
(j − 1)π

p

)
, (4.25)

it is immediate the relation uij = u ◦ χ2D(ξi, ηj).
Finally, each coefficient is the solution of the problem

uij · n = ±α
(

1−
r2
ij

R2

)
, uij · t1 = 0, uij · t2 = 0, (4.26)

where r2
ij = ‖χ2D(ξi, ηj)− x0‖2.

Neumann boundary condition Neumann BC are naturally imposed in the variational
formulation of the problem. The normal component of the traction imposed at Γ,
expressed here as t = −p, being p a given time-dependent datum, is then expressed
as ∫

Γ
tn · û(x) dΩ =

∫
Γ

(−p(x, t)n) · û(x) dΩ. (4.27)

For time-dependent values of pressure, and recalling that the vector n is constant in Γ,
the last integral can be recast into the reference surface Γ0 as∫

Γ
tn · û(x) dΩ = −p(t)n ·

∫
Γ0

û ◦ χ2D(ξξξ)‖J−Tn0‖det J dΓ0, (4.28)

where J = ∇χ2D and n and n0 the outward unit normal vector of Γ and Γ0, respectively.
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4.4 Academic fluid flow simulations: 2D case

The numerical assessment of the proposed methodology, for the approximation of fluid-
flow problems defined in a two-dimensional case, is addressed in this section. The three-
dimensional case will be studied in the next section. As carried out in the case of scalar
transport problems, and to highlight the accuracy properties in the approximation of
Navier-Stokes equations an efficiency study is performed for several test problems.
The convergence properties are studied through the comparison of the approximate
velocity/pressure field against analytical solutions, when available, or reference solutions
obtained with a traditional FEM scheme. This convergence study is performed against
variations in the mesh axial size (h) and in the transversal order p. Denoting by (uT, pT)
the approximate solution via the TEPEM and by (u, p) the reference solution (analytical
or obtained with FEM), we define the relative error metrics for velocity and pressure in
the L2-norm as

‖u− uT‖=
‖u− uT‖L2(Ω)

‖u‖L2(Ω)
‖p− pT‖=

‖p− pT‖L2(Ω)

‖p‖L2(Ω)
(4.29)

and also, for the velocity, is defined the relative error in the H1-seminorm by

|u− uT|=
‖∇u−∇uT‖L2(Ω)

‖∇u‖L2(Ω)
(4.30)

where ‖·‖L2(Ω) is the classical norm

‖u‖2L2(Ω)=

∫
Ω
u · u dΩ (4.31)

The errors measured through these norms are complemented with the calculation
of the reduction in the total number of degrees of freedom needed in the TEPEM
problem (DoFsT) against the employed for the reference solution (DoFs0). The percentage
reduction is defined as

DoFs reduction =
DoFs0 −DoFsT

DoFs0
× 100% (4.32)

For the cases in which no analytical solution is available, the reference solution is chosen
as the approximation of the Navier-Stokes problem employing classical FEM approach
into a sufficiently fine mesh. The mesh is composed by triangular elements and the
finite element P2 − P1 is employed to approximate velocity and pressure fields. The
computational implementation of this strategy is performed using the FreeFem software
due to: (i) its facility to implement and solve two-dimensional problems, (ii) the self-
contained meshing software and (iii) for a comparison exclusively based on the reduction
of the problem size, it is not mandatory to ensure the same computational paradigm of
implementation for FEM and TEPEM.
Related to the geometrical discretization, an ad-hoc pipe mesh is constructed in each
case to study the convergence of the proposed methodology against the axial size h. The
inclusion of transition-pipe elements is detailed in the cases in which be employed. These
elements are related to the respective reference element through the mapping described
in Section 2.2.1 and which is defined through the combination of linear functions for
both axial and transversal direction.
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For transient cases, the temporal discretization is performed with a time step small
enough to ensure the convergence in the time. The discrete linear system is solved by
a direct solver based in LU decomposition. Tolerance value for non-linear iterations is
fixed as tol = 1 · 10−2 for FEM and TEPEM simulations. No stabilization is employed
for neither of approaches.

4.4.1 Poiseuille and Womersley flows

The first numerical example in 2D is devoted to test the numerical capabilities of the
TEPEM in two cases where the analytical solution is available. Consider the flow of a
fluid between parallel plates driven by a pressure gradient. When considering a constant
pressure gradient, the flow is known as the Poiseuille flow. Conversely, if the pressure
gradient is sinusoidal in time, this problem is known as Womersley flow. Both cases
are defined in the domain described in Figure 4.9. Homogeneous Dirichlet boundary
conditions are considered for the transversal (vertical) direction of the velocity field at
Γ1 ∪ Γ3 and no-slip conditions are applied over the lateral boundaries (Γ2 ∪ Γ4).

Figure 4.9: Geometrical setting for the Poiseuille and Womersley flows.

Poiseuille flow. Considering the flow driven by a constant pressure difference between
inlet and outlet (∆p), the analytic solution for velocity u = (u, v) and pressure p are
given by

u(x, y) =
∆p

2µ
y(y − Ly), v(x, y) = 0, p(x, y) = pin + ∆p x (4.33)

where Ly = 0.25 is the transversal length and µ is the (constant) viscosity coefficient.
Notice that, for this particular case, the pressure field is a linear function of the axial
direction while the velocity is fully characterized by quadratic function of the transversal
direction. With this, the TEPEM must be able to provide the exact solution even with
a few number of pipe-elements and lower transversal order for each field.
To test a particular case, let us consider the viscosity µ = 1 and the inlet/outlet pressure
given by pin = 128 and pout = 0 (this is ∆p = −128). This pressure difference is imposed
through non-homogeneous and homogeneous Neumann boundary conditions at inlet and
outlet for the axial component of the traction, respectively.
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For the TEPEM approximation, we consider an uniform discretization of Ω composed by
only three pipe-elements (h = 1/3) and a transversal enrichment p = 4 for the velocity
field and p = 2 for the pressure. The discrete spaces defined for velocity and pressure
contain the analytical solution, and so the approximation obtained with the TEPEM
matches the analytical one. The approximate solution is outlined in Figure 4.10. To
complement these results, a comparison between the axial velocity profile and pressure
drop along the axial direction for the TEPEM solution against the analytical solution is
shown in Figure 4.11. The total number of degrees of freedom is 123.

(a) Pressure drop (b) Velocity profile

Figure 4.10: Approximate solution with TEPEM for the Poiseuille flow problem. Only
three pipe-elements were employed and transversal order p = 4 for the velocity. Exact
solution is achieved.

Figure 4.11: Comparison of the approximate solution with TEPEM (red dots) against
analytical solution (blue solid line). Left: Velocity profile in the transversal section x =
0.5. Right: Pressure drop along the axial direction (line y = 0.125).
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Womersley flow. The Womersley flow is described as the flow between parallel plates
driven by a sinusoidal pressure gradient. Considering the pressure drop as a function
of time as ∆p = −A cos

( τ
T

)
, with fixed values for amplitude (A) and period (T ), the

analytical solution is available and described by

u(x, y, t) = −Real
[
i
A

τρ

(
1− cos(λ(2y/Ly − 1))

cos(λ)

)
eiτt
]

v(x, y, t) = 0

p(x, y, t) = pin(t) + x∆p

(4.34)

where Ly is the transversal length, ρ is the (constant) density of the fluid, Real(·) stands
for the real part of the argument (·), i =

√
−1 the imaginary unity and the imaginary

coefficient λ = (−iκ2)1/2 is given by the dimensionless number κ known as Womersley

number and defined by κ =
Ly
2

(
τ

µ

)1/2

with µ the (constant) viscosity.

The pressure difference is imposed through non-homogeneous and homogeneous
Neumann boundary conditions at inlet and outlet for the axial component of the traction.
The complexity of the dynamics is determined by the Womersley number. By increasing
this number we obtain thinner transversal boundary layers that are difficult to be
accurately predicted by classical FEM in uniform meshes. For a fixed time t = t0,
the velocity profile cannot be described as a polynomial, which leads to an error when
comparing the TEPEM approximation against the analytical solution. As the exact
solution is purely dependent of the transversal component, the approximation error only
depends on the transversal enrichment order considered for velocity and pressure.
For the numerical simulations, we fix the values: ρ = 1, τ = 2π, A = 1 and T = 1. The
discrete mesh for the TEPEM is composed by three pipe elements of equal axial length
(h = 1/3) and the range considered for the transversal enrichment order for the velocity
is 4 ≤ p ≤ 12. To test the TEPEM capabilities, we simulate the transient flow for three
different Womersley numbers κ ∈ {4, 12, 20}, these values were reached by varying the
viscosity. For the temporal discretization, we take ∆t = T/1000 and u = 0 as initial
condition. Three periods were simulated and the error analysis is performed within the
third period. The computational cost of the TEPEM for the transient simulations can
be measured by the degrees of freedom (DoFs) needed in each case. In Table 4.1 DoFs
employed by the TEPEM, for different transversal orders, are displayed together with
the simulation time for the whole third cycle in a sequential implementation.

Table 4.1: Degrees of freedom and simulation time (in minutes) for the Womersley flow
simulation with TEPEM and different transversal order.

Transversal enrichment
p = 4 p = 6 p = 8 p = 10 p = 12

DoFs 123 171 219 267 315
Time (min) 0.42 0.70 1.35 2.03 2.68

A comparison between the TEPEM approximation and the analytical solution, for
different times instants, is presented in Figure 4.12. For the three values of Womersley
number, it is evident the high accuracy obtained with the proposed methodology not
only into the approximation of the velocity profiles but also into the approximation
of the derivative, which is of fundamental importance in hemodynamics simulations to
compute derivative-based variables such as for example the wall shear stress (WSS).
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(a) Case κ = 4 with p = 4.

(b) Case κ = 12 with p = 8.

(c) Case κ = 20 with p = 12.

Figure 4.12: Comparison of analytical (solid line) and approximate (dashed line) velocity
profile for the Womersley problem at different times. From top to bottom: (κ = 4, p = 4),
(κ = 12, p = 8) and (κ = 20, p = 12). At each panel, a comparison between velocity
profiles along a transversal section (x = 0.5) as well as a detail of the velocity gradient
near right boundary are presented.
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4.4.2 Backward-facing step

The laminar backward-facing step (BFS) flow problem is now considered. Extensively
studied in the literature (see, for example, [Armaly et al. 1983, Kim and Moin 1985,
Sohn 1988]), the BFS flow is considered as a benchmark problem employed to study the
accuracy of new numerical methods as well as their capacity to deal with the presence
of recirculation patterns. According to Arnali et al [Armaly et al. 1983], the Reynolds
number is measured based on the average value of the inlet velocity profile and the cross-
sectional width of the whole domain. For Re < 500 there only exists a single recirculation
zone behind the step while, for higher values, another recirculation zone appears at the
top wall of the channel.
The geometry for this problem is the suddenly expanded domain shown in Figure 4.13.
Aspect ratio of the BFS to the overall sectional width is 1:2 and the total length in the
horizontal direction is 20. In this region, four straight segments are selected and denoted
as: A (vertical segment x = 4), B (vertical segment x = 10), C (horizontal segment
defined by 1 ≤ x ≤ 10 and y = 1) and D (diagonal along the whole domain).

Figure 4.13: Geometrical setting for the backward-facing step benchmark problem. In
dotted lines, the structure for a pipe-type discretization is outlined. Highlighted in red,
only one transition pipe element is employed for the discretization. Also, three straight
segments are demarcated and denoted as: A (in blue), B (in green), C (in red) and D (in
magenta).

A fully developed parabolic velocity profile, with unitary maximum velocity, is prescribed
at the inlet boundary (Γ1) and at the outlet boundary (Γ3) homogeneous Neumann
boundary conditions for the axial component of the traction and homogeneous Dirichlet
boundary conditions are considered for the transversal direction of the velocity field. The
problem is fulfilled with no-slip conditions over the lateral boundaries (Γ2 ∪ Γ4).
The flow regime in this example is Re∈ {250, 500} which is achieved by changing the
value of the viscosity, and the domain is discretized in a pipe-type mesh formed by 200
elements (h = 0.1). Among these elements, one transition pipe element is considered in
the expansion, as can be seen in Figure 4.13). The degrees of freedom for each case of
transversal enrichment (p ∈ {4, 6, 8, 10, 12}) as well the characteristics in the FEM mesh
are outlined in Table 4.2
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Table 4.2: Comparison of number of elements and degrees of freedom employed in FEM
and TEPEM simulations. We also indicate the relative reduction in the number of degrees
of freedom associated to each TEPEM simulation (for different transversal order) against
the employed to obtain the reference FEM solution.

FEM Transversal order
p = 4 p = 6 p = 8 p = 10 p = 12

Elements 32 552 200
DoFs 263 940 4 613 6 418 8 223 10 028 11 833
DoFs reduction - 98.25% 97.56% 96.88% 96.20% 95.51%

For the first case Re = 250, the computation starts with zero velocity as initial condition.
A comparison between the reference FEM solution and the TEPEM approximation (p =
8) is presented in Figure 4.14. The velocity field provided by the TEPEM with transversal
order p = 8 (which represents a reduction higher than 90% in the problem size against
the reference solution) is in highly agreement with the reference one.

Figure 4.14: Comparison of the magnitude of the velocity field approximated with the
TEPEM against the FEM reference solution for the case Re = 250. Velocity profiles
(white lines) are also compared for each approach.

The approximation obtained in the case Re = 250 is employed as initial guess for the case
Re = 500. A comparison of the magnitude of the velocity provided by the TEPEM and
the reference one is displayed in Figure 4.15. In that figure, the comparison is performing
in the velocity profiles along the mainstream direction. The proposed approach, with
p = 8, is able to predict accurately the flow dynamics as well as the vortical structures
(see Figure 4.16), whose position and size are in agreement with existing literature.

Figure 4.15: Comparison of the magnitude of the velocity field approximated with the
TEPEM against the FEM reference solution for the case Re = 500. Velocity profiles
(white lines) are also compared for each approach.
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Figure 4.16: Comparison of velocity streamlines for the reference FEM solution and the
TEPEM (p = 8) for the case Re = 500.

The global comparison presented in the former figures is complemented with a
comparison between the approximated fields and the reference ones focused in the
straight segments demarcated in Figure 4.13. The scalar components of the velocity (axial
and transversal) as well as the pressure field obtained with both FEM and TEPEM are
presented for the case Re = 250 (Figure 4.17) and Re = 500 (Figure 4.18).
For both Reynolds cases, these comparisons evidence the convergence in the TEPEM
when increased the transversal order p. Notice that no further differences are appreciated
between the approximate TEPEM solution with p = 8 and p = 10, neither for different
straight sections nor both Reynolds regime.
Once the discretization in pipe-elements is fixed, there exist a threshold in the model
capabilities of the TEPEM which is commanded by the axial characteristic length h.
This threshold in the predictive capabilities when fixed the parameter h (evidenced
in all the convergence studies addressed so far) justify the difference between the field
approximation obtained with TEPEM and p = 10 (that can be understood as a converged
solution regarding p) and the reference solution. An improvement in the accuracy can
be obtained by refining the axial mesh.

