
Laboratório Nacional de Computação Científica

Programa de Pós-Graduação em Modelagem Computacional

Multiscale Modelling of Fibrous Materials: from
the elastic regime to failure detection in soft

tissues

Felipe Figueredo Rocha

Petrópolis, RJ - Brasil

5 de Abril de 2019



Felipe Figueredo Rocha

Multiscale Modelling of Fibrous Materials: from the
elastic regime to failure detection in soft tissues

Tese submetida ao corpo docente do
Laboratório Nacional de Computação
Científica como parte dos requisitos
necessários para a obtenção do grau
de Doutor em Ciências em Modelagem
Computacional.

Laboratório Nacional de Computação Científica

Programa de Pós-Graduação em Modelagem Computacional

Supervisor: Pablo Javier Blanco
Co-supervisor: Raúl Antonino Feijóo

Petrópolis, RJ - Brasil
5 de Abril de 2019



XXXX

Rocha, Felipe Figueredo
Multiscale Modelling of Fibrous Materials: from the elastic regime to failure

detection in soft tissues / Felipe Figueredo Rocha. – Petrópolis, RJ - Brasil, 5 de
Abril de 2019-

181 p. : il. ; 30 cm.

Orientador(es): Pablo Javier Blanco e Raúl Antonino Feijóo

Tese (D.Sc.) – Laboratório Nacional de Computação Científica
Programa de Pós-Graduação em Modelagem Computacional, 5 de Abril de 2019.
1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. Blanco, Pablo Javier.

II. LNCC/MCTI. III. Título

CDD: XXX.XXX



Felipe Figueredo Rocha

Multiscale Modelling of Fibrous Materials: from the
elastic regime to failure detection in soft tissues

Tese submetida ao corpo docente do
Laboratório Nacional de Computação
Científica como parte dos requisitos
necessários para a obtenção do grau
de Doutor em Ciências em Modelagem
Computacional.

Aprovada por:

Prof. Pablo Javier Blanco, D.Sc.
(Presidente)

Prof. Rubens Sampaio Filho, Ph.D.

Prof. Fernando Alves Rochinha, D.Sc.

Prof. Eduardo Alberto Fancello, D.Sc.

Prof. Abimael Fernando Dourado Loula,
D.Sc.

Prof. Regina Célia Cerqueira de Almeida,
D.Sc.

Petrópolis, RJ - Brasil
5 de Abril de 2019



Dedication
To Mariluce (in memoriam)



Acknowledgements

If there is one thing that I cannot complain about my graduate period, it would be
the lack of helpful people that I worked with. In fact, quite a number of helpful people
have crossed my way during these 4 years of thesis. This thesis would not come to an end
without them.

Of course, the top position of this list is for my supervisor prof. Pablo Blanco
(hereafter just Pablo). I can say that he was more than just an excellent academic tutor,
but someone that in many many times trusted on me, in my ideas, calculations, simulations,
etc, even more than myself. Roughly, 99% of the times that I talked to him during these
almost 6 years of work (Master included), I went out more confident than before talking. I
think this a rare statistics, at least if I compare with most of my friends. I also believe
that this is one of most valuable help that someone can offer in such a long and harsh
journey, as the doctorate is. Finally, I would like to thank for the trust and freedom that
you dispensed to me for conducting my research and for such a cutting-edge topic you
proposed.

The second person of this list is my co-supervisor, prof. Raúl Feijóo. Even almost
always collaborating by email, he was like a “human compiler”, pointing out very rapidly
every single wrong or not well explained line of my texts. Such attitude took my research to
a really higher level of formalisation that I could not had without his very wise observations.
Moreover, he taught me, together with Pablo, the most important subject that I have
learnt at LNCC, I am talking about variational formulations in mechanics. I am really glad
to have learnt this topic in a such unique and passionating manner with them. Certainly,
this good influence will persist quite a long time in my career. At last, but not the least,
they both are the most hardworkers people that I ever met in academia, they were always
available at the time that I needed, with replies faster than my capacity to process them.
Such commitment has been inspiring.

Pursuing with the list, I was lucky to collaborate actively with more two great
experts in solid mechanics, prof. Eduardo de Souza Neto and prof. Pablo Sánchez, they
both were very influential in different periods of the thesis. Firstly, I am glad for the time
I spent at the CIMEC (Santa Fé) learning damage and fracture theories from prof. Pablo
Sánchez, prof. Alfredo Huespe and Sebastian Toro, other very supportive people that I
met in this long path. Also in CIMEC, I am very happy to have met Carlos and prof.
Victor Fachinotti, thank you for the ‘mates’, wine and ‘assados’. I am also pleased for my
sandwich period in ZCCE (Swansea) and the supervision that I received of prof. Eduardo
de Souza Neto. Thanks for all support you gave me and for every hour (yes, hours!) spent



on the blackboard discussing lack of convergence issues. I cannot forget about Quang, my
best friend in Swansea, but also my great collaborator, with whom I still share a lot of
‘discrete multiscale ideas’ and bugs via Skype, you can’t imagine the whole importance
that our discussions had to keep my motivation flying high during the time in Swansea. I
cannot forget my other friends from Swansea, with whom I shared a couple of pints, jazz
and walking, thank you Reza, Marcos, Débora, Alex, Chenna, Emilio, etc, the list is huge.

I also want to acknowledge prof. Anne Robertson (University of Pittsburgh) who
gave me the opportunity to have a glimpse on real world experiments on arteries and look
closely those beautiful images of microphoton microscopy. This contributed quite a lot to
a pure computational mechanics guy as me. Thank you so much to Gade Piyusha and
Chao Sang (her PhD students) to have conducted and explained me patiently all details
of those experiments.

Coming back to Brazil, I want to acknowledge the evaluation board for accepting
this duty and taking their time to read the manuscript. Thanks a lot to prof. Rubens
Sampaio, prof. Fernando Rochinha, prof. Eduardo Fancello, prof. Abimael Loula and profa.
Regina Almeida. I extend the acknowledge for all great professors who taught me at LNCC,
this thesis has at least a tiny bit of every of their courses.

I really appreciated the working environment inside the HeMoLab team. Thank
you so much Alonso, Carlos, Gonzalo Ares, Gonzalo Maso, Paulo, Lucas, Heloisa, Krishna
and the visitors Sofia and Jorge, for really nice conversations, bash and SolverGP hints,
dinners, ‘mates’, coffees, beers, pastas and ’limoncellos’. I wish you all the best for your
scientific careers.

During my stay at LNCC, besides the official courses, I had the opportunity to learn
a bit of several other subjects, different from my background, which I would never have
imagined to have contact one day. I feel myself really lucky to be in a such interdisciplinary
and helpful environment created here. Besides that, having spent the first 6 years of my
adult age at LNCC, I have learnt a lot about life and about myself, situations that I
had never passed before I experienced here. Certainly, everyone of my close friends here
had taught me a lot without perceiving. For all these ‘free’ lessons and all the other
unstressful moments of coffee, lunch, ‘esfihas’, pizzas, trails, going outs and so on, a big
acknowledge goes to Aarito, Alan, Aline(s), Andrés(s), Bruno, Caio, Cauê, Diogo, Fortià,
Gastão, Harão, Heber, Juanzito, Leonardo, Leandro, Lucas, Lucão, Luiza, Stephen, Nicolas,
Nicolau, Paulinho, Pedro, Quinelato, Rodrigo, Secis, Thiagão, Tiene, Volpatto, Wellerson
and Weslley (I hope to have not forgotten anyone).

I wish to say special thanks to all the staff of the LNCC, particularly to Ana
Néri, Roberta, Marcelly, Ana Paula, Aline and Babi (now my yoga instructor). For their
efficiency and kindness, you all help a lot to let the environment of research less harsh as
possible. I also acknowledge the public agencies CNPq, Faperj, CAPES and the project



INCT-MACC for the financial support.