4.4.3 Partially obstructed channel

The flow through a region with a partial obstruction is addressed here. The geometry
for this problem is described in Figure 4.19. The flow is driven by the imposition of
a parabolic velocity profile (with maximum value u0) at the boundary Γ1 = {x ∈
R2 : x = 0, 0 ≤ y ≤ 1}. At boundary Γ3, we consider a mixed boundary condition
with homogeneous Dirichlet condition for the transversal (vertical) velocity field and
homogeneous Neumann condition for the axial component of the traction. The setting is
completed with the imposition of no-slip boundary conditions over the remaining part of
the boundary. On this geometry are also selected four segments (A, B, C and D) which
will help in a detailed comparison of the fields provided by the FEM and TEPEM.
This numerical example is intended to study the convergence of the approximation of
the TEPEM as a function of the transversal order considered for the velocity/pressure
fields, and for different values of Reynolds number, in the steady state regime. For this
purpose, we fix a pipe mesh and consider as the reference solution the approximation
obtained with FEM into a fine mesh. This reference solution is denoted by (uF, pF).
The characteristics of both FEM and TEPEM meshes are detailed in Table 4.3 together
with the relative reduction in the total number of degrees of freedom when the TEPEM
is chosen.
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(a) Comparison of fields along the straight segment A

(b) Comparison of fields along the straight segment B

(c) Comparison of fields along the straight segment C

(d) Comparison of fields along the straight segment D

Figure 4.17: Comparison of the scalar components of the velocity and the pressure field
approximated with the TEPEM against the FEM solution for the case Re = 250 and in
the selected straight segments in Figure 4.13.
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(a) Comparison of fields along the straight segment A

(b) Comparison of fields along the straight segment B

(c) Comparison of fields along the straight segment C

(d) Comparison of fields along the straight segment D

Figure 4.18: Comparison of the scalar components of the velocity and the pressure field
approximated with the TEPEM against the FEM solution for the case Re = 500 and in
the selected straight segments in Figure 4.13.
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Figure 4.19: Geometrical setting for the constricted region example. Boundary is divided
in segments ∂Ω =

⋃
i=1,2,3,4 Γi. Also, four sections are highlighted in the geometry and

denoted by: A (in red), B (in green), C (in magenta) and D (in blue).

Table 4.3: Comparison of number of elements and degrees of freedom employed in FEM
and TEPEM simulations. We also indicate the relative reduction in the number of degrees
of freedom associated to each TEPEM simulation (for different transversal order) against
that employed to obtain the reference FEM solution.

FEM Transversal order
p = 4 p = 6 p = 8 p = 10 p = 12

Elements 88 246 800

DoFs 711 252 28 815 40 021 51 227 62 433 73 639

DoFs reduction - 95.95% 94.37% 92.79% 91.22% 89.64%

The flow regime addressed in this example is Re∈ {50, 250, 500}. The Reynolds number
is based on the average value of the inlet velocity profile and the cross-sectional width of
the whole domain. Then, fixing the values for density (ρ = 1) and viscosity (µ = 0.01), the
Reynolds number in each case is achieved by varying the maximum velocity imposed at
the inlet u0. The relative error in the TEPEM approximation, compared to the reference
solution uT, is detailed in Table 4.4 for the three values of Reynolds considered.
The convergence against the transversal order p, for each case, can be better appreciated
in Figure 4.20 where the evolution of the error (in L2-norm and H1-seminorm) is
displayed together with the order of convergence.
Notice that in the case Re = 50, the low complexity in the dynamics is reflected in
the presence of a threshold in the approximation error. Therefore, the quality in the
approximation cannot be improved by increasing the transversal order, instead of this
an axial refinement must be performed to reduce the approximation error.
Nevertheless, the TEPEM approximation with lowest values for transversal enrichment
(say p = 6) provides excellent results in velocity and pressure when compared with the
reference solution. In Figure 4.21 a comparison between reference and TEPEM solution
is shown, focusing in the comparison of velocity profile, pressure and the streamlines in
the whole domain. Special attention deserves the development of a recirculation region
right after the constriction, which is accurately approximated with the TEPEM.
A more detailed comparison between the FEM reference solution and different TEPEM
solutions (for p ∈ {6, 8, 10}) is presented in Figure 4.22. There, axial and transversal
components of the velocity and the pressure field obtained with both techniques are
compared focusing in the selected segments in Figure 4.19. Notice that, in each section,
the TEPEM solution is convergent (as long p is increased) with a threshold related with
the axial refinement of the mesh.
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Table 4.4: Relative errors in the velocity field, in the velocity gradient and in the pressure
field between the TEPEM solution and the reference FEM solution for the partially
obstructed channel case and Reynold number Re = 50 (top table), Re = 250 (middle
table) and Re = 500 (bottom table). Also, for each Reynolds number, the reference values
for FEM solutions are reported.

Transversal order
Re = 50 p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 1.2063 · 10−1 1.0453 · 10−1 9.9743 · 10−2 9.4058 · 10−2 9.2609 · 10−2

|uF − uT| 2.0039 · 10−1 1.8726 · 10−1 1.7160 · 10−1 1.6003 · 10−1 1.5536 · 10−1

‖pF − pT‖ 7.8488 · 10−2 6.6057 · 10−2 7.1975 · 10−2 7.3736 · 10−2 7.5254 · 10−2

Transversal order
Re = 250 p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 2.0621 · 10−1 1.4943 · 10−1 9.9978 · 10−2 8.0820 · 10−2 8.3904 · 10−2

|uF − uT| 2.9999 · 10−1 2.2012 · 10−1 1.5934 · 10−1 1.3241 · 10−1 1.3101 · 10−1

‖pF − pT‖ 3.2690 · 10−1 1.3967 · 10−1 3.7788 · 10−2 2.7658 · 10−2 3.1145 · 10−2

Transversal order
Re = 500 p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 3.0585 · 10−1 3.3172 · 10−1 1.4940 · 10−1 9.7171 · 10−2 8.5708 · 10−2

|uF − uT| 4.5277 · 10−1 4.6555 · 10−1 2.2767 · 10−1 1.5341 · 10−1 1.3314 · 10−1

‖pF − pT‖ 4.4504 · 10−1 2.5348 · 10−1 1.0826 · 10−1 4.0651 · 10−2 2.7951 · 10−2

Reference values
‖uF‖L2 ‖∇uF‖L2 ‖pF‖L2

Re = 50 1.6108 · 100 3.6042 · 101 1.0827 · 100

Re = 250 4.4159 · 100 1.1133 · 102 3.8959 · 100

Re = 500 7.5695 · 100 2.0514 · 102 9.6176 · 100
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Figure 4.20: Convergence history for the partially obstructed domain in three Reynolds
regimes: Re = 50 (left panel), Re = 250 (center panel) and Re = 500 (right panel). In
each panel, the relative error in the L2-norm (N) and H1-seminorm (�) for the velocity
are reported. For the pressure, the relative error in the L2-norm ( ) is also presented.
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(a) Comparison of the magnitude of the velocity field for the TEPEM and for the reference FEM
solution.

(b) Comparison of the pressure field and velocity streamlines for the TEPEM (p = 8)
and the reference FEM solution.

Figure 4.21: Partially obstructed domain with Re = 50. Comparison of velocity and
pressure approximation for the TEPEM against the reference FEM solution. Also,
streamlines are displayed to appreciate the recirculation zone.

At middle (Re = 250) and right (Re = 500) panels in Figure 4.20 we can appreciate
that the increase in the Reynolds number, and therefore the increase in the dynamics
complexity, reduces the threshold required for the transversal dynamics to dominate the
source of the approximation error.
For the case Re = 250, the improvement in the quality of TEPEM approximation (for
different values of transversal enrichment) is presented in Figure 4.23. The agreement
in the velocity profile and in the pressure field are highly satisfactory. Moreover, the
recirculation region developed after the constricted part of the domain (even when a
higher complexity than the one presented in the case Re = 50) is also correctly predicted
with p = 8, which implies in an efficient approximation with a reduction of more than
90% in the problem size.
Furthermore, in Figure 4.24 a comparison between the scalar components of the velocity
and the pressure field provided by TEPEM and reference FEM solution is addressed in
the four straight segments of interest. The convergence of the TEPEM, with respect to
the transversal order p, is also evidenced for each scalar field and each selected segment.



Chapter 4. Incompressible fluid flow modeling 106

(a) Comparison in section A

(b) Comparison in section B

(c) Comparison in section C

(d) Comparison in section D

Figure 4.22: Comparison of the velocity (axial and transversal components) and pressure,
on the selected regions, between the reference FEM solution and different TEPEM
solutions (for varying p) and for the case Re = 50.
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(a) Comparison of the magnitude of the velocity field for the TEPEM and for the reference
FEM solution.

(b) Comparison of the pressure field and velocity streamlines for the TEPEM (p = 8) and the
reference FEM solution.

Figure 4.23: Partially obstructed domain with Re = 250. Comparison of velocity and
pressure approximation for the TEPEM against the reference FEM solution. Also,
streamlines are displayed to appreciate the recirculation zone.

The case Re = 500, the higher regime considered for this example, increase considerably
the complexity in the dynamics and also features a new recirculation region at the
bottom of the domain, as can be appreciated in Figure 4.25. In the same figure, it
is addressed a comparison between the approximate solution obtained with the TEPEM
for p = 8 against the reference FEM solution. The two recirculation regions are correctly
approximated by the TEPEM.
A comparison in the velocity (axial and transversal components) and pressure along the
straight segments of interest is also outlined in Figure 4.26. Notice than while increasing
the complexity in the dynamics (increasing the Reynolds number) the difference between
TEPEM solutions with low transversal order (p = 6) and high order (p = 10) are more
evident. Even for the higher Reynolds number considered here, the convergence of the
TEPEM (with respect to the parameter p) can be easily appreciated.
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(a) Comparison in section A

(b) Comparison in section B

(c) Comparison in section C

(d) Comparison in section D

Figure 4.24: Comparison of the velocity (axial and transversal components) and pressure,
on the selected regions, between the reference FEM solution and different TEPEM
solutions (for varying p) and for the case Re = 250.
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(a) Comparison of the magnitude of the velocity field for the TEPEM and for the reference
FEM solution.

(b) Comparison of the pressure field and velocity streamlines for the TEPEM (p = 8) and the
reference FEM solution.

Figure 4.25: Partially obstructed domain with Re = 500. Comparison of velocity and
pressure approximation for the TEPEM against the reference FEM solution. Also,
streamlines are displayed to appreciate the recirculation zone.

These three cases corroborate the high quality in the TEPEM approximation with a
considerable reduction in the problem size. In fact, considering p = 8, the three steady
state cases were addressed with high fidelity and performing a reduction in the total
number of degrees of freedom over 90%.
To study the TEPEM capabilities in a transient case, we now perform the same
comparison against a reference FEM solution for a flow driven by the imposition, at
the inlet, of a sinusoidal velocity profile of the form

u(x, t) = −u0(1 + sin(2πt))y(1− y)n x ∈ Γ1 (4.35)

with u0 the maximum velocity value considered for the case Re = 250 and n the outer
normal (n = (−1, 0)). This inlet condition implies into a flow characterized by a mean
Reynolds number Re = 250 and a Womersley number κ ≈ 12.
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(a) Comparison in section A

(b) Comparison in section B

(c) Comparison in section C

(d) Comparison in section D

Figure 4.26: Comparison of the velocity (axial and transversal components) and pressure,
on the selected regions, between the reference FEM solution and different TEPEM
solutions (for varying p) and for the case Re = 500.
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Denoting by T = 1s the period of the sinusoidal parabolic profile imposed at the inlet
boundary of the domain, we study the accuracy of the TEPEM for p ∈ {6, 8, 10}, along
two cycles (0 < t < 2T ), considering a time step of ∆t = 1 · 10−3.
In Table 4.5 we present the relative errors for velocity and pressure measured against the
reference FEM solution computed in the same mesh used for the steady state regime.
The metrics employed in this table are the discrete equivalent of the L2-norm in time,
this is

‖uF − uT‖2(0,2T )=

Nt∑
n=0

∆t

(‖u(x, tn)− uT(x, tn)‖
‖u(x, tn)‖

)2

(4.36)

where 0 = t0 < t1 < . . . < tNt = 2T .

Table 4.5: Relative errors in the velocity field, in the velocity gradient and in the pressure
field between the TEPEM solution and the reference FEM solution for the partially
obstructed domain in the time-depending setting. Also, the reference values for FEM
solutions are reported.

TEPEM FEM
p = 6 p = 8 p = 10

‖uF − uT‖(0,2T ) 6.1582 · 10−1 4.2918 · 10−1 3.0953 · 10−1 ‖uF‖L2 7.7236 · 100

|uF − uT|(0,2T ) 7.6034 · 10−1 5.2603 · 10−1 4.0514 · 10−1 ‖∇uF‖L2 1.4709 · 102

‖pF − pT‖(0,2T ) 1.5939 · 10−1 9.2254 · 10−2 7.6326 · 10−2 ‖pF‖L2 1.0084 · 102

A detailed description of the error behavior along the two cycles is presented in
Figure 4.27. Moreover, in Figure 4.28 it is compared the FEM reference solution against
the TEPEM approximation (with p = 8) at four different time instants along the
simulation. In this last figure it is easy to note the fidelity in the approximation regarding
to the location and size of the many recirculation areas.
As said before, the main ability of the TEPEM is the capacity to accurately predict
the most interesting characteristics of the dynamics (recirculation in this case) and,
even when the accuracy can be improved by increasing the transversal order or/and
refining the axial mesh, the level of accuracy presented with p = 8 (or p = 6 for
regimes characterized by low Reynolds number) seems to be sufficient for practical
applications, where the correct prediction of global characteristics (as for example,
regions of recirculation) is many times further important than provide a highly accurate
high-fidelity prediction of physical fields.
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Figure 4.27: Relative error for the partially obstructed domain in the time-dependent
setting for velocity (in L2-norm and H1-seminorm) and pressure (in L2-norm) along the
two cycles.

Figure 4.28: Partially obstructed domain in the time-dependent setting with Re = 250.
Comparison of velocity and pressure approximation for the TEPEM (p = 8) with the
reference FEM solution. Also, the streamlines displayed help to unveil the recirculation
zones.



Chapter 4. Incompressible fluid flow modeling 113

4.4.4 Pulsatile flow in a bifurcated domain

Moving a step forward for the application of the TEPEM in computational
hemodynamics, this problem addresses the simulation of a pulsatile flow in the bifurcated
domain presented in Figure 4.29. Here, the lateral boundaries are described through the
functions

f(x) = r11(0,3) +

(
r1 + (K − r1) exp

(
1− m2

m2 − (x− 7)2

))
1(3,7) +K1(7,10)

g(x) = 4r1

(
−1

2
+

1

1 + exp(−4x+ 20)

)
h(x) = −

(
1 +

r2 − r3

r1

)
g(x)

(4.37)

where 1I is the characteristic function of the set I and the coefficients are chosen as
being r1 = 0.31386, r2 = 0.11966, r3 = 0.08023, K = 2r1 + 2r2 and m = 4. These data
are chosen such that the inflow and outflow areas are consistent with typical geometrical
data in a carotid artery bifurcation.

Figure 4.29: Bifurcating channel for a typical problem in computational hemodynamics
(dimensions in centimeters). In dotted lines, the structure for the pipe-element
discretization is outlined. Transition element is highlighted in red. Also, three segments
are demarcate and denoted by: A (in blue), B (in green) and C (in magenta).

Regarding to the boundary conditions considered for this problem, homogeneous
Dirichlet conditions are imposed for the velocity over the lateral boundaries defined
by the curves f(x), −f(x), g(x) and h(x). At the inflow boundary (leftmost vertical
boundary), a parabolic profile is prescribed, which is scaled to define the flow rate
waveform presented in Figure 4.30. A description of the scale procedure is addressed
in Section 5.2. For the two outflow boundaries (rightmost vertical boundaries),
homogeneous Neumann boundary data are considered.
The density and viscosity for this problem are fixed as ρ = 1 g/cm2 and µ = 0.01 P
(Poise - 1P = 1 g·cm−1·s−1), respectively, and the time discretization is accomplished
with ∆t = 1 · 10−3 s. As initial guess, for TEPEM and FEM, we consider the solution of
the stationary Stokes problem defined in the same domain but where the flow is driven
by the imposition of a parabolic velocity profile, at the inlet, with maximum velocity
such that the flow imposed matches with the flow corresponding to the time t = 0 in the
waveform presented in Figure 4.30.
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Figure 4.30: Flow rate boundary condition imposed at the inlet.