Finally, I wish to dedicate this work to my family, specially to my Mommy (In
memorian) and my brothers Jakelúcio, Lúcio and Júnior and their families and also to ‘tia
Ana’, Daniel and Wana. I would like to extend these compliments to Bruna, Isa, Maurício
e Daniel, thanks for being for quite a while my second family (and what a family!).



ceiiinosssttuv = ut tensio sic vis

Robert Hooke (Lectiones Cutleriana, 1679)



Abstract
Fibrous materials are an important class of either biological and artificial materials and
hence are essential to a wide spectrum of fields, ranging from medicine and biology to
industrial applications. From the vast number of soft biological fibrous materials, this thesis
found its inspiration from those tissues of the arterial walls. This is mainly motivated by
the fact that cardiovascular diseases are one of the leading causes of death worldwide and
consequently, to gain insight into the mechanisms underlying the progression of most of
these diseases, a detailed characterisation of the mechanical behaviour of the arterial wall
is required. This involves not only the simple phenomenological model for the material,
but also the understanding of evolution processes such as damage, growth, remodelling
and, eventually, failure. In this context, the multiscale constitutive modelling raises as
a rational approach in which these complexities are naturally accounted for through
micromechanical interactions between the basic unit blocks of the biological soft tissues,
such as collagen fibres, pores, smooth muscle cells, etc. In particular, this thesis deals
with the construction of a multiscale model to characterise the macroscale constitutive
behaviour of a fibrous material featuring a discrete microstructure, i.e., a network of fibres.
Both, the purely elastic and inelastic regimes in the finite strain setting are addressed, and
in the latter case, until failure and strain localisation phenomena emerge. To reach this aim,
the classical multiscale theory for continua had to be generalised to deal consistently with
randomly distributed pores crossing the Representative Volume Element (RVE) boundary.
Importantly, this theory provides a novel minimally constrained kinematically admissible
set for the displacement fluctuations, consisting in the lower bound of the mechanical
response and also is of utmost importance to analyse microscopic strain localisation
phenomena. Finally, as the third and last contribution of the thesis, on the light of the
discontinuous bifurcation analysis, we use the derived multiscale model for a network of
fibres to study the macroscale manifestation of damage processes unfolding at the level of
individual fibres. Hence, strain localisation is observed and is identified as the main cause
of nucleation of macroscale cracks, characterising the critical point of failure in our context.
Such point, in which the macroscale problem becomes ill-posed, is determined by the
spectral analysis of the so-called acoustic tensor, which also provides information about the
macroscale failure pattern (unit normal and crack opening vectors). In all these models, the
Method of Multiscale Virtual Power (MMVP) has been employed, providing a systematic
methodology based on variational formulations to characterise the microscale equilibrium
problem, consistent boundary conditions, as well as the homogenisation formulae which
define the associated first Piola-Kirchhoff stress tensor and the constitutive tangent tensor
in the macroscopic continuum.. Numerical experiments showing the suitability of the
present methodology are shown and discussed.



Keywords: Constitutive Multiscale Modelling; Network of fibres; Representative volume
element; Strain localisation; Discontinuous Bifurcation Analysis.



Resumo
Materiais fibrosos são uma importante classe de dentre os que compõem tecidos biológicos
e materiais artificiais, e por esta razão são fundamentais em um largo espectro de
contextos desde medicina e biologia até aplicações industriais. Dentre o enorme número
de tecidos fibrosos, essa tese foi inspirada naqueles encontrados nas paredes arteriais.
Isso é principalmente motivado pelo fato que as doenças cardiovasculares são umas das
principais causas de morte no mundo e que, para entender os mecanismos de evolução
dessas enfermidades, se faz necessário uma caracterização detalhada do comportamento
mecânico da parede arterial. Isto inclui não apenas um simples modelo constitutivo
fenomenológico para o material, mas também o entendimento de processos evolutivos
como o dano, crescimento, remodelamento e, eventualmente, falhas. Neste contexto, a
modelagem constitutiva multiescala aparece como uma alternativa mais racional na
qual estas complexidades são naturalmente levadas em consideração pelas interações
micromecânicas dos componentes básicos que constituem os tecidos biológicos, isto é,
fibras de colágeno, poros, células de músculo liso, etc. Em particular, esta tese trata da
construção de um modelo para caracterizar o comportamento constitutivo macroscópico
de um material fibroso constituído de uma microestrutura discreta, nesse caso uma rede
de fibras. É analisado tanto o regime elástico quanto o inelástico em grandes deformações,
e nesse último caso até o momento que ocorre a detecção de uma falha juntamente com a
localização de deformação. Para se chegar neste objetivo, a teoria clássica multiescala para
um meio contínuo poroso teve que ser generalizada para tratar de maneira mecanicamente
consistente Elementos de Volumes Representativos (EVR) cujos vazios atingem a fronteira.
É importante destacar que essa teoria estabelece um novo conjunto admissível de mínima
restrição cinemática para o campo de flutuações de deslocamento, caracterizando a cota
inferior teórica para a resposta mecânica, aspecto fundamental na análise do fenômeno de
localização de deformação na microescala. Finalmente, baseado na análise de bifurcação
descontínua, o modelo desenvolvido para a rede de fibras é usado para se estudar o efeito
macroscópico dos processos de danificação que ocorrem no nível das fibras. Desta forma, a
localização de deformação é observada e identificada como a principal causa da nucleação
de macro-fissuras, caracterizando o ponto crítico de falha no nosso contexto. Tal ponto, no
qual o problema mecânico na macroescala se torna mal-posto, é determinado pela análise
espectral do tensor acústico, que também determina o padrão da fissura na macroescala
(direção da normal e abertura da trinca). Em todos estes modelos, o Método da Potência
Virtual Multiescala (MPVM) foi utilizado por se tratar de uma metodologia sistemática
baseada em formulações variacionais que permite caracterizar o problema de equilíbrio na
microescala, condições de contorno consistentes, bem como fórmulas de homogeinização
que definem o primeiro tensor de Piola-Kirchhoff e o tensor constitutivo tangente do



modelo no contínuo macroscópico. Por fim, experimentos numéricos mostrando o potencial
da metodologia proposta são apresentados e discutidos.

Palavras-chave: Modelagem constitutiva multiescala; Redes de fibras; Elemento de
volume representativo; Localização de deformação; Análise de bifurcação descontínua.
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1 Introduction

Fibre networks are important structural components for many biological and
artificial materials and hence are fundamental in a wide spectrum of fields, ranging from
medicine and biology to industrial applications. Concerning biological soft materials, most
of the cardiovascular tissue in the human and animal bodies, such as arterial walls and
the heart, are composed from collagen fibre networks that carry the main structural
function (ROBERTSON; WATTON, 2013; HOLZAPFEL; GASSER; OGDEN, 2000).
Another important examples of collagenous fibrous tissues are: the connective tissue,
comprising tendons and articular cartilage (DAVIS; VITA, 2012; GANGHOFFER et
al., 2016; VASSOLER; FANCELLO; A., 2016); the extracellular matrix (ECM), which
provides the structural support for cells together with the proteoglycans, for example
in the human cornea (CHENG; HATAMI-MARBINI; PINSKY, 2013). Also, there are
non-collagenous biological fibrous structures as those found in the cytoskeleton, where
F-actin filaments that compose the network structure play not only a structural role but
also act upon biochemical regularisation (RANGAMANI; XIONG; IYENGAR, 2014).
Additional, examples of non-biological fibrous materials include textiles, paper and rubber-
like materials.

From the vast number of soft biological fibrous materials, this thesis found its
inspiration in the basic constituents of the arterial walls. This is motivated by the fact
that cardiovascular diseases are the leading cause of death worldwide (ROTH et al.,
2015). Hence, due to the complexity and importance of the problem, the efforts of the
scientific community towards a more detailed understanding of this subject have increased
during the last years. Naturally, the computational mechanics approach has become
a viable and fundamental methodology to guide research in the field. For this reason,
several constitutive models have been proposed in the attempt to improve predictive
capabilities of numerical simulations to model the material behaviour of arterial tissue
(HOLZAPFEL; OGDEN, 2010; HOLZAPFEL; GASSER; OGDEN, 2000; WEISBECKER;
UNTERBERGER; HOLZAPFEL, 2015; GASSER; OGDEN; HOLZAPFEL, 2006).

To gain insight on the onset and progress of some cardiovascular diseases, as well as
to improve treatment and surgical planning in medical practice, a detailed characterisation
of the mechanical behaviour of the arterial wall is required. This is even more fundamental
when studying the tendency of soft tissues to failure after growth, remodelling and damage
processes. The classical constitutive modelling approach based purely on phenomenological
laws fails in representing the micro-mechanical interactions among tissue constituents,
which are fully responsible for disastrous outcomes such as pathological remodelling and,
eventually, rupture of these tissues. In turn, the multiscale constitutive modelling raises as
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a powerful tool which allows to naturally take into account the microscopic details and
interactions of the basic unit blocks of the biological tissues, such as collagen fibres, pores,
etc.

Before digging into more technical aspects, we address more carefully two questions
that are fundamental to understand the motivation of the present work, that is:

1. Why is it important to study failure in arterial tissues? (see Section 1.1).

2. Why is it so important to model the arterial tissue using a multiscale approach? (see
Section 1.2).

Still in this chapter we further discuss about generalities concerning multiscale
theories in Section 1.3 and also the use of this approach in the field of fibrous materials in
Section 1.4. In the sequence of that, the methodology adopted will be discussed in Section
1.5 and objectives of the thesis will be pointed out in Section 1.6, as well as the associated
contributions in Section 1.7. For the organisation of the each chapter, see Section 1.8.

1.1 Mechanical failure in arterial tissues
Particularly in the context of the vascular tissues, it has largely been acknowledged

the connection between the onset and progress of pathologies with physiological, chemical
and mechanical markers (CARO; FITZ-GERALD; SCHROTER, 1971; KU et al.,
1985; GIDDENS; ZARINS; GLAGOV, 1993; CHATZIZISIS et al., 2007). While at
a large timescale the material response slowly evolves and transforms by means of
mechanobiological phenomena, being manifested through growth and remodelling processes
(ROBERTSON; WATTON, 2013), at a short timescale, it must be recognised the
weakening and rupture preceding such catastrophic events are matter of the domain
of failure analysis and/or inelastic constitutive modelling. Moreover, one single common
characteristic of most important cardiovascular diseases is the role played by failure and
other softening phenomena. Such importance can be seen by the increasing number of
scientific contributions in the computational biomechanics field. Below, it follows some
example of diseases and their related studies:

1. Atherosclerotic degenerations of the blood vessels lead to the development of
atherosclerotic plaques which are one of the fundamental expressions of the
onset and progress of cardiovascular diseases. For instance, the simulation of
fracturing the iliac atherosclerotic artery using a phase field model was reported
in (RAINA; MIEHE, 2015). Using the continuum damage approach, (BALZANI;
BRINKHUES; HOLZAPFEL, 2012) simulated inflation of an atherosclerotic artery.
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Other contributions in this field have been provided by (FERRARA; PANDOLFI,
2008).

2. The treatment of vessel stenosis targets the opening of lumen area in order to
regularise blood pressure and remove obstacles to blood flow. Two common procedures
are baloon angioplasty and stent implants. These procedures, however, may severely
injure the inner surface of the arterial wall. Ineffective procedures may also result in
re-stenosis of the blood vessel, or even in the rupture of atherosclerotic plaque, which
can block downstream circulation, causing stroke (brain circulation) or myocardial
infarction (coronary circulation). Given the great relevance in understanding and
optimising these treatments, (LI et al., 2012) performed the numerical simulation
of the ballon-angioplasty and stent implant in an idealised three-layer transversely
isotropic artery allowing damage in both collagen and elastin constituents.

3. The laminated structure of the media (see Fig. 1), which renders a high strength to
the artery, may be also the cause the so-called dissection which is the separation
of these lamellae. The dissection phenomena have basically two consequences: it
can cause stenosis or it may weaken the artery causing, for instance, the growth of
an aneurysm. In this field of research, (GASSER; HOLZAPFEL, 2006) performed
numerical simulations of arterial dissection combining transversely isotropic energy
density with proper finite element formulations to deal with discontinuous fields. A
combined analysis during a ballon-angioplasty intervention was done in (GASSER;
HOLZAPFEL, 2007). Other works in this direction are (GASSER; HOLZAPFEL,
2003; FERRARA; PANDOLFI, 2010).

Several studies have been conducted to try to characterise, through ex-vivo
experiments, the loss of stiffness either at the level of the entire arterial wall (SANG et
al., 2018), or at a layer level (WEISBECKER et al., 2012), just to mention a couple of
examples. Many mathematical models have been proposed to explain these observations,
see for example (BALZANI; BRINKHUES; HOLZAPFEL, 2012; LI et al., 2012; LI, 2016;
PEÑA, 2014). These studies share a similar modelling strategy, that is the characterisation
of phenomenological material models to describe the stable material response as well as
the identification of the conditions for which the constitutive response starts to feature a
softening behaviour (i.e. negative slope in the stress-strain relation), instant at which the
failure of the tissue typically begins.

Many other examples could be mentioned, but the important point to highlight at
this moment is that none of the aforementioned articles study the failure phenomena using
a multiscale paradigm, subject of the next Section 1.2. As it will be seen in the next few
sections, the study of the micromechanical environment in fibrous networks is paramount
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towards a correct understanding of the phenomena involved in the rupture of biological
tissues.

1.2 Multiscale nature of the arterial tissues
The human body is a highly complex multiscale system, as in particular the

cardiovascular system and the circulation of blood through it. Particularly, the arterial
wall tissues are highly heterogeneous, as seen in Figs. 2 and 1. These heterogeneities (for
instance, different families of fibres, voids, etc.) govern the mechanical response of the
tissue at the macroscopic (observable) scale, which is the level at which the load-bearing
function is crucial to properly interact with the forces exerted by the blood. The main
structurally important components are elastin, collagen and smooth muscle fibres, as can
be seen in Fig. 1. The arterial wall is composed by three layers:

Intima: It consists mainly of elastin, which has almost a linear elastic and isotropic
behaviour. Sometimes the endothelium is not considered part of this layer, due to
the small thickness and low mechanical relevance.

Media: It is the intermediate layer which comprises most of the artery. It is formed
by an elastic and smooth muscle matrix reinforced with collagen fibres. Due to its
structure, the mechanical behaviour of this layer is nonlinear and anisotropic.

Adventia: It is the stiffest layer due to the high concentration of collagen fibres immersed
in elastin.

Within the characterisation of the arterial tissue, the mechanical relevance of
the tunica media and adventitia is of the utmost interest. These layers feature an
architecture of elastic and collagen fibres which provide them with particular functional
roles (ROBERTSON; WATTON, 2013). The exact composition depends on the type of
vessel and, also, on the size of the vessel. However, the fibrous structure is dominant
for these two outer layers. From a macroscale viewpoint, these fibres display a certain
preferred material orientation around a given direction which, also, depends on the type
of vessel. Thus, phenomenological models have introduced the effect of fibres through
transversely isotropic constitutive functionals based on direction-dependent invariants
also including the effect of fibre dispersion (GASSER; OGDEN; HOLZAPFEL, 2006;
HOLZAPFEL; GASSER; OGDEN, 2000). Concerning the fenestrated structure of intima
(see Fig. 2), in (GASSER et al., 2010) it is shown the micro-mechanical characterisation of
the intra-luminal thrombus tissue in abdominal aortic aneurysms, which can be modelled
employing an Representative Volume Element (RVE) with randomly distributed elliptical
porous media.
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Figure 1 – Arterial wall structure. Asked for permission from (HOLZAPFEL; GASSER;
OGDEN, 2000)).

Also, in the context of biological materials displaying a fibrous structure, some
works have addressed the importance of the mechanical interaction among fibres at the
microscale in the overall response of the tissue. For example, as pointed in (STEIN et
al., 2011), the effect of stiffening is not well understood, and considering the non-affinity
of deformation in those models it is necessary to gain insight into such phenomenon. In
(KABLA; MAHADEVAN, 2007; CHANDRAN; BAROCAS, 2007), the authors attributed
the nonlinear mechanical response observed in some experimental tests to two contributing
factors: (i) the individual nonlinear constitutive behaviour of each single fibre, and (ii) the
non-affine collective deformation of the network. Several non-affinity indexes are proposed
and comparison is made in (HATAMI-MARBINI; PICU, 2009). In (PRITCHARD; HUANG;
TERENTJEV, 2014), the same features are discussed, plus the recruitment of individual
fibres, which is also claimed to play an important role in the nonlinear behaviour observed
at the macroscale. All these factors motivate the construction of multiscale models, so that
the internal structure of the tissue along with underlying micro-mechanical interactions
are taken into account in the resulting material response.

Finally, it is worth mentioning that despite the increasing experimental and
computational efforts to investigate failure-related and irreversible effects of soft biological
tissue, as those seen in Section 1.1, the underlying degradation mechanisms at the microscale
level remain poorly understood. According to (GASSER, 2011), there is still no clear
definition of what damage is, and conventional indicators of mechanical injury (such
as visible failure and loss of stiffness) may not identify the tissue’s tolerance to injury
appropriately. For instance, a single scale modelling approach of arterial tissues does not
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regard explicitly individual collagen fibres and this may obscure the understanding of
important microscale constitutive ingredients.

Figure 2 – Overview of several spatial scales in the cardiovascular system. Images
extracted from the Adan-Web (http://hemolab.lncc.br/adan-web/) and asked
for permission from (ROBERTSON; WATTON, 2013).