The pipe-element mesh in TEPEM is constructed with an uniform mesh, with axial
length h = 0.05 cm, and one transition element is introduced to deal with the bifurcation
of the domain. Notice that the transition element (highlighted in red in Figure 4.29) is
located at certain distance from the point where the bifurcation of the domain take
place (point x = 5), generating a region where the transversal area is discretized by two
pipe-elements and, therefore, where the model capabilities are naturally increased. This
local enhancement in the predictive capabilities is useful due to the lack of a mainstream
direction in the bifurcation region between the points x = 3 and x = 5.
The predictive capabilities of the TEPEM are compared against a reference solution
obtained with FEM in a mesh formed by 61 412 triangular elements and a total of
440 119 degrees of freedom. A comparison between the meshes, for FEM and TEPEM,
is presented in Table 4.6.

Table 4.6: Comparison in terms of the number of elements and degrees of freedom
employed in FEM and TEPEM simulations. Also, it is presented the relative reduction
in the number of degrees of freedom associated to each TEPEM simulation (for different
transversal order) against the employed to obtain the reference FEM solution.

FEM Transversal order
p = 4 p = 6 p = 8 p = 10 p = 12

Elements 61 412 3 400

DoFs 440 119 109 435 153 650 197 865 242 080 286 295

DoFs reduction - 75.14% 65.08% 55.04% 44.99% 34.95%

In Figures 4.31 - 4.32 a comparison of the magnitude of the velocity field and the velocity
streamlines between the FEM reference solution and the TEPEM approximation is
presented. In the first figure, the comparison is focused in the bifurcation region (region
in between 3 ≤ x ≤ 7) and reveals the good agreement between both solutions, at
different time instants, even with a low value for the transversal enrichment (p = 6). A
typical recirculation is obtained in this region and is effectively predicted for the TEPEM
approach. Second figure focus the comparison in the three selected segments presented
in Figure 4.29. The pressure field is also predicted by the TEPEM with good fidelity,
comparing with the reference FEM solution, as can be appreciated in Figure 4.33.
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(a) Velocity and streamlines at t = 0.1

(b) Velocity and streamlines at t = 0.3

(c) Velocity and streamlines at t = 0.5

(d) Velocity and streamlines at t = 0.7

(e) Velocity and streamlines at t = 0.9

Figure 4.31: Comparison of the magnitude of the flow velocity between the FEM reference
solution and different TEPEM solutions (for varying p), and streamlines at different time
instants.
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(a) Comparison in velocity magnitude at t = 0.1

(b) Comparison in velocity magnitude at t = 0.3

(c) Comparison in velocity magnitude at t = 0.5

(d) Comparison in velocity magnitude at t = 0.7

Figure 4.32: Comparison of the magnitude of the flow velocity between the FEM reference
solution and different TEPEM solutions (for varying p) at different time instants and
three selected sections.
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(a) Pressure field at t = 0.1

(b) Pressure field at t = 0.3

(c) Pressure field at t = 0.5

(d) Pressure field at t = 0.7

(e) Pressure field at t = 0.9

Figure 4.33: Comparison of pressure field between the FEM reference solution and
different TEPEM solutions (for varying p) at the bifurcation area. At each time step,
scales are conveniently adjusted.
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4.4.5 Transient flow through 90◦ curved pipe

This last example addresses the flow through a two-dimensional curved pipe. The
geometrical domain is the one outlined in Figure 4.34, bounded by the curves Γi (inlet
boundary), Γo (outlet boundary) and Γl (lateral boundary).

Figure 4.34: Geometric description of the 90◦ curved pipe. The inlet spacing between the
parallel plates is fixed as D = 0.62cm. Three segments are selected: Section A in red,
Section B in magenta and Section C in blue.

On Γl it is imposed a no-slip boundary condition and over Γo we consider mixed boundary
conditions with homogeneous Dirichlet condition for the transversal component of the
velocity field and homogeneous Neumann condition for the axial component of the
traction. The flow is driven by the imposition, at Γi, of a parabolic velocity profile
scaled to yield the sinusoidal flow

q(t) = q0 (1 + sin(2πt)) (4.38)

with q0 = 4 cm2/s. Values for density and viscosity are fixed as ρ = 1 g/cm2 and
µ = 0.01 P. The flow is characterized by a mean Reynolds number equal to Re = 250
and a Womersley number κ ≈ 8.
Once the capabilities of the TEPEM proposal were demonstrated in previous examples,
for transient cases as well as for problems in complex geometries, the goal of this
example is to perform a comparison within the TEPEM and for different values of
transversal enrichment. For this purpose, we perform a discretization of the problem
domain composed of approximately 200 pipe-elements, each one with the same axial
length.
Denoting by T = 1s the period of the proposed periodic flow, we approximate the solution
in the interval of time t ∈ (0, 2T ) and consider the time step as being ∆t = 1 · 10−3s.
The computational cost to perform the transient simulation is illustrated in Table 4.7
where we compare the degrees of freedom, the time employed for a one single time-step
iteration and the wall-clock time for different transversal order.
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Table 4.7: Comparison of the computational effort in the TEPEM for different transversal
order. Only two processors were employed in each case.

Transversal order
p = 4 p = 6 p = 8 p = 10 p = 12

DoFs 6 057 8 443 10 829 13 215 15 601

Time Single time-step (seg) 1.94 2.09 2.59 3.28 3.47

Wall-clock time (min) 46.76 78.31 103.98 125.73 139.77

In Figures 4.35-4.38, we compare the pressure and velocity profile, for different time
instants, provided by different values of transversal enrichment. This comparison is
focused in the three segments selected in the curved region and presented in Figure 4.34
and features the improvement in the results when the transversal order is increased. At
each time, the profiles provided by p = 8 and p = 10 are almost overlapping, which can
be appreciated as a convergence of the TEPEM as a function of the parameter p.
For p = 6, the velocity profiles are very close to the reference profiles, showing very
slight differences only appreciable at some time instants. As said before, the main goal
of the TEPEM proposal is to reduce the computational effort but maintaining the
ability to carry the most relevant information of the dynamics. This is fundamental for
hemodynamics applications where sometimes it is more relevant to get a global insight of
the blood dynamics rather than to achieve the exact solution. For this regime (Re = 250,
κ ≈ 8) the transversal order p = 6 yields excellent results, if compared with the solution
with p = 10, with a significantly smaller computational time.

(a) Comparison in pressure at t = 0.2s, t = 0.4s and t = 0.6s

(b) Comparison in pressure at t = 0.8s, t = 1.0s and t = 1.2s

Figure 4.35: Comparison of pressure field, in the section B, given by the TEPEM with
different transversal order and at different time instants along the simulation.
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(a) Magnitude of the velocity approximated with p = 8.

(b) Comparison in velocity magnitude at t = 0.2s

(c) Comparison in velocity magnitude at t = 0.4s

(d) Comparison in velocity magnitude at t = 0.6s

Figure 4.36: Comparison of velocity profiles, in the curved region, given by the TEPEM
with different transversal order and at different time instants along the simulation.
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(a) Magnitude of the velocity approximated with p = 8.

(b) Comparison in velocity magnitude at t = 0.8s

(c) Comparison in velocity magnitude at t = 1.0s

(d) Comparison in velocity magnitude at t = 1.2s

Figure 4.37: Comparison of velocity profiles, in the curved region, given by the TEPEM
with different transversal order and at different time instants along the simulation.
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(a) Magnitude of the velocity approximated with p = 8.

(b) Comparison in velocity magnitude at t = 1.4

(c) Comparison in velocity magnitude at t = 1.6

(d) Comparison in velocity magnitude at t = 1.8

Figure 4.38: Comparison of velocity profiles, in the curved region, given by the TEPEM
with different transversal order and at different time instants along the simulation.
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4.5 Academic fluid flow simulations: 3D case

After demonstrating the capabilities of the TEPEM in the two-dimensional case, in this
section we perform an equivalent study for problems defined in 3D regions. It is expected
that the demonstrated efficiency in the previous section remains valid and in many cases
accentuated when dealing with three-dimensional problems.
The accuracy in the approximation of velocity and pressure fields is measured as
performed in the two-dimensional case, computing the relative error with respect to a
reference solution that is either an analytical solution when available or a FEM solution
computed in a sufficiently fine tetrahedral mesh.
In this case, in addition to the comparison between TEPEM and FEM in terms of the
number of degrees of freedom, we also compare the computational time required in the
simulation with both methods. For this purpose, both TEPEM and FEM techniques
have been parallelized within the same general-purpose numerical solver. The number
of processors (NP) used in the solution process is set specifically for each case. Then,
the wall-clock simulation time is reported as well as the average computational time,
which is defined by multiplying the wall-clock time by NP. By assuming linear parallel
scalability of both methods, this last parameter can be understood as the theoretical
time employed in each simulation if a single core was employed.
For the TEPEM, the geometry discretization is performed in ad-hoc way and the velocity
and pressure fields are approximated employing the combination of discrete spaces
commented in the Equation 4.15. The resulting discrete system is monolithically solved
by employing a direct parallel algebraic LU solver. For the problems addressed in this
section, the reduction in the problem size performed by the TEPEM allow us the use of
a direct solver.
By other hand, for the FEM, the spatial discretization is performed by employing
the Vascular Modeling ToolKit [VMTK 2015]. The velocity and pressure fields are
approximated based on the mini element ([Arnold et al. 1984]) with SUPG stabilization
([Hughes et al. 1987]). The system of algebraic equations is solved using an iterative
GMRES method, with a restricted additive Schwarz preconditioner.
For both, FEM and TEPEM, the Portable, Extensible Toolkit for Scientific Computation
(PETSc [Balay et al. 2017b,a]) provide the implementation of the LU solver, the Krylov
subspace algorithm and the preconditioner strategy. For transient cases, the time step
(∆t) employed for the temporal discretization is fine enough to ensure the convergence.
The simulations, for both strategies, were performed in the INCT-MACC cluster. This
heterogeneous cluster, available at the Laboratório Nacional de Computação Científica
(LNCC, Petrópolis, Brazil), is consisting of 100 nodes with 2 x Intel Xeon X5670 2.93GHz
(6 cores), 36GB of RAM and 54 nodes with 2 x Intel Xeon E5-2660 2.20GHz (8 cores),
64GB of RAM interconnected through Infiniband QDR.
A post-processing step is considered for both strategies, FEM and TEPEM, to compute
the wall shear stress (WSS). Defined over the boundary that corresponds to the lateral
lumen boundary, the WSS is computed from the wall shear rate vector τ(t,x) = (∇su)n
at each surface point x as

WSS = −2µτ(t,x). (4.39)



Chapter 4. Incompressible fluid flow modeling 124

4.5.1 Womersley flow

The Womersley flow is a classical benchmark example in fluid dynamics due to the
existence of an analytical solution [Womersley 1955]. Consider the incompressible flow
of a Newtonian fluid inside a cylindrical pipe driven by a pressure gradient defined as

∆p = −A cos

(
2π

T
t

)
(4.40)

with T = 1 the period and A = 2 the amplitude. The domain of the problem is a cylinder
of length equal to l = 2 and radius R = 0.2.
To ensure that the flow is fully developed, the pressure difference is imposed through
homogeneous and non-homogeneous Neumann boundary conditions, at outlet and inlet
respectively. No-slip boundary condition is imposed on the lateral boundaries of the pipe.
The analytical solution, for velocity and pressure, can be analytically computed in
cylindrical coordinates (r, θ, x). Denoting by (ux,ur,uθ) the axial, radial and angular
components of the velocity, respectively, the solution of the Womersley problem is
expressed as

ux(r, θ, x, t) = −Real
(
A

iρτ

[
1− J0 (x̂r)

J0(x̂R)

])
eiτt ur = uθ = 0

p(r, θ, x, t) = pin(t) + x∆p

(4.41)

where ρ is the (constant) density of the fluid, r the radial component of the spatial
coordinate, i =

√
−1 the imaginary unity, Real(·) the real component of argument (·),

J0(·) the Bessel function of order zero. Also, we have the following parameters

τ =
2π

T
, κ = R

√
τ

µ
, x̂ =

κ

R
i3/2 (4.42)

with κ the Womersley number and µ the fluid viscosity.
A numerical study of the TEPEM is carried out to demonstrate the capabilities of the
proposed approach in the cases κ ∈ {3, 5, 10, 20}, which are Womersley numbers within
the range encountered in hemodynamic applications. Keeping the density ρ = 1, the
Womersley number in each case is reached by varying the fluid viscosity. For the time
discretization, we consider ∆t = T

4000 .
The errors in the TEPEM approximation, for different Womersley numbers and
transversal enrichment orders, are presented in Table 4.8 for the velocity and the gradient.
This table is complemented with Figure 4.39 where the convergence of the TEPEM
solution with respect to the transversal enrichment is presented for each Womersley
number.
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Table 4.8: Numerical error in the velocity field between the TEPEM solution and the
analytical solution measured in the norm of L2(0, T ;L2(Ω))-space and the seminorm of
L2(0, T ;H1(Ω))-space.

Womersley number
κ = 3 κ = 5 κ = 10 κ = 20

‖u− uT‖
p = 4 1.0177 · 10−3 1.5820 · 10−3 4.5864 · 10−3 8.2390 · 10−3

p = 8 2.7518 · 10−4 3.8203 · 10−4 9.9085 · 10−4 1.7180 · 10−3

p = 12 1.6767 · 10−4 2.5408 · 10−4 4.6867 · 10−4 7.6272 · 10−4

|u− uT|
p = 4 2.7938 · 10−3 9.4462 · 10−3 3.5476 · 10−2 7.2035 · 10−2

p = 8 9.3157 · 10−4 1.8344 · 10−3 9.2567 · 10−3 2.8609 · 10−2

p = 12 7.6222 · 10−4 1.3994 · 10−3 5.8783 · 10−3 1.0455 · 10−2
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Figure 4.39: Numerical error of the velocity in the L2(0, T ;L2(Ω))-norm (N) and the
L2(0, T ;H1(Ω))-seminorm (�) for each Womersley number κ.