Figure 3 – Arterial tissue rupture (asked for permission from (ROBERTSON; HILL; LI,
2012)).
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1.3 On multiscale theories
Nowadays, in order to reach a deeper description of the reality, most of the areas of

science involving complex material behavior as well as multi-physics phenomena needs to
resort at some point to multiscale modelling techniques. This is motivated by the profound
insight about the interplay between observable (macroscale) response and underlying
(microscale) physical mechanisms enabled by these techniques, and also by the increasing
availability of computational resources (which enable expensive simulations). From the vast
number of multiscale methodologies, this thesis focus on a specific class of procedures which
rely on the formulation (and solution) of an equilibrium problem at a smaller scale, or simply
microscale, and also on the transfer of information between scales through proper insertion
and homogenisation formulae. Since the microscale domain, also called microcell, is intended
to be as representative as possible, these approaches can be termed as Representative
Volume Element (RVE)-base multiscale models. Such literature is vast dating back
to the mid of last century (HILL, 1965; MANDEL, 1972) and have been successfully
applied in many areas, such as heat transfer (ÖZDEMIR; BREKELMANS; GEERS,
2008), solid mechanics (FEYEL; CHABOCHE, 2000a; MICHEL; MOULINEC; SUQUET,
1999; MIEHE; SCHOTTE; SCHROEDER, 1999; NEMAT-NASSER, 1999), including
plasticity (MCDOWELL, 2010), thermoelasticity (BLANCO; GIUSTI, 2014; TEMIZER;
WRIGGERS, 2011), material failure (BELYTSCHKO; SONG, 2010; BELYTSCHKO;
LOEHNERT; SONG, 2008; SÁNCHEZ et al., 2013; TORO et al., 2014), biomechanics
(PAHR; ZYSSET, 2008; SPEIRS; NETO; PERIĆ, 2008; ROCHA et al., 2018), as well
as in the field of fluid mechanics (BLANCO; CLAUSSE; FEIJÓO, 2017; SANDSTRÖM;
LARSSON, 2013), just to cite few instances. Out of the scope of this thesis, another
important lineage of multiscale theories is that based on the asymptotic analysis of partial
differential equations with periodic coefficients in the modelling of periodic media, initiated
by the landmark contributions of (BENSOUSSAN; LIONS; PAPANICOLAOU, 1978) and
(SANCHEZ-PALENCIA, 1980).

It is important to remark that, in order to improve their predictive capacities,
phenomenological models make use of two alternative paths: (i) to increase the number
of kinematical descriptors (enhanced theories of continuum media) or (ii) to increase the
number of internal variables that define the material constitutive response. In the first case,
the resultant mechanical model, along with its underlying thermodynamics restrictions,
becomes very complex. In the second case, a great number of material parameters
need to be adjusted/characterised from experimental tests. As already commented, a
natural choice to overcome the drawbacks inherent to phenomenological models is the
explicit modelling of the mechanical interactions between basic components of the tissues,
through RVE-based strategies. In biological tissues, this aspect is even more important
given the current limitations to perform most of the experiments in-vivo. In fact, other
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experimental observations are still needed, as those from the microstructure of the arterial
wall obtained from techniques such as multiphoton microscopy, as seen in Fig. 2, available
in (ROBERTSON; WATTON, 2013) and references therein, for example. However, we
claim that if this kind of enriched information is available, it could be integrated into the
model in order to deliver more reliable predictions.

In the selection of a particular multiscale model, two aspects, which affect its
predictive capabilities, must be taken into account: i) the definition of the morphology
that shapes the RVE, and ii) the definition of the boundary conditions to be applied at
the microscale model. In fact, aspects i) and ii) are not totally independent from each
other, since the more suitable the boundary conditions, the smaller the size required for
the microcell, to be regarded as a RVE, and vice-versa. To be rigorous, the use of the term
RVE is inappropriate before performing a rigorous statistical analysis (KANIT et al., 2003;
KHISAEVA; OSTOJA-STARZEWSKI, 2006). In fact, the RVE is very clearly defined in
two situations only, as stated in (KHISAEVA; OSTOJA-STARZEWSKI, 2006): i) a unit
cell in a periodic microstructure, and ii) a volume containing a very large (mathematically
infinite) set of microscale elements. Neither of these two assumptions are valid for the
problems of this thesis, however we will use the term RVE, sometimes as an abuse of
language, even lacking a rigorous statistical analysis.

Regarding the morphology of the RVE for porous materials, we can split these
morphologies in three categories: i) RVEs in which voids are confined to the interior of
the microscale domain, i.e., voids not reaching the RVE boundary; ii) RVEs with voids
reaching the RVE boundary in a structured, periodic pattern and iii) RVEs with voids
reaching the RVE boundary following a random pattern. Multiscale models for the group
i) and ii) have been consistently formulated, largely tested and widely understood. For
case of materials featuring randomly distributed voids or even materials with very high
porosity, it is almost impossible to fit those materials in either case i) or ii). In turn, case
iii) has not received the same attention by the related literature. The utilisation of the
very same concepts borrowed from case i) and ii) to the more complicated situation of case
iii) may yield results which are, at least, questionable from the mathematical/physical
point of view. Therefore, if we regard the fibrous material as a special case of porous
materials with low volume fraction, and thus case iii), a consistent multiscale model to deal
with porous continua containing voids reaching the RVE boundary should be formulated
properly. Actually this is one of the goals of this thesis (see Section 1.6).

Concerning the choice of the boundary conditions, there is a first fundamental step
to overcome. This is related with the definition of lower and upper bounds within which
the homogenised material behavior, retrieved from the multiscale model, is expected to be
placed. The upper bound for the effective material response (in the sense of the stiffest
response) is given by the so-called Taylor model, or also known as mixture model, where
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the kinematics at microscale is fully prescribed given the macroscale kinematics. This is
the situation of maximally constrained kinematics. In turn, the lower bound is the model
that features the weakest response measured in some sense, which corresponds to the
situation of minimally constrained kinematics at microscale. Actually, it will be seen in
this thesis that the determination of the least constrained boundary condition is not a
trivial task for the RVEs of the category iii) of the previous paragraph. Notwithstanding,
the methodology to be adopted in this thesis (see Section 1.5) provides the necessary tools
to derive the minimal admissible kinematical restrictions.

Finally, in contrast to the development of multiscale models for complex materials,
whose literature is vast and dates back to the mid of last century (HILL, 1965; MANDEL,
1972), the development of multiscale models for biological tissues has a recent history.
Although the natural and increasingly pressing motivation for using multiscale models,
there are still many barriers to be overcome before the proliferation of multiscale models
in biomechanics. Among these barriers we mention the complexity and computational
cost involved in dealing with such multiscale strategies and also empirical issues. In any
case, multiscale modelling, which is extremely effective and widely spread in other areas,
constitutes the future of material modelling also in the case of living tissues. Up to now,
there are really few contributions in biomechanics of soft tissues making use of multiscale
methodologies. In fact, and thinking in tissues whose microstructure is made up of fibres,
this problem implies the integration between a macroscale continuum mechanical models
and microscale fibrous (i.e. discrete) models (STYLIANOPOULOS; BAROCAS, 2007a;
STYLIANOPOULOS; BAROCAS, 2007b; SPEIRS; NETO; PERIĆ, 2008; BERKACHE et
al., 2017; NADY; GODA; GANGHOFFER, 2016; NADY; GANGHOFFER, 2016), which
also comprises the proper characterisation of admissible microscale boundary conditions.
In this regard, the present thesis features several scientific contributions to the field (see
Section 1.6). Additional literature concerning fibres networks will be considered next in
Section 1.4.

1.4 Multiscale approaches for fibre networks
In the last years, current imaging technologies have provided a staggering amount of

data to drive the construction and validation of mathematical models featuring increasingly
complex descriptive capabilities (STEIN et al., 2008). In this direction, novel experimental
settings have enable scientists to study the refined mechanical response of individual
collagen fibres or even fibrils, including the mechanisms that lead to the rupture of such
components (BLANCO; POLINDARA; GOICOLEA, 2015; ZITNAY et al., 2017).

Up to the authors’ knowledge, very few works considered multiscale methodologies
to model the material response of a network of fibres in biological tissues. For instance,
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the work of (SPEIRS; NETO; PERIĆ, 2008) aimed at fitting parameters of some classical
strain energy functions by means of homogenisation and optimisation of a multiscale
model composed by a continuum matrix of material (representing the elastin content)
reinforced with a set of discrete trusses elements representing the collagen fibres. However,
and because of the existence of a background continuum elastin matrix, this multiscale
approach was entirely based on standard continuum mechanics methods, and no reference
to the discrete nature of the fibres network was made.