For a visual comparison, in Figures 4.40-4.43 the analytical solution and the TEPEM
approximation are displayed. For different time instants, the approximate solution (with
p = 8), at the middle of the pipe, is presented as a 3D profile together with the
analytical solution. It can be seen that even with a low transversal order, say p = 4,
the solution is reasonably good near the wall, which is crucial towards a reasonable, and
fast, estimation of the endothelial shear stress in hemodynamic simulations. Also, even
for high Womersley number, the choice p = 8 offers a very accurate solution.
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(a) Velocity profile at t = 0/8

(b) Velocity profile at t = 1/8

(c) Velocity profile at t = 2/8

(d) Velocity profile at t = 3/8

Figure 4.40: Comparison of velocity profile provided by the TEPEM (right profile at each
panel) with respect to the analytical solution (left profile at each panel) for Womersley
numbers κ = 3. On each panel, the solid black line stands for the analytical solution, red
dotted line is the approximation with p = 4, blue dotted line corresponds to p = 8 and
green dotted line is the solution with transversal order p = 12.
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(a) Velocity profile at t = 0/8

(b) Velocity profile at t = 1/8

(c) Velocity profile at t = 2/8

(d) Velocity profile at t = 3/8

Figure 4.41: Comparison of velocity profile provided by the TEPEM (right profile at each
panel) with respect to the analytical solution (left profile at each panel) for Womersley
numbers κ = 5. On each panel, the solid black line stands for the analytical solution, red
dotted line is the approximation with p = 4, blue dotted line corresponds to p = 8 and
green dotted line is the solution with transversal order p = 12.
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(a) Velocity profile at t = 0/8

(b) Velocity profile at t = 1/8

(c) Velocity profile at t = 2/8

(d) Velocity profile at t = 3/8

Figure 4.42: Comparison of velocity profile provided by the TEPEM (right profile at each
panel) with respect to the analytical solution (left profile at each panel) for Womersley
numbers κ = 10. On each panel, the solid black line stands for the analytical solution,
red dotted line is the approximation with p = 4, blue dotted line corresponds to p = 8
and green dotted line is the solution with transversal order p = 12.
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(a) Velocity profile at t = 0/8

(b) Velocity profile at t = 1/8

(c) Velocity profile at t = 2/8

(d) Velocity profile at t = 3/8

Figure 4.43: Comparison of velocity profile provided by the TEPEM (right profile at each
panel) with respect to the analytical solution (left profile at each panel) for Womersley
numbers κ = 20. On each panel, the solid black line stands for the analytical solution,
red dotted line is the approximation with p = 4, blue dotted line corresponds to p = 8
and green dotted line is the solution with transversal order p = 12.
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4.5.2 Tortuous pipe flow

Let us define the region Ω where the fluid is flowing as the tortuous pipe with circular
cross-sectional area with centerline and radius parametrized by the relation

c(t) = 0.4
√
t sin(2πt), r(t) = 0.1(1 + 0.5 cos2(2πt)) 0 ≤ t ≤ T (4.43)

where T is the period. The aim of this example is to study the TEPEM when the
complexity in the domain is increased. For this, we consider three domains corresponding
to two, four and six turns of the tortuous pipe (corresponding to T ∈ {1, 2, 3}). These
domains are outlined in Figure 4.44.

Figure 4.44: Geometries for the tortuous sinusoidal pipe example. From left to right:
Two, four and six turns.

The efficiency of the TEPEM is measured with respect to a FEM reference solution
computed in an extremely fine tetrahedral mesh, comparing the total number of degrees
of freedom involved in each strategy, computational time and error for the TEPEM in
the velocity field. The characteristics of the meshes for both approaches are summarized
in Table 4.9. Notice that the relative reduction in the degrees of freedom is superior to
the 98% for all the cases. Specifically it is achieved a reduction between 99.66% (in the
case p = 6 and two turns) and 98.04% (in the case p = 12 and six turns).

Table 4.9: Comparison between degrees of freedom and number of elements employed in
the FEM and the TEPEM approaches. The relative reduction in the degrees of freedom
performed by the TEPEM is superior to the 98%.

Degrees of Freedom Elements
FEM p = 6 p = 8 p = 10 p = 12 FEM TEPEM

Turn 2 1 329 676 4 407 8 466 13 851 20 562 1 901 141 26

Turn 4 3 054 632 10 383 19 950 32 643 48 462 4 395 739 62

Turn 6 4 139 792 17 355 33 348 54 567 81 012 5 840 736 104

In each domain, the steady state flow is simulated (with density and viscosity values fixed
at ρ = 1 and µ = 0.01) as being driven by a pressure difference imposed to reach a given
Reynolds number. For this example, we consider two cases for Reynolds Re ∈ {50, 500}.
As usual, no-slip boundary condition is imposed on the lateral boundary.
The errors in the velocity approximation (uT), computed against the reference FEM
velocity (uF), are presented in Table 4.10. These results, for both Re = 50 and Re = 500,
evidence the convergence in the TEPEM and the increase in the model capabilities
with respect to the transversal order considered for the interpolation of physical fields.
Moreover, the convergence rate against p (Figure 4.45) is very similar for the three
domains considered here.
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Table 4.10: Numerical errors in the velocity field between the TEPEM and the FEM
solutions measured in the L2-norm.

Transversal order
p = 6 p = 8 p = 10 p = 12

Re = 50
Turn 2 1.04 · 10−2 6.88 · 10−3 5.04 · 10−3 3.93 · 10−3

Turn 4 1.49 · 10−2 9.40 · 10−3 6.34 · 10−3 4.36 · 10−3

Turn 6 5.70 · 10−1 1.85 · 10−2 8.09 · 10−3 6.47 · 10−3

Re = 500
Turn 2 6.32 · 10−2 3.32 · 10−2 1.47 · 10−2 8.68 · 10−3

Turn 4 8.90 · 10−2 4.80 · 10−2 2.45 · 10−2 1.29 · 10−2

Turn 6 1.07 · 10−1 5.79 · 10−2 3.40 · 10−2 1.70 · 10−2
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Figure 4.45: Numerical error of the velocity in the L2(Ω)-norm for the two (left panel),
four (middle panel) and six (right panel) turns. At each panel are presented the error
for the case Re = 50 (in blue) and Re = 500 (in red).

In addition to the reduction in the size of the discrete problem, a reduction in the
computational time is also expected to occur. The total time taken by each strategy
to solve the steady state problem is presented in Table 4.11. It is evident the strong
reduction in the computational time achieved by the TEPEM, yielding a reduction in
the computational time from 10 to 900 times. As we increase the size of the problem,
the TEPEM becomes a more efficient strategy.

Table 4.11: Computational time (in minutes) to solve the steady state problem with the
FEM and TEPEM approaches. Each case was performed employing one single processor
(serial strategy) to allow a better comparison.

FEM TEPEM
p = 6 p = 8 p = 10 p = 12

Re = 50
Turn 2 90 0.5 4 11 25

Turn 4 390 1 6 22 70

Turn 6 1 800 3 11 40 125

Re = 500
Turn 2 450 1 10 35 98

Turn 4 1 900 5 35 95 320

Turn 6 9 100 10 75 200 660
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To better understand the improvements in the predictive capabilities of the proposed
method, for the case Turn 4 and Re = 500 we perform a comparison against FEM
solutions obtained with coarser meshes instead of the extremely fine mesh considered
before. For each transversal order p, we define a coarse FEM mesh whose characteristic
element sizes are of the order of the characteristic distance between the nodes of the
TEPEM elements, this is, h = 1/(p + 1). The error in the FEM with these “equivalent”
meshes is outlined in Table 4.12 together with the mesh characteristics. To complement
this comparison, in Figure 4.46 it is presented the numerical convergence of both methods
(TEPEM and FEM in equivalent meshes) with respect to the transversal order and the
degrees of freedom, with a higher rate of convergence for the TEPEM in both cases.

Table 4.12: Case Turn 4 and Re = 500. Accuracy of numerical approximation (with
respect to a FEM solution with a fine tetrahedral mesh) with the FEM approximation
using an “equivalent” tetrahedral mesh. The errors resulting from the TEPEM are also
presented.

Equivalent order
p = 6 p = 8 p = 10 p = 12

Elements 40 152 90 040 148 007 193 728

DoFs 36 384 72 816 115 776 152 004

‖u− uF‖ 1.32 · 10−1 8.13 · 10−2 5.67 · 10−2 4.60 · 10−2

‖u− uT‖ 8.90 · 10−2 4.80 · 10−2 2.45 · 10−2 1.29 · 10−2
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Figure 4.46: Numerical convergence of the velocity field for the TEPEM and FEM,
in equivalent meshes, by comparison with a reference FEM solution obtained with
an extremely fine tetrahedral mesh. The convergence is measured with respect to the
transversal order p and the number of degrees of freedom in each approach (DoFs).

Finally, in Figures 4.47-4.48, we present, at two selected transversal sections, a
comparison of the steady state velocity profiles given by the TEPEM, by the reference
FEM solution and the coarse FEM solutions computed in the equivalent tetrahedral
meshes. As it can be seen, the proposed method can satisfactorily resolve the normal
and transversal components of the velocity vector field for a relatively moderate Reynolds
number (Re = 500). When increased the transversal order p, the expected convergence is
achieved. In turn, using the equivalent FEMmeshes, worse quality solutions are obtained.
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(a) Transversal order p = 6.

(b) Transversal order p = 8.
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(d) Transversal order p = 12.

Figure 4.47: Comparison of normal and tangential velocity components at region A of
the tortuous pipe for the case Turn 4 and Re = 500. Solutions are compared for different
approximation orders of the TEPEM and for two (fine and coarse) FEM meshes.
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Figure 4.48: Comparison of normal and tangential velocity components at region B of
the tortuous pipe for the case Turn 4 and Re = 500. Solutions are compared for different
approximation orders of the TEPEM and for two (fine and coarse) FEM meshes.
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4.5.3 Synthetic carotid artery

The fluid flow through a synthetic carotid artery is addressed in this example. The
geometrical domain is based on the phantom carotid structure proposed in [Bharadvaj
et al. 1982b,a] and is outlined in Figure 4.49. In that figure, the unit are given in
centimeters.

Figure 4.49: Geometry setting for the synthetic carotid artery. Over the right, transversal
view of the mesh discretization proposed near the bifurcated region. Transition elements
are highlighted in red.

Three different Reynolds numbers are selected for this example, Re ∈ {50, 150, 250}. The
flow is driven by the imposition of a flow rate at the inlet (bottom axial boundary) chosen
to ensure the desired Reynolds number. At outlets, homogeneous Neumann boundary
conditions are considered and no-slip conditions for the velocity over the lateral surface
is prescribed. As initial condition, zero velocity is considered for the case Re = 50. The
case Re = 150 is started with the Re = 50 solution as initial guess and so on.
A sufficiently fine FEM mesh is considered as the reference solution for comparison
purposes. This mesh, is composed by a total of 12 276 715 tetrahedral elements. For the
TEPEM, the geometry is divided into 95 elements: 72 pipe-elements to discretize the
three tubular regions, 20 in the interior of the junction and 3 transition elements to
connect the bifurcation and the branches. A comparison between the degrees of freedom
employed in each strategy is shown in Table 4.13. Notice that for the larger transversal
order considered here (p = 12) the reduction in the problem size is over 98%.
Concerning to the reduction in the computational time, a comparison between the wall-
clock time simulation time (in minutes) employed by both methodologies (TEPEM and
FEM) is presented in Table 4.14. Even for the largest transversal order considered for
the TEPEM, the simulation time is five times smaller when compared with the time
employed by the FEM strategy. This reduction is even higher when considering that
the FEM solution was achieved with a total of 100 processors (NP = 100) while for the
TEPEM it was employed only 10 processors.
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Table 4.13: Comparison between degrees of freedom and number of elements employed
in the FEM and the TEPEM approaches. Also the relative reduction in the degrees of
freedom is presented.

FEM TEPEM
p = 4 p = 6 p = 8 p = 10 p = 12

Elements 12 276 715 95
DoFs 7 880 372 15 121 29 922 49 729 74 542 104 361

DoFs reduction 99.80% 99.62% 99.36% 99.05% 98.67%

Besides the enormous reduction in the computational effort, both in terms of time and
resources, the velocity and pressure fields provided by the TEPEM are in good agreement
with the reference FEM solution. This can be appreciated in Table 4.15 where it is
presented the relative error for each Reynolds case. Note that, for velocity and pressure,
the TEPEM approach provides solutions with a relative error in the order of 2% for the
case Re = 250 and p = 4.

Table 4.14: Computational time (in minutes) to solve the steady state problem, for
different Reynolds numbers, with the FEM and TEPEM approaches.

FEM TEPEM
p = 4 p = 6 p = 8 p = 10 p = 12

Number of processors (NP) 100 10

Wall-clock time
(min)

Re = 50 58.12 0.06 0.5 2.2 6.2 10.7

Re = 150 117.24 0.1 0.91 3.96 11.74 20.79

Re = 250 105.4 0.12 1.04 3.95 13.5 20.7

Remarkably, when inspecting the solutions delivered by the TEPEM, the flow structure
is rather close to the FEM solution, being able to predict with high degree of fidelity
the velocity profiles and pressure even near the bifurcated region where the dynamics is
much more complex when compared with non-branched tubular regions.
For the case Re = 250, in Figures 4.50-4.51 we present a comparison between velocity
and pressure fields provided by the FEM and TEPEM strategies for different transversal
enrichment orders. The precision in the global velocity behavior as well as in the pressure
near the bifurcated region is worth to be highlighted. Furthermore, and in the same figure,
a global view of the wall shear stress provided by the FEM and TEPEM approaches
stresses the potentialities of the proposed approach once that the estimation of this field
is fundamental in hemodynamics applications.
A more detailed comparison in the velocity field reveals the capabilities of the TEPEM
to predict secondary flows in the carotid sinus, as can be seen in Figure 4.52. As for
the wall shear stress (WSS) field, a detailed comparison is performed by unfolding the
surface of the three tubular domains, as shown in Figure 4.53, panel (a). Moreover, a
comparison between the average WSS at each cross-section is presented in Figure 4.53,
panel (b).
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Table 4.15: Relative error in the velocity field, in the velocity gradient and in the pressure
field between the TEPEM solution and the reference FEM solution for the synthetic
carotid artery bifurcation and Reynolds number Re = 50 (top table), Re = 150 (middle
table) and Re = 250 (bottom table). For each Reynolds number, also the reference values
for FEM solutions are reported.

TEPEM FEM
p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 7.16 · 10−3 6.23 · 10−3 6.14 · 10−3 6.12 · 10−3 6.11 · 10−3 ‖uF‖L2 3.9410

|uF − uT| 3.75 · 10−2 3.62 · 10−2 3.57 · 10−2 3.57 · 10−2 3.56 · 10−2 ‖∇uF‖L2 48.5043

‖pF − pT‖ 1.16 · 10−3 1.13 · 10−3 9.96 · 10−4 5.61 · 10−4 4.81 · 10−4 ‖pF‖L2 42.5005

TEPEM FEM
p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 0.14 · 10−2 0.12 · 10−2 8.07 · 10−3 7.03 · 10−3 4.47 · 10−3 ‖uF‖L2 11.8324

|uF − uT| 0.48 · 10−2 0.43 · 10−2 0.36 · 10−2 0.34 · 10−2 0.31 · 10−2 ‖∇uF‖L2 162.1823

‖pF − pT‖ 2.25 · 10−3 1.85 · 10−3 1.56 · 10−3 1.34 · 10−3 1.10 · 10−3 ‖pF‖L2 185.4991

TEPEM FEM
p = 4 p = 6 p = 8 p = 10 p = 12

‖uF − uT‖ 0.23 · 10−2 0.22 · 10−2 0.10 · 10−2 8.36 · 10−3 5.50 · 10−3 ‖uF‖L2 19.8871

|uF − uT| 0.69 · 10−2 0.65 · 10−2 0.41 · 10−2 0.37 · 10−2 0.33 · 10−2 ‖∇uF‖L2 296.1083

‖pF − pT‖ 0.21 · 10−2 3.93 · 10−3 3.47 · 10−3 3.05 · 10−3 2.17 · 10−3 ‖pF‖L2 390.2437

Figure 4.50: Comparison of velocity profiles between the FEM reference solution and the
TEPEM for p = 4 and p = 6 in three transversal sections.
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(a) Velocity profiles along the z-axis.

(b) Pressure field in the bifurcated region.

(c) Wall shear distribution.

Figure 4.51: Comparison of velocity, pressure and wall shear stress fields between the
FEM reference solution and the TEPEM for different transversal enrichment orders.
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Figure 4.52: Detail of recirculation region in the carotid sinus. Comparison between FEM
and TEPEM solutions for different transversal enrichment orders.

(a) Unfolded view of the WSS along the longitudinal axis
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(b) Cross-sectional average of WSS over the lateral wall

Figure 4.53: Comparison of the wall shear stress field between TEPEM and the reference
FEM solution for different polynomial transversal orders.
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4.5.4 Highly curved pipe

Let us consider the domain Ω as being the curved circular pipe defined by the centerline
C = C1 ∪ C2 ∪ C3 where

C1 = {x ∈ R3 : x = 0, y = 0, 5 ≤ z ≤ 6}
C2 = {x ∈ R3 : x = 0, y ≥ 6, (y − 0.4)2 + (z − 6)2 = 0.42}
C3 = {x ∈ R3 : x = 0, y = 0.8, 0 ≤ z ≤ 6}

(4.44)

The radius of the pipe is constant and r = 0.2 cm. In this region, detailed in Figure 4.54, a
transient flow is considered. This flow is driven by the imposition at the inlet (transversal
section corresponding to the point x0, a parabolic velocity profile with maximum value
u0(t) = u0(1 + sin(2πt)), homogeneous Neumann boundary condition over the outlet
boundary and no-slip conditions over the lateral wall. The problem is fully set by
considering as initial condition the solution of the steady state flow problem defined
by imposing a velocity profile with maximum velocity u0 (in cm/s2) at the inlet and the
same conditions for the transient case over lateral and outlet boundaries.
The goal of this problem is twofold. First, for the computation of the initial condition,
we study the scalability of the TEPEM with respect to the transversal order. This is
performed by fixing a pipe discretization of Ω and computing the solution of the steady
state problem for different transversal orders and number of processors (NP). Second,
we study the convergence of approximate fields within the TEPEM approach in the
transient regime.

Figure 4.54: Geometrical description of the curved domain and comparison of velocity and
pressure approximations for the steady state problem with different transversal orders.
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Let us focus first in the steady state problem. Considering ρ = 1 g/cm−3 and µ = 1 ·10−3

P, the Reynolds number of this problem is Re = 200. For the discretization of the domain,
we consider an uniform pipe-mesh with axial size h = 0.1 cm (composed by approximately
100 pipe elements) and the velocity and pressure fields are approximated considering a
transversal order of p ∈ {4, 6, 8, 10, 12}.
For each transversal order, the solution of the flow problem is initially computed by
employing one single processor (NP = 1) and then duplicating this number until reaching
a total of NP = 32. The time needed to perform a single Picard (non-linear) iteration,
for each combination of p and NP, are presented in Table 4.16, together with the total
number of degrees of freedom as a function of p. Moreover, and to complement the
data presented in this table, in Figure 4.55 it is detailed both the computational time
employed in the assembling process and the time to solve the linear system as a function
of the number of processors. As it can be seen, the speedup ratio is almost the ideal one.

Table 4.16: Computational time (in seconds) to perform a single Picard iteration in the
TEPEM approach, for different transversal orders and number of processors.

DoFs Number of processors
1 2 4 8 16 32

p = 4 15 984 3.8 3.9 1.3 0.5 0.2 0.2

p = 6 31 163 26.7 16.3 8.3 3.4 1.7 0.9

p = 8 51 368 141.5 95.7 48.2 21.0 11.1 4.9

p = 10 76 599 497.0 290.0 146.2 66.9 35.5 15.5

p = 12 106 856 1244.8 640.1 357.4 170.4 90.3 39.4
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Figure 4.55: Reduction in the computational time taken to perform a single Picard
iteration in terms of the number of processors for the TEPEM approach and transversal
order p = 4 (red curve), p = 8 (blue curve) and p = 12 (green curve). Also the speedup
ratio is presented for these transversal orders.

Once the initial condition has been computed, for each value of p, the transient fluid
flow problem is addressed employing a total of 16 processors in each case (NP = 16).
The transient regime is defined by a mean Reynolds Re = 200 and a Womersley number
κ ≈ 12. A comparison between velocity profiles for each transversal order is outlined in
Figures 4.56-4.57.
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In both figures, the convergence of the TEPEM approximation with respect to the
transversal order is evident, and it is important to highlight the excellent results when
it is employed p = 6. For the case p = 4, the lowest enrichment induces errors that
undermine the correct approximation of the velocity in the curved region, but provide
very precise results in the tubular inlet/outlet regions as can be seen in Figure 4.57, as
expected because the flow becomes developed.

Figure 4.56: Detail of velocity profiles in the curved region. For different orders in the
transversal enrichment, the profiles correspond to the time instants t = 0.2s (top row),
t = 0.4s (middle row) and t = 0.6s (bottom row).

Figure 4.57: Comparison of velocity profiles in two regions of the curved pipe. At each
panel it is compared the profiles with p = 4 (red curve), p = 6 (blue curve), p = 8 (green
curve) and p = 10 (black curve).
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The convergence in the wall shear stress (WSS), as a function of the transversal order, is
also observed. For a potential use in hemodynamics, the precise identification of regions
where the WSS reaches high/low values is more important than computing the exact
value. In Figure 4.58 a comparison between the WSS in the curved region is shown, for
different transversal orders and selected time instants, and the capabilities to define the
regions featuring high/low WSS is clearly demonstrated even for the lowest enrichment
order (p = 4).

Figure 4.58: Detail of wall shear stress (WSS) in the curved region and for different
transversal orders. From top to bottom, the rows correspond to the time instants t = 0.2s,
t = 0.4s, t = 0.6s, t = 0.8s and t = 1s.
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4.6 Further remarks

In this chapter, the TEPEM was successfully employed in the incompressible fluid
flow modeling, demonstrating predictive capabilities comparable to those provided by
standard FEM approaches but employing a fraction of time, which is fundamental
when the ultimate goal of the proposed approach is its application in real problems
in computational hemodynamics.
Specifically, in this chapter it was addressed the discretization of the Navier-Stokes
equations employing the TEPEM for the approximation of the physical fields, velocity
and pressure. Important discrete aspects related to this discretization, like the structure
of the discrete system and the suitable choice for finite-dimensional spaces for
velocity/pressure, were also addressed. Concerning the last aspect, a combination of
discrete spaces for velocity and pressure in the TEPEM approach was proposed and, even
without an ultimate theoretical proof of the stability of this pair, numerical evidence in
the direction of the inf-sup stability was provided. The numerical test known as the inf-
sup test, together with the absence of any spurious behavior in the extensive numerical
assessment addressed along this chapter strongly suggests the suitability of the proposed
pair. Regarding the structure of the discrete system related to the discretization of the
physical problem with the TEPEM, the proximity between the pipe-mesh structure and a
one-dimensional partition is reflected in the similarity of the discrete structures obtained
in both cases. For the TEPEM, the linear system to be solved at each Picard iteration is
a block band matrix, which features an interesting sparsity pattern able to be exploited
in the future to make the algebraic solution process even more efficient.
The numerical assessment of the TEPEM in the discretization of the NS equations was
addressed in both the two and three dimensional cases, aiming of demonstrating the
capability of the TEPEM as an efficient tool able to provide relevant hemodynamic
information, with high fidelity and at a fraction of the computational cost if compared
with standard FEM techniques. Classical benchmarks, steady-state and transient flow
regimes were addressed. An extensive comparison between both techniques, FEM and
TEPEM, was performed in terms of number of degrees of freedom, computational time
and accuracy. For the 3D case, also a comparison between the approximation of the wall
shear stress for TEPEM and FEM, in a synthetic carotid artery, was addressed and the
results uphold the excellent capabilities of the TEPEM to provide accurate information
of this field, of utmost importance in the hemodynamics realm.
It is also worthwhile to highlight that, in all the numerical cases reported throughout this
chapter, the reduction in the number of degrees of freedom performed by the TEPEM
(compared with that employed to obtain a reference FEM solution) was superior to the
90% even for the largest transversal order considered in the TEPEM to approximate the
transversal dynamics of the velocity field (p = 12). This remarkable reduction in the
problem size brings a terrific insight about the gains that the use of the TEPEM in real
large-scale problems, in which the colossal amount of information demarcate a threshold
of application for standard FEM approaches, could offer.
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TEPEM in computational hemodynamics

The core of this work relies into the search for new numerical alternatives able to perform
efficient numerical simulations in the hemodynamic realm. In this chapter, we tackle
that problem by employing the Transversally Enriched Pipe Element Method (TEPEM)
as an efficient numerical strategy capable to provide high fidelity insight about fluid
related quantities and reducing considerably the computational effort when compared
with current approaches.
The capabilities of the proposed strategy were stated in former Chapters and extensively
explored through several numerical examples in two- and three-dimensional settings, for
scalar problems (in Chapter 3) and also in the fluid-flow modeling (in Chapter 4). In the
latter, the TEPEM proved to be capable to positively deal with the trade-off between
accuracy and computational cost, providing results closer to the obtained with 3D FEM
simulations at a fraction of time.
The focus of this Chapter is to extend these results into patient-specific geometries and
to compare the TEPEM predictions against FEM results obtained in meshes (and with
costs) similar to those typically employed in the academic research and medical practice.
Regarding the blood flow modeling, the assumption of the blood flow as a Newtonian
model, neglecting the shear thinning and viscoelastic effects, is suitable in large vessels
or when we are not interested in the finer microscopic details of the flow, and so we
assume that the Navier-Stokes equations to model the blood flow are a good model,
which is enough for our purposes. Moreover, according to [Formaggia et al. 2010], the
flow in large and medium sized vessels (except in the aorta artery) is characterized by
Reynolds numbers varying in the range 100 ≤ Re ≤ 800 while the Womersley number
is in the range 1 ≤ κ ≤ 5. The results obtained in Chapter 4 covered these dimensional
features, and so we expect to have, as in that chapter, high fidelity solutions with the
TEPEM.
Two major difficulties are to be mandatorily tackled when aiming the application of
the proposed methodology to hemodynamics simulations in patient-specific regions: (i)
The introduction of a suitable algorithmic procedure to perform a (semi-)automatic
discretization of the vascular region of interest into a pipe-type discrete structure and (ii)
A correct imposition of boundary conditions appropriate for the hemodynamics context.
Both issues are addressed in this Chapter and the geometrical accuracy as well as the
advantages of the TEPEM approach in patient-specific hemodynamics simulations are
demonstrated through several numerical examples. For all the CFD simulations, the
INCT-MACC cluster is employed.

145
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5.1 Geometric modeling pipeline

The first major issue into the application of the proposed methodology in patient-specific
geometries is related to the mesh discretization, which is based on pipe-elements. This
discretization, for synthetic domains as the addressed in the last chapter, was performed
considering an ad-hoc structure which seems unpractical for arbitrary vascular regions
as the ones we are interested in. In this Section it is explored a computational framework
to perform a pipe-like discretization in a semi-automatic way, covering from the image
segmentation step to the final discrete structure based on pipe elements.
Roughly speaking, the proposed pipeline to meet this goal in general arterial domains
combines:

i) A certain (but arbitrary) processing pipeline to go from the image segmentation
to a finite element surface mesh. This process is also standard for FEM blood
flow simulations, because the volume (tetrahedral) mesh is constructed having
as starting point the surface triangular mesh.

ii) A centerline extraction process plus the identification of curves that define the
cross-sectional luminal areas. The vascular regions are then exclusively described
through the centerline/cross-section information removing the subsequent need
for the surface triangulation.

iii) The approximation of transversal sections and bifurcation regions. This
procedure defines each pipe- and transition-element which composes the
discretization.

While the first step is standard in the generation of tetrahedral meshes for hemodynamics
simulations, the last two are specific requirements posed by the TEPEM, and supersede
the time-consuming step of volume mesh generation (in the FEM approach).

5.1.1 Image segmentation

The image segmentation and mesh processing pipeline employed are illustrated in
Figure 5.1, which is specific for extracting arterial structures from coronary computed
tomography angiography (CCTA). This pipeline follows the standard steps to perform
volume mesh for FEM simulations:

a) After a manual selection of boundaries of the arterial region, a colliding front
method is employed to obtain an initial segmentation of the artery. Then, a level
set algorithm is initialized with the colliding front output to obtain the final
segmentation. Both, colliding front and level set methods are detailed in [Antiga
et al. 2008].

b) A raw surface triangulation is constructed using the marching cubes method
[Lorensen and Cline 1987], which produces a closed surface.

c) Techniques described in [Antiga et al. 2003] are employed to compute a centerline
from the raw triangulation and the inlet/outlet flat boundaries are removed to
yield an open tubular surface. This open surface is smoothed and re-meshed to
improve quality and achieve quasi-homogeneous triangle size.
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d) A tetrahedralization of the refined surface is addressed to produce finite element
volume meshes to perform standard finite element simulations.

(a) (b) (c) (d)

Figure 5.1: Standard work-flow for arterial segmentation and tetrahedral mesh generation
for FEM simulations. (a) input CCTA image; (b) raw triangulation; (c) improved surface
mesh; (d) full 3D FEM mesh.

The acquisition protocols, the image processing methodology as well the mesh processing
pipeline are described in detail in [Bulant et al. 2017a,b] and make intensive used of the
Vascular Modeling ToolKit [VMTK 2015]. It is important to stress that panels (a)-(c)
in Figure 5.1 are mandatory for the TEPEM pipeline while the panel (d), the most
time-consuming step, is only performed in the context of FEM.
The TEPEM pipeline is completed by replacing the step in panel (d) in Figure 5.1 by
the generation of the transversal sections along the arterial region centerline. The steps
in the cross-section segmentation process, shown in Figure 5.2, are the following:

i) Arterial centerlines are computed from the lumem surface following [Antiga
et al. 2003], which are curves in 3D space represented by polylines defined by
approximately equidistant points (typically it is used ∆x = 0.05cm).

ii) Transversal sections of the surface are extracted at each centerline point. A
total of N1D nodes defining the centerline yields a set of N1D connected nodes
representing the transversal section contour as a closed polyline Pi.

This last step introduces the presence of double sections at bifurcation points (as seen
in light red in panel (c) in Figure 5.2) which cannot be approximated in the same way
that performed for the transversal sections in tubular regions. The approximation of the
transversal sections in bifurcation areas is addressed in the next section.
Note that the workflow steps concerning the TEPEM (steps (a)-(d) in Figure 5.2) are
independent of the imaging modality. After reaching a surface triangulation of the region
of interest, the cross-section extraction turns to be a generic algorithm, allowing its
application in phantom geometries also in which the procedure relies on the centerlines
dataset and on the vessel radius at each centerline point.
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(a) (b) (c) (d)

Figure 5.2: Workflow for the extraction of transversal sections in the TEPEM. (a)
Arterial centerline; (b) zoom of centerline at a bifurcation; (c) cross-sectional polylines;
(d) transversal sections for the complete vascular region.

5.1.2 Bifurcation reconstruction algorithm

The presence of double sections in bifurcation regions prevents the direct approximation
of these junctions with the previous strategy, and introduces the need for a reconstruction
step before defining the pipe-discretization. This reconstruction step looks for a better
description of the junction region which is poorly described by the cross-section cuts
because, in this region, the pipe-like structure assumption is broken. Each bifurcation
is reconstructed uniquely based on the information provided by the three closest non-
intersecting cross-sections coming from the three tubular domains which converge to the
bifurcation, and which are constructed as described in the previous section.
Let Ci, i ∈ {A,B,C}, denote the three cross-sections reaching the bifurcation domain.
Each cross-section features a planar boundary curve with geometric center pi and normal
ni. Hence, denoting by p0 the centroid of {pA,pB,pC}, we define the following planar
regions

Πmn = {x ∈ R3 : (x− p0) · nmn = 0} m,n ∈ {A,B,C}, (5.1)

with

n0 =
(pB − pA)× (pC − pA)

‖(pB − pA)× (pC − pA)‖ , nAB =
(nB − nA)× n0

‖(nB − nA)× n0‖
,

nAC =
(nC − nA)× n0

‖(nC − nA)× n0‖
, nBC =

(nB + nC)× n0

‖(nB + nC)× n0‖
.