In the works by (CHANDRAN; BAROCAS, 2007; STYLIANOPOULOS;
BAROCAS, 2007a; STYLIANOPOULOS; BAROCAS, 2007b) the so-called collagen
hyperelastic network approach is presented and applied in the multiscale analysis of the
arterial tissue. These works postulate the homogenisation for the stress measure based on a
continuum-like homogenisation procedure, but no detailed discussion about the connection
of kinematical descriptors between scales, as well as boundary conditions other than
the linear boundary displacement constraint is mentioned. Following a similar approach,
although relying on an infinitesimal strain model for individual collagen fibres and also
suffering from the same drawbacks than works previously cited in this paragraph, the
contributions by (THUNES et al., 2016; THUNES et al., 2018) show interesting predictive
capabilities, and considerable advances were achieved towards correlating experimental
data of human aorta. Pursuing a different approach, (WITTHOFT et al., 2016) makes use
of DFD (Dissipative Particle Dynamics) to model multi-constituent arterial tissues.

Dealing with multiscale methods based on asymptotic analysis and generalised
non-Cauchy continuum applied to fibre networks, the recent works of (BERKACHE et
al., 2017; NADY; GODA; GANGHOFFER, 2016; NADY; GANGHOFFER, 2016) present
important contributions, the later being in the domain of textiles, and including inter-fibre
contact. These works are based on a more general procedure published independently
by (CAILLERIE; MOURAD; RAOULT, 2003) and (WARREN; BYSKOV, 2002), the
so-called discrete homogenisation (in short DH). Importantly, the DH method is restricted
to periodic conditions.

Concerning size-effects of the RVE, (BERKACHE et al., 2017; SHAHSAVARI;
PICU, 2013) perform convergence analyses of their models and both conclude in favour
of the fundamental role played by different boundary conditions in the context of fibre
networks. Notwithstanding this, both methodologies fail to provide a clear derivation and
interpretation of those boundary conditions. In this direction, this thesis will considerably
expand the understanding on this matter by pursuing a multiscale approach based on
the Hill-Mandel principle (see Sections 1.6 and 1.5). Also considering the role played by
RVE boundary conditions, but not in a context of fibre networks, the work of (CARNIEL;
KLAHR; FANCELLO, 2019) presents interesting results for the problem of helically
collagen fibres embedded in a softer matrix, by extending the approach of (CARNIEL;
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FANCELLO, 2018) applied for the modelling of tendon tissues.

Despite the strides made in this field, the bottom-line mechanisms unfolding in the
smallest spatial scales and that lead to the occurrence of large scale mechanical conditions
for failure to occur have remained poorly understood. On the one side, this is because
the problem poses formidable challenges from the experimental perspective. In fact, the
observation and tracking of failures in the small scale tissue constituents, while the tissue
specimen is being stretched, is beyond the limits of current technologies, as pointed out
recently in (SANG et al., 2018).

In the previous context, the development of mathematical models acquires an
even more fundamental character as a rational strategy to guide research in the field.
The construction of proper constitutive models based on a multiscale approach provides
a natural path to bridge observable rupture phenomena and substratum deterioration.
Through such models, it could be possible to provide a typification of the fundamental
ingredients responsible for the irruption of a macroscale failure and the softening of
individual tissue constituents, that is collagen fibres, delivering a controlled in-silico
experimental laboratory to test hypotheses.

The loss of strong ellipticity condition (RICE, 1976), in many cases, visibly coincides
with the instant of definition of a strain localisation pattern at the microscale level.
Although strain localisation is a quite well documented phenomenon in mechanics (e.g
(BIGONI, 2012)), to the authors’ knowledge, contributions concerning such study for the
material response of fibrous tissues within a multiscale paradigm have not been addressed.
We must mention the works of (VANDERHEIDEN; HADI; BAROCAS, 2015; HADI;
SANDER; BAROCAS, 2012; SOZUMERT et al., 2018; DEOGEKAR; PICU, 2018) where
effect of damaging of fibres has been introduced in a discrete model, but have let the
strain localisation and material instability phenomena cursorily analysed. Importantly, the
observation of this event is particularly possible if sufficiently generic boundary conditions
are available. In this context, the admissible kinematical constraints derived in this thesis
will be shown to be of special interest.

In a more general context of material modelling using computational mechanics,
not a considerable number of attempts have been made to couple discrete mechanical
interactions with continua in a multiscale setting. We highlight the works of (MIEHE;
DETTMAR, 2004; MIEHE; DETTMAR; ZAH, 2010), which addressed the homogenisation
of a granular microstructure to retrieve standard measures of internal stresses in the
material. Other works regarding the homogenisation of atomistic and molecular dynamics
interactions are reported in (DAVYDOV; PELTERET; STEINMANN, 2014; STEINMANN;
RICKER; AIFANTIS, 2011; LI; E, 2005; LI; URATA, 2016) and in the realm of multiscale
modelling of the paper an example is (BOSCO et al., 2017). In fact, in spite of the
existence of previous works in this direction, up to the authors’ knowledge there is no
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well-established approach to couple such problems of distinct kinematics between the scales.
In this regard, this thesis provides some valuable ingredients to drive the construction of
other discrete-continuum models, other than those based in fibres networks.

1.5 Methodology
Towards the construction and full characterisation of a multiscale model, the first

challenge lies in the consistent information exchange between scales. Such process implies
to characterise the multiscale model in terms of kinematical homogenisation, microscale
equilibrium problem and generalised stress-like homogenisation. This problem will be
addressed, within the unified framework coined as Method of Multiscale Virtual Power
(MMVP), in (BLANCO et al., 2014; BLANCO et al., 2016), providing the basic principles
and axiomatic steps to build mechanically coherent multiscale models. Such approach is
formulated on the light of variational formulations derived from the Principle of Virtual
Power (PVP) (GERMAIN, 1972; MAUGIN, 1980), in which the MMVP can be viewed
as an extended format of the PVP suitable to address physical problems in multiscale
scenarios.

The main aspect of such theory that justifies its utilisation, as usual in variational
formulations, is that it provides a rational justification of classical formulations and
facilitates the rigorous construction of new multiscale models in a systematic, well-defined
steps. The MMVP, relies on three steps, namely: i) the definition of kinematics at each
scale, and the proper transfer of kinematical descriptors between scales, ii) the use of
duality arguments to introduce the stress measures as dictated by the virtual power
functionals at both scales, and iii) the formulation of the Principle of Multiscale Virtual
Power (PMVP), which ensures the physical consistency between scales. This approach
was adopted because it is a general methodology that, following well-defined steps, allows
to construct new multiscale models based on a minimum set of assumptions. Furthermore,
these guidelines lead naturally to a minimal set of kinematical constraints, and thus it is
valuable to establish lower bounds for the mechanical response, whose importance was
already pointed out in Section 1.3. A deeper presentation of the MMVP is given in Chapter
2.

Moreover, it is worth mentioning that the MMVP has been succesfully applied in
a number of different multiscale problems such as the analysis of solid mechanics with
microscale inertial effects (NETO et al., 2015); in the connection between second order
continua and classical continuum mechanics models (BLANCO et al., 2016), in fluid
mechanics (BLANCO; CLAUSSE; FEIJÓO, 2017), thermoelasticity (BLANCO; GIUSTI,
2014) and also to tackle multiscale material failure (SÁNCHEZ et al., 2013; TORO et al.,
2014; TORO et al., 2016; TORO et al., 2016).
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Finally, concerning the failure and strain localisation detection, this is performed
exploiting the method of discontinuous bifurcation analysis (RICE, 1976), in which the
so-called acoustic tensor, which is a function of the homogenised constitutive tangent
tensor given by the MMVP, is evaluated to detect the loss of strong ellipticity condition.

1.6 Main objectives
Based on the above considerations, this thesis deals with the construction of a

multiscale model to characterise the macroscale constitutive behaviour of a fibrous material
featuring a discrete microstructure (i.e., a network of collagen fibres) aiming at the detection
of failure and strain localisation phenomena. To reach this general goal, we propose the
following steps in the form of intermediate goals:

1. As already pointed out in Section 1.3, to drive the construction of the fibre network
model, a generalisation of the classical multiscale theory for solids in finite strain
regime, that enables the analysis of RVEs with a random distribution of voids, is
required. Importantly, the main goal of this step is to develop a truly Minimally
Constrained Kinematical Multiscale Model (the MCKMM model) for such kind
of RVEs by using the MMVP. As a consequence of the formulation, the proposed
MCKMM corresponds to a model with a uniform traction acting over each solid
boundary with constant normal vector.