(5.2)

These planes, which share a common line defined by the point p0 and the unit normal
n0, divide the bifurcation domain into three disjoint regions which are connected with
the converging tubular domains. Geometrical entities introduced here, as normal vectors
and planar sections, are outlined in Figure 5.3 (see panels (a)-(b)).
The inner axial boundary inside the junction region is defined by the intersection of
the previously defined loci Πmn (m,n ∈ {A,B,C}) and the tubular connection from
each pipe region to the other two, as illustrated in panels (c)-(e) in Figure 5.3. Those
intersected sections are directly defined by the following min-max problem: consider the
points a and c defined over the curves CA, CC (see Figure 5.3, panel (d)) and consider
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Figure 5.3: Steps in the geometric reconstruction of a bifurcation. (a) Tubular domains
converging to the bifurcation. (b) Definition of centroid and planes. (c) Pair-wise smooth
extension. (d)-(e) Bifurcation cross-sections are result of intersection of planes with the
extensions created to join the non-bifurcated sections. (f) Final bifurcation cross-section
is obtained and branches extensions are delimited.

the locus ΠAC , the point x in the intersected section and connecting a and c is solution
of the problem

(x, α∗, β∗, λ0, λ1) = arg max
γ0,γ1∈R

min
w∈R3

min
α,β∈R

F(w, α, β, γ0, γ1), (5.3)

with the following functional

F(w, α, β, γ0, γ1) =

∫ 1

−1
(|f ′(w, α, t)|2 + |g′(w, β, t)|2) dt

+ γ0|f ′(w, α, 1)− g′(w, β,−1)|+γ1|(w − p0) · nAC |, (5.4)

where, for t ∈ [−1, 1], and {Q1, Q2, Q3} being the function basis for P2, we define

f(w, α, t) = aQ1(t) +
1

2

(
α2nA +

1

2
w +

3

2
a

)
Q2(t) + wQ3(t),

g(w, β, t) = wQ1(t) +
1

2

(
1

2
w +

3

2
c− β2nC

)
Q2(t) + cQ3(t),

(5.5)

with nA and nC the normal unit vectors to the curves CA and CC , respectively. In equation
(5.4), the derivative (·)′ is with respect to variable t.
In a few words, the min-max problem guarantees that each point x in the intersected
section provides the minimum piecewise quadratic path between the two tubular regions
while prescribing a certain axial regularity. The same process is employed to determine
the other two intersected sections. The final step consists in finding the intersection
between the three planar sections, provided by the min-max problem, to characterize
the boundary (internal to the bifurcation) which demarcates the branches extensions.
These extensions ultimately compose the bifurcation, as seen in Figure 5.3 panel (f).
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Notice also that this reconstruction algorithm provides a continuous description of the
lateral surface of the junction, based only on the three closest non-intersecting cross-
sections and on an inner boundary (in black in panel (f) in Figure 5.3). The discretization
of this region, into pipe-elements, is addressed in the next section.

5.1.3 Cross-section approximation

The segmentation process provides a representation of the vascular region in terms ofN1D

points, defining the centerline, and a closed polyline Pi, for each node in the centerline,
describing the contour of each transversal section. These cross-sections are the basis for
the pipe-discretization of tubular regions in the vascular domain. For the discretization
of the junctions, the reconstruction step described before allows a pipe meshing with
the introduction of transition elements to deal with the complex topological structure of
these regions.
Approximation in tubular regions. Let us focus first in the tubular regions in the
vascular geometry. According to the geometrical structure of the TEPEM (introduced
in Chapter 2), each of these closed polylines is approximated as an element of the space
S = {Si, i = 1, . . . , 12} of cubic Serendipity functions defined in [−1, 1]2. This is, the
closed curve Pi (i = 1, . . . , N1D) is approximated through

χx(t) =
12∑
n=1

xnSn(ξξξ(t)), ξξξ(t) =


(8t− 1,−1) 0 ≤ t < 1/4

(1, 8t− 3) 1/4 ≤ t < 1/2

(5− 8t, 1) 1/2 ≤ t < 3/4

(−1, 7− 8t) 3/4 ≤ t ≤ 1

(5.6)

where ξξξ(t+n) = ξξξ(n) for all n ∈ Z and the geometrical nodes {xn, n = 1, . . . , 12} control
the accuracy in the approximation.
To achieve a better approximation (in some sense), a least-square problem is introduced
to compute the geometrical nodes (for each closed curve Pi), and also to ensure that the
approximated curve has continuous first derivative at points t0 = 0, t1 = 1/4, t2 = 1/2
and t3 = 3/4 (points related with the corners of the reference element [−1, 1]2). We
compute the linear coefficients in Equation (5.6) by solving the min-max problem

(x1, . . . ,x12, λ0, . . . , λ3) = arg max
γ0,...,γ3∈R

min
w1,...,w12∈R3

L(w1, . . . ,w12, γ0, . . . , γ3), (5.7)

with

L(w1, . . . ,w12, γ0, . . . , γ3) =

∫ 1

0
|χx(t)− P(t)|2 dt+

3∑
i=0

γiJχ′x(ti)K, (5.8)

where P(t) (0 ≤ t ≤ 1) is a parametrization of the polyline Pi, Jg(ti)K = g(t+i )− g(t−i ) is
the jump of function g at t = ti, and λ0, . . . , λ3 are the Lagrange multipliers to enforce
continuity of the solution at points t0, . . . , t3 defined above.
The accuracy of the least-square problem to find the geometrical nodes, for each closed
polyline, is exemplified in Figure 5.4 where four luminal regions are approximated with
the proposed strategy. The comparison between the data representing the transversal
section (blue dots in referred figure) and the approximated curve corresponding to the
geometrical nodes provided by the least-square problem (red curve) demonstrates the
capabilities of this, yet simple, efficient approximation strategy. Notice also that the
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required regularity is naturally imposed in each approximated curve.

Figure 5.4: Approximation of different cross-sections via the least square problem. In
each panel: blue points define the polyline P, solid red line stands for the approximated
section and green points are the geometrical nodes. These four luminal regions correspond
to the patient-specific vasculature presented in Section 5.3.1

Approximation in reconstructed junctions. Concerning the reconstructed
junctions, the pipe mesh is defined incorporating a transition element for coupling each
tubular region converging to the junction with the corresponding junction inlet/outlet.
The incorporation of these elements allows us to perform a smooth transition from a
single element spanning the whole cross-section to a two-element bifurcated mesh. The
richer discretization of the interior of the junction achieved by two pipe elements in the
transversal direction provides a compensation for the geometrical complexity in such
region and also to the lack of a mainstream direction.
The structure of the pipe-element mesh for a bifurcating domain region is outlined in
Figure 5.5. The axial length of pipe elements in the interior of the bifurcation is defined
according to the characteristic length to the elements in the tubular regions.

Figure 5.5: Detail of pipe-type mesh discretization within the bifurcation. (a)
Reconstructed junction. (b) Lateral view of the pipe elements in the non-branching
tubular domains. (c) Lateral view of the discretization at the junction. Transition
elements are highlighted in red.

Here, the geometrical nodes defining each transition element are selected as forming an
equidistant set on the corresponding planar sections. These sections are automatically
described in the reconstruction step, therefore no least-square problem is needed to be
solved in the meshing of a junction.
Notice that the geometrical discretization workflow proposed results in a mesh structure
in which the boundary layer regions are associated with the transversal direction of the
pipe-elements. In this way, the presence of cross-wind boundary layers is naturally tackle
by the high-order polynomials which, as seen in previous chapters, are able to effectively
deal with this phenomenon without the need of a mesh refinement or of using stabilizing
techniques.
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5.2 Physiological boundary conditions

In the modeling of the blood flow through isolated regions of the cardiovascular system,
the imposition of physiologically reasonable conditions at the artificial (axial) boundaries
is mandatory to accurately model the blood flow without neglecting the effects of the
downstream circulation. The most adequate strategy to set a consistent hemodynamic
environment in a given vessel is to make use of 3D models coupled to dimensionally-
reduced blood flow models (1D models for example) [Blanco et al. 2009]. In this work,
due to time constrains, we shall not couple 3D models with 1D models, and pursue less
sophisticated strategies to define boundary data.
Consider the generic bifurcated region in Figure 5.6. The fluid is attached to the lateral
wall, corresponding to a rigid wall model, so no-slip conditions are considered over ΓL.
The boundary Γi represents the inlet boundary, while Γo the outlet boundary.

Figure 5.6: Schematic setting for a generic vascular region.

Note that the axial boundaries, Γi and Γo, are artificial boundaries, that appear once the
vascular region was considered isolated from the rest of the cardiovascular system and
where appropriate conditions are needed. A common practice, is to prescribe a velocity
profile at the inlet, say Γi, while suitable Neumann condition on the outlets.
Among these conditions, at each axial boundary the flow is assumed to be fully developed,
which implies in a uniform normal component of the traction and null in-plane velocity
component. This is, at each inlet/outlet boundary Γ, it is imposed

(I− n⊗ n)u = 0 and ti = −pin (5.9)

where n is the outward unit normal and pi the prescribed value for the pressure at
Γ (when the flow is fully developed, this value matches the fluid pressure, otherwise
it is actually the normal component of the traction). Alternative formulations to the
imposition of velocity profile and pure Neumann condition on the axial boundaries can
be found in the specialized literature, see for example [Olufsen 1999, Formaggia et al.
2002, Lagana et al. 2002, Vignon-Clementel et al. 2006, Grinberg and Karniadakis 2008].
In this section we are interested in addressing two particular variations for the boundary
conditions aiming at the introduction of physiological data into the simulations: (i) the
imposition of a pulsatile flow rate waveform and (ii) the relation between the pressure
pi and the flow rate Q, through a 0D element.
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5.2.1 Flow rate boundary condition

Let us assume that we are interested in prescribing a realistic volumetric flow rate, at the
inlet Γi, described by the scalar function Q(t) : (0, T ) → R, with T defining the period
of the heart beat. Two possibilities can be identified for the inlet boundary: (i) Γi being
a circular region of radius R or (ii) Γi a generic flat surface.
Circular inlet region. For the first case, the inlet boundary being a circular region
of center x0 and radius R, a closed form for the velocity at Γi can be provided if we
postulate that the desired flow, at each time instant, is realized through a parabolic
profile. In fact, assuming a parabolic profile for the velocity, it is immediate the relation

Q(t) =

∫
Γi

u · ndΓ = 2π

∫ R

0
un(r) dr = 2π

∫ R

0
u0(t)

(
1− r2

R2

)
d r (5.10)

with r is the radial spatial component in radial coordinates, un the normal component
of the velocity field u and u0(t) the maximum velocity as function of time. Then the
flow waveform is directly achieved by imposing the Dirichlet condition for the normal
component of the velocity over Γi

un(x, t) =
2

πR2
Q(t)

(
1− r2

R2

)
(5.11)

where r = ‖x− x0‖. In addition, the in-plane components of the velocity field are set to
zero.
Generic inlet region. The previous strategy, although computationally simple, is
limited for domains where Γi are circular regions, which is unrealistic for patient-specific
geometries. A more generic approach is based on the imposition of the flow rate, at each
time, through the use of a Lagrange multiplier directly in the variational formulation
of the fluid flow problem. Specifically, the strategy employed to prescribe the flow at
the inlet Γi is based on adding to the original fluid flow variational problem: Find
(u, p) ∈ U × L2(Ω) such that∫

Ω

[
ρ
∂u
∂t
· û + ρ(u · ∇)u · û + 2µε(u) · ∇(û)− p div û− p̂ divu

]
dΩ =∫

Ω
f · û dΩ +

∫
Γi

tin · û dΓi +

∫
Γo

ton · û dΓo ∀ (û, p̂) ∈ VVV × L2(Ω), (5.12)

the terms

λ̂

(∫
Γi

u · n dΓ−Q(t)

)
+ λ

(∫
Γi

û · n dΓ

)
∀ λ̂ ∈ R (5.13)

where λ ∈ R is a Lagrange multiplier introduced to ensure the constraint relating the
velocity field with the flow rate.
Hence, the flow rate is directly imposed at the variational formulation level allowing their
numerical implementation in a very straightforward way. A detailed discussion on the
theoretical aspects of this approach is described in [Formaggia et al. 2002].
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5.2.2 Resistance boundary condition

Let us denote by Γo the boundary in which we are interested in imposing a Neumann
boundary condition. The hypothesis of uniform traction over Γo implies that the traction
is expressed as t = −pon where po is the value for the pressure at Γo. The simplest
way to describe the outflow is by applying a zero traction boundary condition at the
outflow. However, this choice may be unfeasible to correctly reflect the flow division in
a bifurcation, which depends mostly on the downstream vasculature.
For a physiological description of the outlet pressure po, we can correlate this value with
the flow rate Q(t) through the introduction of a resistance R̃ satisfying the relation
R̃Q(t) = po − pref, where pref is a reference pressure value (for instance, a far away
constant pressure value, such as the venous pressure).
Assuming for simplicity pref = 0, this relation modifies the term related to the traction
in the variational formulation as

−
∫

Γo

t · û dΓ =

∫
Γo

(
R̃Q(t)n

)
· û dΓ = R̃

(∫
Γo

u · n dΓ

)(∫
Γo

û · n dΓ

)
. (5.14)

The value for the resistance has to be given in order to represent the opposition of the
downstream vasculature to the flowing of the blood through the corresponding vessel. In
the following section we address this issue. Physiological data for the resistance can be
found in [Stergiopulos et al. 1992, Alastruey et al. 2007], with values varying in a range
between 9.3 · 103 and 8.43 · 105 dyn · s · cm−5.

5.2.3 Power law for multiple inlet/outlet

In the presence of several inlet/outlet boundaries (denoted by Γi, i = 1, . . . , N each one
with equivalent radius r2

i = |Γi|/π), the imposition of flow rate or resistance conditions
requires the introduction of a strategy to distribute the desired quantity. The hypothesis
employed in this work is to distribute the flow (and resistance) data following a power
law based on the vessel radii.
For the imposition of flow data (Q(t), t ∈ (0, T )) we proceed as follows: For each Γi, a
Lagrange multiplier λi is introduced at the variational formulation to impose the flow
using the following power law rule to divide the flow rate among the boundaries

Qi(t) = r3
i

 N∑
j=1

r3
j

−1

Q(t), t ∈ (0, T ). (5.15)

Observe that it is not possible to prescribe the flow rate at all the inlet/outlet boundaries
because of the incompressibility constraint.
In turn, the total resistance R̃ is distributed among the boundaries Γi (i = 1, . . . , N)
according to the following power law relation between the resistance and the equivalent
vessel radius at the corresponding boundary

R̃i = r−3
i

 N∑
j=1

r3
j

 R̃. (5.16)

The effects of the imposition of these type of boundary conditions in hemodynamics
simulations can be appreciated in [Bulant 2017].
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5.3 Blood flow in the left anterior descending artery

The potentialities of the TEPEM in hemodynamics applications, the geometrical pipeline
proposed for the pipe mesh generation, as well as the boundary conditions explained
earlier in this chapter, are studied through the application of the proposed methodology
into the blood flow simulation in patient-specific arterial regions.
Specifically, in this section, a patient-specific coronary blood flow simulation is performed.
Three geometries of the left anterior descending (LAD) artery are evaluated: (i) A
geometry obtained from optical coherence tomography (OCT); (ii) a geometry obtained
from CCTA and (iii) a geometry reconstructed based on centerline/radius information.
Each of these regions are non-branching arterial segments.
The boundary condition at the inlet boundary is given by a prescribed flow rate, which
is also shown in Figure 5.7. This inflow waveform was designed on the basis of available
clinical data from Doppler measurements, to guarantee realistic conditions. At the outlet,
homogeneous Neumann boundary conditions are imposed. The time step is the same for
all the test cases, with ∆t = 0.001 s. Physiological values for density and viscosity are
considered, these parameters are set to ρ = 1.04 g/cm3 and µ = 0.04 P. Two cardiac cycle
are simulated. A distributed computing paradigm is employed here for both, TEPEM
and FEM, because of the size of the problem.
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Figure 5.7: Flow rate signature for the coronary blood flow simulation.

The comparison of the computational burden of FEM and TEPEM is addressed at
each example. Problem size (through the total number of degrees of freedom), physical
resources needed to perform the simulation and the computational time employed are
the relevant indexes in which we will focus for the comparison. A direct comparison for
degrees of freedom and physical resources is performed at each case. For the comparison
of the computational time, the wall-clock time and the average computational time
(defined by multiplying the wall-clock time and the number of processors) are reported.
For a further comparison, the time involved in the advancement of a single time-step is
also presented.
For the FEM approach it is employed the mini element with SUPG stabilization. The
system of equations is solved monolithically with a direct parallel algebraic LU solver for
the TEPEM approach and an iterative GMRES method for the FEM. Finally, a total
of 160 processors were employed to run the FEM simulations while 36 processors were
considered for the TEPEM.
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5.3.1 Vascular region obtained from OCT

The first example is devoted to the blood flow simulation in a LAD region obtained
with OCT. The vascular region, a rectified coronary artery, is outlined in Figure 5.8
together with a comparison between the discrete mesh employed in the FEM simulation
and the reconstructed pipe-type structure employed for the TEPEM simulations. The
geometrical pipeline, proposed in the beginning of the chapter, was successfully employed
for the pipe discretization of the vascular region, providing a topological structure very
close to the one use in the FEM.

Figure 5.8: Vascular region obtained from OCT. Top row: Geometrical description with
dimensions in centimeters. Bottom row: Comparison between FEM discrete mesh (left)
and TEPEM mesh (right) in two regions.

For the TEPEM approach, the number of pipe elements in which the geometry is divided
is 105 and the transversal order p is considered varying in the range p ∈ {4, 6, 8}. A FEM
simulation is also performed to obtain a reference solution. For the FEM simulation, the
mesh is composed by 1 975 700 tetrahedral elements. A detailed comparison between the
computational effort of FEM and TEPEM simulations is addressed in Table 5.1, where
the total number of degrees of freedom in each approach is presented, as well as the
average time needed for one single time-step iteration. While the relative reduction in
the problem size is superior to the 90% the TEPEM proves to be faster than the FEM
in a range from 10 to 150 times.

Table 5.1: Comparison of the computational burden in the FEM and TEPEM approaches.
The cost is evaluated through the wall-clock time, the average computational time
to perform a single time-step iteration and also through the relative reduction in the
problem size, measured with the degrees of freedom in each implementation.

FEM TEPEM
p = 4 p = 6 p = 8

Elements 1 975 700 105

DoFs Total number 1 301 868 6 714 17 687 33 986

Relative reduction - 99.48% 98.64% 97.38%

Wall-clock time 440 min 13 min 97 min 240 min

Single time-step Average time 43.9 min 0.3 min 2.2 min 5.4 min
Relative reduction - 99.31% 94.98% 87.69%
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As a first comparison to evaluate the capabilities of the proposed approach, Figure 5.9
presents a detail of the blood flow structure for a selected region in the OCT geometry
(region A in Figure 5.8) and at four different time instants, t ∈ {0.8, 1.0, 1.2, 1.4} seconds.
For each time, the velocity profile provided by the TEPEM, with different transversal
order, is compared with the one obtained with the FEM. The velocity field delivered by
the proposed method is very close to the reference one and, as before, the higher the
order of the polynomial approximation for the physical fields, the better the TEPEM
solution.

Figure 5.9: Comparison of velocity profiles for different transversal orders for the TEPEM
and FEM at selected time instants and region A in Figure 5.8.
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Moreover, at the selected region, the formation of a vortex is observed (Figure 5.10).
This recirculation structure is accurately approximate by the TEPEM, even for the
lowest transversal order considered (p = 4). The precise (and cheap) identification of
these zones is fundamental for potential clinical use of this class of simulations.

Figure 5.10: Detail of a recirculation region in the blood flow developed in the OCT
geometry and TEPEM approximation with different transversal orders.

Together with the identification of recirculation zones, it is fundamental to analyze the
wall shear stress produced by the blood flow over the endothelial wall. In Figure 5.11, a
comparison between the wall shear stress provided by the FEM and the TEPEM with
different transversal orders is addressed, highlighting the ability to provide an accurate
spatial description of the field that agrees with the FEM at the selected times. A further
comparison is addressed by considering the wall shear stress averaged over the cardiac
cycle (AWSS). In Figure 5.12 the spatial distribution of the WSS and the cross-sectional
average through the vessel intrinsic coordinate, denoted by s, are presented. Even the
lowest order approximation (p = 4) delivers a high-fidelity solution in terms of AWSS,
which can be improved as p is increased.
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It may be worth noting that no 1D model, basically relying on approximating the axial
component of the motion, could be able of capturing vortexes at the velocity and neither
describe the heterogeneities in the wall shear stress. On the other hand, with TEPEM,
these characteristics are captured with computational costs that are really lower than a
full 3D model.

Figure 5.11: Comparison of WSS between FEM and different transversal orders of
TEPEM at three selected time instants.
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(a) Spatial distribution of the AWSS

(b) Cross-sectional average of AWSS as a function of the longitudinal coordinate

Figure 5.12: Comparison of the average wall shear stress (AWSS) between FEM and
different orders p of the TEPEM.
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5.3.2 Vascular region obtained from CCTA

For this example, the vascular region, a tortuous tapered vessel, is obtained from CCTA
and is outlined in Figure 5.13. As before, in the same figure two selected areas are
highlighted to compare the geometry employed in the FEM (a tetrahedral mesh) and
in the TEPEM (a pipe mesh). This comparison reinforces the potentialities in the
geometrical pipeline proposed to perform a pipe discretization of arterial regions with
variable radius.

Figure 5.13: Vascular region obtained from CCTA. Top row: Geometrical description
with dimensions in centimeters. Bottom row: Comparison between FEM discrete mesh
and TEPEM mesh in two regions.

The number of elements employed in the domain discretization for FEM and TEPEM
approaches, as well as the degrees of freedom, are detailed in Table 5.2. The reduction
in the problem size is measured through the relative reduction in the degrees of freedom
which reach an economy superior to 98%. Concerning the reduction in the computational
time, the time (in minutes) to perform a single time-step iteration is also presented in
the referred table. A direct comparison of the average time for both approaches reveals
the TEPEM as being remarkably faster than then FEM, in a range from 15 to 700 times.

Table 5.2: Comparison of the computational burden in the FEM and TEPEM approaches.
The cost is evaluated through the wall-clock time, the average time to perform a single
time-step iteration and also through the relative reduction in the problem size.

FEM TEPEM
p = 4 p = 6 p = 8

Elements 2 444 708 90

DoFs Total number 1 611 428 5 769 15 197 29 201

Relative reduction - 99.64% 99.05% 98.18%

Wall-clock time 670 min 4 min 52 min 217 min

Single time-step Average time 69.4 min 0.1 min 1.2 min 4.9 min
Relative reduction - 99.85% 98.27% 92.93%



Chapter 5. TEPEM in computational hemodynamics 162

For comparison purposes, in Figure 5.16 the velocity profile provided for FEM and
TEPEM (with p = 6) are presented in two regions and at some time instants. At these
regions, the same regions selected to compare the accuracy in the geometrical pipeline,
it is evident the accuracy of the TEPEM approach when compared with the FEM as
reference solution. A further comparison in the velocity approximation is outlined in
Figure 5.17 where a comparison of the streamlines provided by FEM and TEPEM is
addressed.
For the wall shear stress, the cross-sectional average of the AWSS was computed
throughout the vessel intrinsic coordinate denoted by s, which is presented in Figure 5.14.
The increase and large variability of the AWSS is caused by the combined effects of
tortuosity and tapering in the vessel. Even the lowest approximation given by p = 4
delivers a high-fidelity solution in terms of AWSS, which can be improved as p is
increased. This is complemented by a node-wise comparison of the AWSS given by the
FEM approximation and the one given by the TEPEM approach using scatter plots as
displayed in Figure 5.15. The theoretical line at 45◦ is shown as well as the correlation
coefficient (ρ). It is seen that the correlation is extremely high, and, as expected, it
improves as p is increased.

Figure 5.14: Cross-sectional average of AWSS as a function of the longitudinal coordinate.

Figure 5.15: Correlation between AWSS obtained with the TEPEM and that obtained
using the FEM. From left to right, the TEPEM approach is performed with p = 4, p = 6
and p = 8.



Chapter 5. TEPEM in computational hemodynamics 163

(a) Comparison of velocity profiles in region A

(b) Comparison of velocity profiles in region B

Figure 5.16: Comparison of velocity profiles delivered by TEPEM (p = 6) and FEM at
selected time instants.
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(a) Comparison of velocity streamlines in region A

(b) Comparison of velocity streamlines in region B

Figure 5.17: Comparison of the streamlines delivered by FEM and TEPEM at different
time instants.
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5.3.3 Phantom geometry based in centerline information

For the last example, the vessel geometry is reconstructed based on the centerline
and radii information of a patient-specific arterial segment. The geometry, presented
in Figure 5.18, is composed by circular transversal sections of variable radius, and is
partitioned in pipe elements (143 elements) following the geometric pipeline described
before. In the same figure, a comparison between the pipe-mesh structure and a FEM
mesh (generated based in the same centerline/radii information) is performed.

Figure 5.18: Vascular region provided by phantom. Top row: Geometrical description
with dimensions in centimeters. Bottom row: Comparison between FEM discrete mesh
and TEPEM mesh in two regions.

For this example, a comparison within the TEPEM scope, for different transversal
enrichment orders for the approximation of velocity/pressure fields, is addressed. The
computational burden in the TEPEM is presented in Table 5.3 where the time (in
minutes) for a single time-step and the wall-clock time are compared for three different
values of p. Recalling that, for each case, it was employed 36 processors (NP = 36), the
average time (NP × wall-clock time) is also reported.

Table 5.3: Comparison of the computational time in terms of the transversal order in
the TEPEM. The time to perform a single time-step iteration, the wall-clock time and
the average time are given for different enrichment orders.

DoFs Time (min)
Time-step Wall-clock time Average time

p = 4 24 100 0.01 10.31 371.16

p = 6 44 494 0.12 89.80 3 232.8

p = 8 73 342 0.24 404.05 14 545.8
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In Figure 5.19-5.21 the velocity profile, the wall shear stress and the pressure field
provided by different transversal orders in the TEPEM, and at six time instants selected
at the second cardiac cycle, are displayed. The comparison reveals a small variation
between the approximated fields provided with p = 6 and p = 8, which can be understood
as a convergence regarding the transversal order, and also as the ability to predict the
heterogeneities in the wall shear stress field with a low computational cost.
Note that the TEPEM approach retains predictive capabilities from 3D models, which
are naturally far beyond those possessed by one-dimensional approaches. This implies
that the TEPEM is able to provide information about the heterogeneities and accurate
spatial description of the velocity, pressure and also the wall shear stress, which is of
utmost importance in the biomedical engineering applications. At the same time, the
TEPEM is able to considerably reduce the computational burden when compared with
full 3D models.

(a) Comparison of velocity profiles in region A

(b) Comparison of velocity profiles in region A

Figure 5.19: Comparison of velocity profiles (left column) and spatial distribution of
the wall shear stress (right column) for TEPEM with p = 6 and p = 8 at several time
instants.
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(a) Comparison of velocity profiles in region A

(b) Comparison of velocity profiles in region A

Figure 5.20: Comparison of velocity profiles (left column) and spatial distribution of
the wall shear stress (right column) for TEPEM with p = 6 and p = 8 at several time
instants.
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(a) Comparison of velocity profiles in region A

(b) Comparison of velocity profiles in region A

Figure 5.21: Comparison of velocity profiles (left column) and spatial distribution of
the wall shear stress (right column) for TEPEM with p = 6 and p = 8 at several time
instants.
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5.4 Blood flow in a coronary arterial tree

The TEPEM capabilities are now tested in a more complex geometries in this section.
Specifically, we are interested in the simulation of the blood flow in two patient-specific
geometries corresponding to the left and right coronary trees obtained from a CCTA
image. These geometrical domains are the presented in Figure 5.22.

(a) Left coronary arterial tree (b) Right coronary arterial tree

Figure 5.22: Geometrical outline for the left and right coronary arterial trees.

For the left coronary arterial tree, a steady-state regime is simulated to compare the
TEPEM solution, with different transversal orders, with respect to a reference FEM
solution. As in the previous section, the comparison will be performed by contrasting
the size of the discrete problem, the computational time and the resources needed by each
numerical scheme. Similar to the previous section, a distributed computing paradigm is
employed for both TEPEM and FEM, employing a total of 10 processors for the TEPEM
(NP = 10) and 50 for the FEM (NP = 50). Moreover, the scalability of the TEPEM as
a function of the transversal order is also studied.
For the right coronary arterial tree geometry a transient flow is studied using the TEPEM
and different transversal enrichment orders. For this case, a flow waveform is prescribed
at the outlet boundaries. For each transversal order, p ∈ {4, 6, 8}, it was employed a
number of processors equal to NP = 36.
For both cases, the fluid density and viscosity are set to ρ = 1.04 g/cm3 and µ = 0.04 P,
respectively. As performed in the previous chapter, the discrete system for the TEPEM
is solved with a direct parallel algebraic LU solver while an iterative GMRES method,
with a restricted additive Schwarz preconditioner, is employed for the FEM. For both
strategies, the solver libraries provided in the PETSc are employed.
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5.4.1 Left coronary arterial tree

Let us consider the blood flow through a patient-specific geometry of the left coronary
tree obtained from computed tomography angiography. At the inlet, denoted by Γi in
Figure 5.23, a homogeneous Neumann boundary condition is considered for the normal
component of the traction. The flow rate is prescribed to be Q = 2 cm3/s, which is
distributed among the outlet boundaries following the power law in terms of vessel radii
introduced in Section 5.2. The associated Reynolds number results Re = 150, measured
at the inlet boundary.

Figure 5.23: Coronary tree geometry obtained via image segmentation. Detailed
comparison between the mesh employed in FEM simulations and the pipe-element
geometry for the TEPEM at four specific locations.

The geometrical pipeline described in this chapter was employed to discretize the
geometrical domain into a pipe-mesh, employing transition pipe elements to deal with
a correct discretization of the bifurcation regions. Figure 5.23 shows several details of
the FEM mesh and of the TEPEM mesh. As it can be seen, the pipe-element mesh for
the TEPEM yields a rather accurate geometric approximation to the reference geometry
processed from the medical images and which is the basis for FEM simulations.
The characteristics of both FEM and TEPEM meshes are summarized in Table 5.4. As
usual, the size of the discrete problem provided by the TEPEM is remarkably reduced if
compared with the FEM, reaching a relative reduction over 85%, for p = 10. The average
time for FEM and TEPEM are also compared and the results reported in Table 5.4. A
direct comparison between the average time reveals the TEPEM as being clearly faster
than the FEM, speeding up the computation in a range from 190 times (for p = 4) to
1.5 times (for p = 10).
Another interest comparison is concerned with the wall-clock time employed by each
strategy, FEM and TEPEM, to solve the steady-state flow problem. This time, as a
function of the number of processors (NP) employed in the parallel implementation, was
computed and the results are presented in Table 5.5. These results, besides evidencing
the strong scalability of the proposed approach, reveal the aceleration in the simulation
time when moving from FEM to TEPEM.
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Table 5.4: Comparison of the computational burden in the FEM and TEPEM approaches.
The cost is evaluated through the average computational time (in minutes), obtained by
multiplying the number of processors and the wall-clock time at each simulation, and
also through the relative reduction in the number of degrees of freedom.