2. Given that a consistent multiscale model for the porous RVEs has been established in
the previous step, this step aims at the construction of the multiscale model featuring
a classical finite strain solid at macroscale and a discrete network of fibres at the
microstructure. This is accomplished by regarding a fibrous RVE as a special case of a
fenestrated RVE and then proceed by performing an adequate continuum-to-discrete
transition, which, in the end, results in a multiscale model with a fully discrete
kinematics at the microscale. Hence, a discrete version for the MCKMM is derived
here.

3. The final goal is, on the light of the discrete model derived in the previous step, to
investigate the impact that softening fibres in the discrete microscale domain have
on the homogenised macroscale response. The critical point, that characterises the
macroscale failure initiation, is detected using the discontinuous bifurcation analysis
(RICE, 1976). As a subproduct of this process, the microscale failure pattern, i.e.,
unit normal and crack-opening vectors, shall be determined.
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1.7 Scientific Contributions
During the period of the doctorate program, comprised between March 2015 and

April 2019, the following scientific reports were elaborated in the context of the thesis:

Full-length articles in journals : Among published, submitted and being revised
papers, we have:

• Felipe Figueredo Rocha, Pablo Javier Blanco, Pablo Javier Sánchez, and Raúl
Antonino Feijóo. Multi-scale modelling of arterial tissue: Linking networks of
fibres to continua. Computer Methods in Applied Mechanics and Engineering,
341:740–787, 2018

• Felipe Figueredo Rocha, Pablo Javier Blanco, Pablo Javier Sánchez, Eduardo de
Souza Neto, and Raúl Antonino Feijóo. Multiscale modelling of damage-driven
strain localisation in fibrous tissues (under review). Journal of the Mechanics
and Physics of Solids, 2019.

• Pablo Javier Blanco, Pablo Javier Sánchez, Felipe Figueredo Rocha, Sebastián
Toro, and Raúl Antonino Feijóo. A consistent multiscale mechanical formulation
for media with randomly distributed voids (in submission). Computer Methods
in Applied Mechanics and Engineering, 2019.

Full-length articles in conferences :

• F.F. Rocha, P.J. Blanco, R.A. Feijóo, P.J. Sánchez, and A.E. Huespe.
A multiscale approach to model arterial tissue. In Ibero-Latin American
Congress on Computational Methods in Engineering (CILAMCE), Rio de
Janeiro, 2015. Anais do XXXVI Congresso Ibero-Latino-Americano de Métodos
Computacionais em Engenharia.

Extended abstracts in conferences :

• F.F. Rocha; P.J. Blanco ; P.J. Sánchez; R.A. Feijóo. On the constitutive
modeling for fibrous tissues. In: International Conference on Computational
and Mathematical Biomedical Engineering, 2017, Pittsburgh. International
Conference on Computational and Mathematical Biomedical Engineering
Proceedings, 2017.

Abstracts in conferences :

• P.J. Blanco, P.J. Sánchez, F.F. Rocha, Toro, S.; R.A. Feijóo. Multiscale
formulation for materials with randomly distributed voids: minimally
constrained and more restrictive multiscale sub-models. In: XII Argentine
Congress on Computational Mechanics, 2018, San Miguel de Tucumán. Mecánica
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Computacional. Santa Fé: Asociación Argentina de Mecánica Computacional,
2018. v.XXXVI. p.1683 - 1683

• F.F. Rocha; P.J. Blanco; de Souza Neto, E.; P.J. Sánchez, R.A. Feijóo. Towards
post-critical multiscale modelling of damage in biological fibrous tissues. In:
XII Argentine Congress on Computational Mechanics, 2018, San Miguel
de Tucumán. Mecánica Computacional. Santa Fé: Asociación Argentina de
Mecánica Computacional, 2018. v.XXXVI. p.1875 - 1875

• F.F. Rocha, P.J. Blanco, P.J. Sánchez, R.A. Feijóo. A Multiscale Approach
to Study Softening Mechanisms in Arterial Tissue In: EMI2017-IC - 2017
EMI International Conference, 2017, Rio de Janeiro. EMI2017-IC - 2017 EMI
International Conference Proceedings. , 2017.

• Toro, S., F.F. Rocha, P.J. Sánchez, P.J. Blanco, A.E. Huespe, R.A. Feijóo.
Modelado Multiescala de Materiales: Análisis de Condiciones de Borde en
Micro-Estructuras con Poros y/o Inclusiones que Alcanzan la Frontera del RVE
In: Congreso sobre Métodos Numéricos y sus Aplicaciones, 2017, La Plata. Anais
do ENIEF 2017. La Plata: Asociación Argentina de Mecánica Computacional,
2017. v.XXXV. p.1309 -1309

1.8 Organisation
This thesis is divided in 6 chapters (without considering the introduction), briefly

described below:

• Chapter 2) Variational Foundations of Multiscale Models: In this chapter
we review the Method of Multiscale Virtual Power (MMVP) (BLANCO et al., 2014;
BLANCO et al., 2016), which is the basic tool used throughout this thesis, already
introduced in Section 1.3. Importantly, the abstract theory is applied to the classical
multiscale model for solid mechanics, which introduces the standard model of class
of problems that this thesis addresses, i.e., the ones in the field of solid mechanics.
By including this chapter, our intention is to maintain this thesis as self-contained
as possible.

• Chapter 3) A Consistent Multiscale Model for Solids with Voids reaching
Boundary: This chapter presents the developments associated with the intermediate
goal 1) of Section 1.6.

• Chapter 4) Linking Networks of Fibres to Continua: Here, we develop the
multiscale model for network of fibres, which consists in the intermediate goal 2) of
Section 1.6.
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• Chapter 5) Damage Modelling and Failure Detection in Fibrous
Materials: The intermediate goal 3) of Section 1.6 is addressed in details in this
chapter.

• Chapter 6) Numerical Experiments: Through a set of relevant numerical
experiments, in this chapter we demonstrate the potentialities of the framework
developed in Chapter 4 and Chapter 5.

• Chapter 7) Conclusion: Finally, this chapter is dedicated to the final discussions
of the most relevant aspects approached in this thesis. Also, some future lines of
research is introduced.

The suggested reading path is the traditional top-down approach, given that the
chapters, and section therein, have a clear relation of dependency with the previous ones.
The only two exceptions are Section 2.4, which can be skipped in a first reading, and also
Chapter 6, in which Section 6.1 can be read right after Chapter 4 for the reader eager to
jump into the analysis of some numerical examples.

Note that the three main theoretical cornerstones of the thesis, tackling each one
of the major goals established in Section 1.6, are respectively mapped in Chapters 3, 4
and 5. Accordingly, these chapters are associated to the three full-length journal articles
of Section 1.7.
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2 Variational Foundations of Multiscale
Models

...the whole burden of philosophy seems to consist in this - from the
phenomena of motions to investigate the forces of nature, and then from
these forces to demonstrate the other phenomena.

Isaac Newton (Preface to the first edition of the Principia, 1685).

This chapter aims to describe the basic tools for the multiscale modelling of a
physical problem in the context of variational formulations. To reach this goal, we decided
to follow a strategy that goes from general setting to specific applications. Considering
this, the chapter is divided into three parts. First, Section 2.1 is devoted to presenting
in abstract form the standard procedure for modelling a generic physical problem via
variational formulations by using the well-known Principle of Virtual Power (GERMAIN,
1972; MAUGIN, 1980). The former section serves as a basis to understand the Method
of Multiscale Virtual Power (MMVP) (BLANCO et al., 2014),(BLANCO et al., 2016),
which is reviewed in Section 2.2. Finally, in Section 2.3, the MMVP is invoked to model
the classical multiscale model for continuum solid mechanics in finite strain regime in a
classical setting. The reason for that are twofold: i) exemplify the use of the MMVP in
a concrete modelling scenario and ii) provide a basis in which non-standard models is
build upon, as example of Chapter 3. Also in the same section, we address more advanced
topics such as: the variational treatment for incompressible materials, linearisation of
the nonlinear problem for Newton-Raphson procedure, and the macroscale constitutive
tangent derivation together with the analysis of its symmetries. These topics are useful for
the thesis but are not contemplated in the remaining chapters.

It is worth mentioning that the choice of presenting the abstract formulation is not
only aiming to formulate the model in Section 2.3, but is specially useful for the derivation
of non-standard models in chapters 3 and 4, providing a sound systematic framework
for deriving multiscale theories as well as simplifying the presentation of the following
applications.

Note that throughout this section, a basic knowledge of continuum mechanics is
assumed. For a reader interested in reviewing these concepts we refer to the classical books
(GURTIN, 1981; OGDEN, 1984) but also to the more recent presentation of (HOLZAPFEL,
2000).
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2.1 Method of Virtual Power
In this section we present the framework for modelling physical phenomena using

the method of virtual power in the context of single scale problems. The generalisation for
multiscale problems is considered next in Section 2.2.