FEM TEPEM
p = 4 p = 6 p = 8 p = 10

Elements 4 094 885 476

DoFs Total number 2 814 015 78 226 153 469 253 866 379 417

Relative reduction - 97.22% 94.54% 90.97% 86.51%

Total time Average (min) 1 558.85 8.16 74.03 324.82 1 003.05

Relative reduction - 99.47% 95.25% 79.16% 35.65%

Table 5.5: Comparison of wall-clock time (in minutes) for the simulation of the steady-
state blood flow in the patient-specific coronary arterial tree for different number of
processors (NP) using TEPEM and FEM approaches.

Number of processors
NP = 2 NP = 5 NP = 10 NP = 20 NP = 40

p = 4 2.13 1.05 0.82 0.4 0.24

p = 6 16.13 9.08 7.40 4.06 1.73

p = 8 90.54 46.36 32.40 16.70 8.90

p = 10 296.36 144.07 100.30 47.12 37.30

Number of processors
NP = 12 NP = 25 NP = 50 NP = 75 NP = 100

FEM 134.21 61.12 31.16 30.40 31.60

In order to put in evidence the high-fidelity delivered by the TEPEM approximation,
a comparison between pressure and velocity fields is now given, paying attention to
the regions A, B and C (introduced in Figure 5.23). In Figure 5.24, it is presented a
comparison of the pressure field provided by the FEM and the TEPEM for transversal
polynomial orders p ∈ {4, 6, 8}. Clearly, a very good agreement is observed even for low
degree of transversal interpolation.
In Figures 5.25-5.26 a comparison of the velocity streamlines and profiles (at the three
regions A, B and C) between the TEPEM solution for different transversal orders, and
the FEM reference solution is given. From these figures, we readily conclude that the
velocity profile rendered by the TEPEM is in good agreement with the reference solution.
Concerning the approximation of the wall shear stress, in Figure 5.27 it is addressed a
detailed comparison between the spatial description of the WSS provided by the TEPEM
and by the FEM. Unfolding the WSS along the longitudinal axes enables us a complete
scrutiny of the capabilities of the TEPEM to predict the heterogeneities of the field over
all the arterial surface. It is worthwhile to remark that the solution provided with the
lowest transversal order considered (p = 4), considering that it reduces in a 97% the
number of degrees of freedom and is 190 times faster than the FEM approach, is able to
accurately identify the regions of high and low wall shear stress in excellent agreement
with the reference solution.
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Figure 5.24: Detail of the pressure approximation provided by the FEM and the TEPEM
in the regions A (top row), B (middle row) and C (bottom row). Scale for pressure are
conveniently adjusted at each region to better visualize pressure gradients.

Figure 5.25: Streamlines given by FEM and TEPEM, for different transversal order p,
in regions A (top row), B (middle row) and C (bottom row).
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Figure 5.26: Velocity profiles given by FEM and TEPEM, for different transversal order
p, in regions A (top row), B (middle row) and C (bottom row).



Chapter 5. TEPEM in computational hemodynamics 174

Figure 5.27: Unfolded view of spatial distribution of WSS over the vessel surface obtained
with FEM and with TEPEM for different transversal orders.
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5.4.2 Right coronary arterial tree

The transient blood flow through a patient-specific right coronary arterial tree,
reconstructed based in the centerline/radii information, is addressed here. The centerline,
computed from a domain obtained from computed tomography angiography, defines the
geometry presented in Figure 5.28.

Figure 5.28: Coronary tree geometry reconstructed based in centerline/radii information.
Detailed comparison between the mesh employed in FEM simulations and the pipe-
element geometry for the TEPEM at four specific locations.

At the inlet, leftmost axial boundary in region A, it is imposed a transient flow rate
defined through the signature seen in Figure 5.29 with period T = 0.8 seconds, and
a resistance-type boundary condition is imposed distributing a total resistance R =
6 · 103 dyn·s·cm−5 among the outlet boundaries. The inlet flow is imposed through a
Lagrange multiplier as explained in Section 5.2. Finally, over the wall boundary a no-slip
boundary condition is considered. For the time/spatial discretization, time step is chosen
as ∆t = 1 · 10−3 s and the geometry is discretized employing a pipe-mesh composed by
290 elements.
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Figure 5.29: Flow signature imposed at the inlet of the right coronary arterial tree.
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For the right coronary artery, we will focus our study into exposing the high predictive
capabilities of the TEPEM, as a function of the transversal order, together with the
sense of convergence reached with respect to this same parameter.
For the transient simulation, 32 processors are employed for the case p = 4, p = 6 and
p = 8. The increase in the computational cost when the transversal polynomial order is
augmented in the TEPEM is reported in Table 5.6

Table 5.6: Comparison of the computational time with respect to the transversal order
in the TEPEM. The cost is compared through the time to perform a single time-step
iteration and the wall-clock time of whole simulation. The number of degrees of freedom
for each case are also reported.

Elements DoFs Single time-step Wall-clock time
p = 4

290
46 023 3.855 s 157.80 min

p = 6 90 373 23.359 s 1 078.10 min
p = 8 149 559 100.615 s 3 519.60 min

A comparison between the average velocity (along the second cardiac cycle) is shown
in Figure 5.30. Here, a streamline view colored with the magnitude of the velocity is
presented for each polynomial order employed in the TEPEM (p ∈ {4, 6, 8}). A more
detailed comparison is outlined in Figure 5.31, where it is selected a region of the right
coronary arterial tree (see regions C and D in Figure 5.28) to carry out a comparison
between the velocity profile provided by the TEPEM, with different transversal orders,
at different instants in the cardiac cycle.

Figure 5.30: Comparison of the streamlines for the mean velocity field in the second
cardiac cycle.
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The comparison between velocity profiles outlined in Figure 5.31 exhibits the convergence
with respect to the parameter p also appreciated in previous examples. Furthermore, in
the same figure, streamlines colored by the pressure field allows us to appreciate also the
convergence of the TEPEM regarding such field.

Figure 5.31: Comparison of velocity profiles provided by the TEPEM considering different
polynomial orders for the transversal interpolation. Streamlines colored by the pressure
field are also presented.
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A visualization of the pressure field in the whole domain, and the invariance when
increasing the transversal orders in the TEPEM is shown in Figure 5.32.

Figure 5.32: Comparison of pressure field along the right coronary artery for different
polynomial order for the transversal interpolation in the TEPEM.
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5.5 Cerebral blood flow

The demonstrated capabilities of the TEPEM in the accurate description of
hemodynamic quantities at a fraction of the computational burden that than employed
by standard FEM simulations are analyzed in this section when dealing with a complex
and large vascular region in the cardiovascular system. The blood flow through the
intracranial arterial tree is simulated here.
For the description of the geometry, the accurate anatomical information provided by
the ADAN model ([Blanco et al. 2014b]) is employed here as the basis to reconstruct the
three-dimensional geometrical model. The centerline and radii information given by the
ADAN model are the input data in the geometrical pipeline proposed for the pipe-type
meshing process, resulting in the geometry outlined in Figure 5.33. In the same figure it
is also highlighted the reconstruction of the ring-type structure known as the Circle of
Willis. The geometry, composed by 126 branches and 64 bifurcations, is discretized into
a pipe-mesh composed by 3 597 simple pipe elements and 192 transition pipe elements.

Figure 5.33: Geometry for the 3D intracranial arterial system reconstructed from the
1D ADAN model. Left: Lateral view of the whole system. Center: Frontal view. Right:
Detailed view of the Circle of Willis.

To illustrate the application of the TEPEM in this complex vasculature, the blood flow
in steady-state regime is simulated. As boundary conditions, a total flow equal to Q = 5
cm3/s is distributed over vertebral and carotid arteries, the four inferior pipe structures
in Figure 5.33 and over the outlets a resistance-type condition is imposed considering a
total resistance of R = 6 · 103 dyn·s·cm−5, such that the blood pressure is in the normal
physiological range. To fully characterize the problem, no-slip boundary conditions are
imposed over the lateral surface of the vessel.
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The blood flow is simulated employing a number of processors equal to NP = 60 and
transversal polynomial order p = 6. Once the high-fidelity in the approximations provided
by the TEPEM was stated, no FEM approximation is performed for this problem. The
capabilities of the TEPEM to describe the spatial heterogeneities can be appreciated in
Figure 5.34 where the approximated pressure and WSS fields are presented.

Figure 5.34: Detail of the spatial variation of pressure and WSS fields when the TEPEM
is employed to simulate the blood flow through the intracranial arterial system.

Moreover, a detailed view of the physical fields (focused on the regions A, B, C and D
described in Figure 5.33) is presented in Figure 5.35. Concerning to the computational
time employed in this simulation, the time to perform a single Picard iteration was 36
seconds, while the total wall-clock time until reaching the steady state solution was
around 12 minutes. Clearly. this is a small amount of time in view of the level of
information provided by the proposed approach.
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Figure 5.35: Detail of the velocity profiles, pressure and WSS fields provided by the
TEPEM in the four regions selected in the intracranial vasculature. In each panel, the
scale for the pressure field are conveniently adjusted to visualize the pressure gradients.
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5.6 Further remarks

The TEPEM was proposed to become an efficient numerical technique, able to provide
relevant hemodynamic information and capable of confronting the trade-off between
accuracy and computational cost, which imposes a limit of application on the current
numerical techniques in large-scale simulations. Once the abilities of the TEPEM were
demonstrated in scalar transport and fluid flow problems, in this chapter it was addressed
the study of these characteristics in the scope of blood flow in patient-specific geometries.
For the efficient application of the TEPEM in real-life problems, a pipeline was proposed
to deal with the pipe-type discretization of any patient-specific geometry. This pipeline,
fundamental for a real use of the proposed strategy in medical practice, covers the
different stages in the geometrical discretization: from the image segmentation step to the
generation of a final pipe-mesh composed by simple and transition elements. The spatial
discretization of the vasculature is performed in a very straightforward and simple way,
in comparison with the highly time consuming task of meshing in FEM. Even when an
optimization of the pipe-mesh generator must be addressed before a detailed comparison,
in terms of computational time, between FEM and TEPEM spatial meshing strategies
an initial insight can be obtained with the example addressed in Section 5.4.2. Starting
with the same surface triangular mesh, the generation of the volume mesh for the FEM
consume a time in the order of 3 minutes while the time employed in the pipeline proposed
for the TEPEM was approximately 5 seconds.
Concerning the numerical assessment of the TEPEM addressed in this chapter,
comparisons of the accuracy and reduction in the computational burden in the TEPEM
were performed with respect to FEM solutions. In contrast to the numerical experiments
delivered in the previous chapter, in each numerical test the mesh considered to obtain
the FEM reference solution was a standard tetrahedral mesh, employed in the academic
practice, instead of an extremely fine mesh. This allows us to establish a better
comparison for the computational time and problem size associated to each approach.
Along this chapter, the TEPEM has demonstrated its capability to provide accurate
information related to the blood dynamics at a fraction of the time employed by a FEM
approach. Many comparisons between the velocity and pressure approximations obtained
with the FEM and the TEPEM with different orders in the transversal polynomial
interpolants provide solid evidence of the gains when making use of the TEPEM in
real applications. Special attention deserves the approximation of the wall shear stress
because of its importance in medical applications. The TEPEM, even with low order for
the transversal polynomials (p ∈ {4, 6}) is able to provide an accurate spatial description
of the wall shear stress, pointing out the high heterogeneity of this field with a low
computational cost if compared with the FEM alternative.
Finally, the integration of the high predictive capabilities of the TEPEM with the
detailed anatomical description provided by the ADAN model was exemplified through
the simulation of the blood flow in the cerebral arterial system. The detailed information
provided by the TEPEM, in the spatial description of velocity, pressure and wall shear
stress fields, opens the room for developing extremely large scale blood flow simulations,
enabling us to retrieve information about the entire circulation at an unprecedented level
of integration between anatomy and phenomenology.
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Conclusions

6.1 Final remarks

The potentialities of computational hemodynamics on diagnosis, prognosis and their
common use in the daily clinical practice continue to be largely demonstrated in the
specialized biomedical literature. Nevertheless, at the same time, the massive use of
3D flow models is strongly restricted because of the enormous computational cost
demanded for the simulation of large portions of the cardiovascular system. The trade-
off between accuracy and computational cost poses serious limits to current numerical
alternatives. Simplified 1D models are inexpensive but unable to provide high fidelity
spatial description of physical fields, identify recirculation zones as well as point out the
heterogeneities in important indexes such as the wall shear stress. In turn, the information
provided by full 3D models is richer in details, but achieving these solutions demands
for a computational burden which is prohibitive in the daily medical practice.
In this work a novel numerical strategy was proposed, capable of effectively dealing with
the almost inevitable trade-off between accuracy and computational burden. Moreover,
the proposed methodology is versatile enough to be employed in complex patient-specific
geometries and is able to provide high fidelity predictions of important flow-related
quantities at a fraction of the time taken by classical Finite Element Method (FEM). The
proposed approach, coined as Transversally Enriched Pipe Element Method (TEPEM),
was studied along this work and its capabilities were extensively demonstrated through
several numerical examples in scalar transport problems, fluid flow in synthetic academic
geometries and complex patient-specific hemodynamic simulations.
For scalar transport problems, an extensive numerical assessment was addressed to
demonstrate the accuracy obtained with the TEPEM compared to analytical solutions
(when available) or reference solutions obtained with the FEM in extremely fine meshes.
A similar convergence study was presented for fluid flow problems together with a
numerical validation of the suitability of the proposed combination for the discrete spaces
of velocity and pressure in order to satisfy the inf-sup condition.
Concerning the application of the proposed strategy in the blood flow modeling through
patient-specific geometries, the advantages of the TEPEM against the standard FEM
are worthwhile to mentioning. The judicious use of the number of degrees of freedom
in the TEPEM allows us to solve with high degree of fidelity the blood dynamics with
relatively small discrete problems and with a gain in the computational time ranging
between 150 and 600 times for the cases exemplified through the numerical experiments.
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6.2 Future perspectives

The promising results obtained by the use of the TEPEM, specially in the simulation of
blood flow through complex patient-specific geometries, motivate further research aiming
its inclusion in the biomedical research as well as production stages. Some of the future
perspectives and points still to be improved are listed below.

1. Regarding the convergence analysis, further investigations are required to provide
theoretical convergence rates for the TEPEM. Convergence results in similar
methodologies, such as the Hierarchical Modeling, give reasonable insights about
the convergence of our approach but the rates of convergence specific for the
TEPEM are still under investigation.

2. An analysis of the suitability of the discrete spaces involved in the fluid-flow
modeling is required, that is, a theoretical proof of the inf-sup condition of this
type of hybrid-order interpolation scheme is still in order.

3. Aiming of simulating the interplay between the arterial wall and the blood
flow, we also envision the adaptation of the TEPEM to handle fluid-structure
interaction phenomena, which is also of the utmost importance for the
application of this methodology into the modeling of propagatory phenomena
in the cardiovascular system.

4. Another pending issue consists in exploring the coupling of the TEPEM with
reduced order methodologies, such as the 1D models, aiming of further reducing
the computational cost of simulating the blood flow in the whole cardiovascular
system.

5. Finally, the improvement of the proposed geometrical pipeline could enrich the
accuracy of the representation of the vasculature. The use of IsoGeometric
Analysis applied to the axial discretization of the arterial regions and alternatives
in the bifurcation reconstruction step are under investigation.
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