2.1.1 Kinematics

Let Ω be a geometrical bounded domain that stands for the configuration occupied
by the body B in which the physical problem to be modelled is defined. Let x ∈ Ω be a
point in such domain Ω. The so-called generalised displacements u is an entity capable
to describe the kinematics (also understood in a generalised sense) of the entire physical
model. Depending on the nature of the problem u may assume different representations,
e.g., scalar field, vector field, tensor field, or even n-tuples of possible different kind of fields
in multi-field problems. Also, these fields are defined in subdomains of Ω (including the
case of the entire domain). Mathematically, let us say that u belongs to a space U that
encloses in its definition the adequate representation chosen for modelling a given problem.
Also, depending on physical restrictions (e.g. boundary conditions, incompressibility) we
may be interested in solutions belonging to a subset of U , let us say KinU ⊂ U . The set
KinU is the set of kinematically admissible generalised displacements. Associated to KinU ,
we can define the space of kinematically admissible generalised virtual actions as:

VarU = {û ∈ U ; û = u1 − u2;u1, u2 ∈ KinU }. (2.1)

Another important kinematical concept is the generalised strain, denoted by D ∈ E ,
being E its corresponding vector space. Similar to u, D may admit very general descriptors,
and in general can be understood as a collection of them, which are also defined on
subdomains of Ω.

Relating U and E , there is the so-called generalised strain rate operator D defined
as:

D :U → E

u 7→ D = D(u). (2.2)

In particular an element D ∈ E is said to be kinematically compatible if there exist u ∈ U

such that D = D(u). Accordingly, for a virtual action û, we have D̂ = D(û). The kernel of
the operator D, i.e. Ker(D) ⊂ U (recalling Ker(D) = {u ∈ U ;D(u) = 0}), is an important
concept to be explored next whose elements are called rigid generalised displacements.

2.1.2 Mathematical Duality

The other concept necessary to completely set the physical model is the postulation
of two linear functionals, related to the spaces U and E , known as external and internal
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Figure 4 – Duality diagram for the principle of virtual power in single scale.

virtual power functionals respectively. Since, by hypothesis, these functional are linear,
they admit representation in the form of duality products as follows

Pext(u) = 〈f, u〉U ′×U , (2.3)

P int(D) = 〈Σ, D〉E ′×E , (2.4)

where the dual element f ∈ U ′ is so-called generalised external forces and Σ ∈ E ′ the
generalised internal stress. Evaluation of P int is restricted to admissible strain rates, i.e.,
P int(D(û)) with û ∈ VarU . Therefore, by using the so-called adjoint operator D′ : E ′ → U ′,
we can identify the admissible external forces for the model as the element f = D′(Σ) ∈ U ′,
such that

P int(D(û)) = 〈Σ,D(û)〉E ′×E = 〈D′(Σ), û〉U ′×U = 〈f, û〉U ′×U û ∈ VarU . (2.5)

Additionally, also from (2.5), admissible external f ∈ U ′ are such that:

〈f, û〉U ′×U = 0 û ∈ VarU ∩Ker(D) (2.6)

In other words f ∈ (VarU ∩Ker(D))⊥. For an overview of the whole picture of relations
between spaces see Fig. 4.

Remark 1 The difference between internal and external virtual power is normally referred
to in the literature as the so-called total virtual power defined as

Ptot(u,D) = P int(D)− Pext(u). (2.7)

2.1.3 Principle of Virtual Power

The Principle of Virtual Power (PVP) is the variational statement of the physical
problem that tells us about the criterion under which a system is at equilibrium, and it is
enunciated as follows:
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Principle 1 (Principle of Virtual Power) Let f ∈ U ′ be an admissible external force,
it is said that Σ ∈ E ′ is equilibrated if the following variational equation holds

P int(D(û)) = Pext(û) ∀û ∈ VarU , (2.8)

or equivalently

〈Σ,D(û)〉E ′×E = 〈f, û〉U ′×U ∀û ∈ VarU . (2.9)

Remark 2 In this work we are interested in a common particular case of the Principle 1
in which the generalised internal stress state depends on the history of some (possibly non-
linear) generalised strain measure through a given constitutive functional. Let G : U → E be
this generalised strain measure, then Σ = Σ(Gt), where Gt is the history of G up to a time t
that implicitly depends on history of the generalised displacements ut, i.e., Gt = G(ut). Note
that for sake of simplicity no distinction of notation was made between the object and the
associated functional. It is worth mentioning that solution of (2.8) in this scenario consists
in finding u ∈ KinU such that (2.9) holds, for the corresponding Σ. Finally, specification
of G naturally induces the strain rate operator as the tangent of this possibly non-linear

measure of generalised strain, i.e., by the Gâteaux derivative D(û) := d
dτ G(u+ τ û)

∣∣∣∣∣
τ=0

.

2.2 Method of Multiscale Virtual Power
The derivation of a multiscale model using the the Method of Multiscale Virtual

Power (MMVP) is based on three fundamental concepts described next, following
(BLANCO et al., 2014; BLANCO et al., 2016).

1. Kinematical Admissibility. The kinematics for both macro and microscale must be
first defined, which amounts to define the kinematical descriptors at each scale
together with the generalised gradient operators. Connection between the scales
is established through (i) the insertion of macroscale entities into the microscale
kinematics and (ii) the homogenisation of microscale entities to render corresponding
macro-scale kinematical descriptors. The macroscale and the microscale kinematics,
and the connection between them in terms of insertion and homogenisation operations
are developed in detail in Section 2.3.2. Moreover, the role of the homogenisation
operations is to provide an unambiguous set of rules to define constraints for the
kinematical descriptors at the microscale, avoiding thus ad-hoc considerations.

2. Mathematical Duality. The postulation of the virtual power functionals for each
scale is the second step. This amounts to characterise, as power-conjugates to
kinematical descriptors, the dual force- and stress-like entities. These entities are
thus compatible with the kinematics in each scale. The macro- and microscale
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virtual power functionals, which play a key role in the multiscale power balance, are
introduced in Section 2.2.3.

3. Principle of Multiscale Virtual Power (PMVP). This principle consists in a variational
statement and generalisation of the Hill-Mandel Principle of Macrohomogeneity
(HILL, 1965; MANDEL, 1972), where the postulated virtual power functionals
defined in the different scales are equated. From this principle, the microscale
equilibrium problem and the homogenisation formula for the stress measure are
derived using variational arguments. The PMVP is developed in Section 2.2.4.

The present work takes advantage of the possibility offered by the MMVP to deal
with kinematics at the macroscale and microscale in a systematic form, to be explored in
the next chapters.

2.2.1 Multiscale Kinematics

It was seen in Section 2.1.1 the abstract kinematical setting in the context of
variational formulations of a single scale physical model. We will reutilise as much as
possible the same notation in order to set the multiscale kinematics avoiding repetition of
concepts. First, we describe the macro and microscale kinematics independently (as in a
single problem) and secondly the apropriate link between both scales is given in Section
2.2.2, as part of the Kinematical Admissibility step for the construction of the model
following the MMVP (BLANCO et al., 2014; BLANCO et al., 2016).

2.2.1.1 Macroscale Kinematics

Keeping analogy with the notation defined in Section 2.1.1, but adding a subscript
(·)M whenever necessary, at the macroscale we define ΩM , UM , EM , KinUM (and
consequently VarUM ) and DM . We also have uM ∈ UM and DM ∈ EM , generalised
macroscale displacements and strain rates respectively. Points in ΩM are denoted by xM and
it is interesting to denote point-valued objects as uM |xM = uM (xM ) andDM |xM = DM (xM ).
Let us denote as RxM

UM
and RxM

EM
the sets in which uM |xM and DM |xM live, respectively. In

a given xM ∈ ΩM the microscale kinematics is defined as next.

2.2.1.2 Microscale Kinematics

In the similar fashion as for the aforementioned macroscale kinematics setting,
we also admit the existence of Ωµ, Uµ, Eµ, and Dµ, partially defining the microscale
kinematics. Points in the RVE domain Ωµ are denoted by xµ. As usual, we have the
generalised microscale displacements uµ ∈ Uµ and generalised microscale strain rates
Dµ ∈ Eµ. It is worth mentioning that the definition of sets, spaces and operators in
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microscale is independent to the ones defined for macroscale, i.e., in other words, microscale
and macroscale kinematics can be modelled differently.

Note that the missing components to complete the characterisation of the kinematics
in microscale are the necessary physical constraints to define KinUµ (and consequently
VarUµ). This is a matter of the kinematical admissibility step, subject of Section 2.2.2.

2.2.2 Kinematical Admissibility

So far, the kinematics groundwork has been established for both scales separately.
Now, it is necessary to define mappings of the macro-scale kinematics at a given macro-scale
point xM and the microscale kinematics at the corresponding RVE. This amounts to define
the so-called insertion operators and homogenisation operators. The same concept applies
to mapping macro- and microscale virtual actions (variations).

Let us assume that uµ ∈ Uµ is composed by two parts: i) one determined by the
macroscale kinematics through the action of the insertion operators, let us denote uµ and
ii) other remaining part, so-called fluctuation of the generalised displacements, denoted by
ũµ. Hence, uµ = uµ + ũµ, with uµ ∈ U µ and ũµ ∈ Ũµ, where U µ and Ũµ are subspaces of
Uµ.

It is important to mention that the adoption of a definition of insertion operators,
although not necessarily unique, should satisfy a certain number of physical reasonable
restrictions. Such constraints are emphasised through specific commentaries in this chapter.

2.2.2.1 Insertion Operators

The first insertion operator maps point-valued macroscale generalised displacements
to microscale generalised displacements as follows:

JU
µ : RxM

UM
→ U µ,

uM |xM 7→ JU
µ (uM |xM )

(2.10)

It is also necessary to define a second insertion operator which maps point-valued
macroscale generalised strain rates to microscale generalised displacements as follows:

JE
µ : RxM

EM
→ U µ,

DM |xM 7→ JE
µ (DM |xM )

(2.11)

The contribution uµ is then characterised as follows

uµ = JU
µ (uM |xM ) + JE

µ (DM |xM ). (2.12)

Remark (Operator Restrictions) 1 Operator JU
µ should be such that

Dµ(JU
µ (uM |xM )) = 0 ∀uM |xM ∈ RxM

UM
, (2.13)
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i.e. , JU
µ (uM |xM ) ∈ Ker(Dµ). From the physical point of view the above restriction entails

that the inserted generalised displacement from the macroscale does not produce any effect
on the generalised strain rates at microscale.

2.2.2.2 Kinematic homogenisation operators

In this section we define the homogenisation operators which establish the
kinematical connection between the kinematics at both scales, providing a sense of
kinematic conservation in the multiscale transfer. Furthermore, these operators clearly
define the admissible kinematical restrictions to be satisfied by the displacement
fluctuations.

First we have the homogenisation operator for the generalised displacement as
follows

HU
µ : Uµ → RxM

UM
,

uµ 7→ HU
µ (uµ).

(2.14)

From this operator emerges a physical restriction upon uµ that has to satisfy

HU
µ (uµ) = uM |xM . (2.15)

Remark (Operator Restrictions) 2 Operator HU
µ should be such that

HU
µ (JU

µ (uM |xM )) = uM |xM ∀uM |xM ∈ RxM
UM
, (2.16)

HU
µ (JE

µ (DM |xM )) = 0 ∀DM |xM ∈ RxM
EM

(2.17)

i.e. , HU
µ ◦ JU

µ is the identity operator in RxM
UM

and insertion of a pure macroscopic
generalised strain rate generates zero homogenised generalised displacement.

Since the operator HU
µ is linear, this is equivalent to

HU
µ (uµ) = HU

µ (uµ) +HU
µ (ũµ)

= HU
µ (JU

µ (uM |xM )) +HU
µ (JE

µ (DM |xM )) +HU
µ (ũµ) = uM |xM ,

which implies, from (2.16) and (2.17), that the fluctuation ũµ must satisfy

HU
µ (ũµ) = 0 (2.18)

Next we have the homogenisation operator for the generalised strain rate

HE
µ : Eµ → RxM

EM
,

Dµ 7→ HE
µ (Dµ).

(2.19)

The physical restriction associated to this operator is postulated naturally as follows

HE
µ (Dµ) = DM |xM . (2.20)
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Remark (Operator Restrictions) 3 Operator HE
µ should be such that

HE
µ (Dµ(JE

µ (DM |xM ))) = DM |xM ∀DM |xM ∈ RxM
EM
, (2.21)

i.e. , HU
µ ◦ Dµ ◦ JU

µ is the identity operator in RxM
EM

.

Since HE
µ and Dµ are linear, using (2.21), (2.13) and also Dµ = Dµ(uµ) = Dµ(uµ) +

Dµ(ũµ) we have

HE
µ (Dµ) = HE

µ (Dµ(JU
µ (uM |xM ))) +HE

µ (Dµ(JE
µ (DM |xM ))) +HE

µ (Dµ(ũµ) = DM |xM ,

which yields to

HE
µ (Dµ(ũµ)) = 0. (2.22)

Note that restrictions (2.15) and (2.20) defines the kinematical admissible set for
the microscale generalised displacement as follows

KinUµ =
{
uµ ∈ Uµ ; HU

µ (uµ) = uM |xM , HE
µ (Dµ(uµ)) = DM |xM

}
⊂ Uµ. (2.23)

As already commented, this was the last ingredient to entirely set the microscale kinematics.
An overview about the relation between kinematical spaces in both macro and microscale
is provided in Fig. 5.

For our context, it is also interesting to characterise the admissible space of
fluctuations, which is as follows 1:

Ũµ =
{
ũµ ∈ Uµ ; HU

µ (ũµ) = 0 , HE
µ (Dµ(ũµ)) = 0

}
⊂ Uµ. (2.24)

Taking differences between any two elements of Ũµ, it is easy to see that the space of
variations of fluctuation coincides with Ũµ, so the same notation is used for this purpose.

2.2.3 Duality

In the same fashion as in Section 2.1.2 for a single scale problem, we need to set
virtual power internal and external functionals for both scales.

Regarding the macroscale let us suppose the existence of linear functionals P int
M

and Pext
M , internal and external virtual power functionals for macroscale respectively. As

consequence, skipping details for sake of simplicity, the representation of these functionals
by duality products define the dual (power-conjugated) objects of the macroscale, the
internal generalised stress ΣM ∈ (EM)′ and the macroscale external generalised forces
fM ∈ (UM)′.
1 Note that specifically, for ease of notation, we have not used the notation Kin(·).
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RxM
UM

RxM
EM

Uµ Eµ

JU
µ

JE
µ

Dµ

HE
µHU

µ

Macroscale
spaces

Microscale
spaces

Figure 5 – Diagram of kinematics: relation between spaces and operators found in (2.10),
(2.11), (2.10), (2.19), (2.14) and also the generalised deformation operator at
microscale (Dµ) defined analogously as in (2.2).

At a point-wise level, P int
M becomes

P int
M,xM (D̂M |xM ) = ΣM |xM • D̂M |xM , (2.25)

where operation (·) • (·) is a duality product on (RxM
EM

)′ × RxM
EM

. This product encloses in
its definition proper scalar weights required by modelling purposes as function of the RVE
in question. In practical situations we will make this definition explicit.

In a similar way we have the point-wise version Pext
M as

Pext
M,xM (ûM |xM ) = fM |xM ? ûM |xM , (2.26)

where ? is a duality product on (RxM
UM

)′ × RxM
UM

and follows the same comments as for •
above.

Analogously, regarding the microscale we admit linear functionals P int
µ and Pext

µ ,
internal and external virtual power functionals for microscale respectively. As usual, their
definitions also entail the characterisation internal generalised stress Σµ ∈ (Eµ)′ and the
microscale external generalised forces fµ ∈ (Uµ)′. It is worth mentioning that arguments
of P int

µ can be either Dµ(ûµ) ∈ Dµ(VarUµ) or the pair
(
D̂M |xM ,Dµ(ˆ̃uµ)

)
∈ R̂xM

EM
×Dµ(Ũµ)

since both spaces are isomorphic. For convenience, no distinction in notation is made.
Very same comments apply to Pext

µ because ûµ ∈ VarUµ can be identified with the triple(
ûM |xM , D̂M |xM , ˆ̃uµ

)
∈ R̂xM

UM
× R̂xM

EM
× Ũµ.

2.2.4 Principle of Multiscale Virtual Power

In this section we postulate the principle of generalised equilibrium between scales.
To this aim, the Principle of Multiscale Virtual Power (PMVP) and the virtual power
functionals defined in Section 2.2.3 are invoked.

The PMVP in the present context can be understood as a generalised formulation
of the Hill-Mandel Principle of Macrohomogeneity (HILL, 1965; MANDEL, 1972). This
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principle states that the total (difference between internal and external) virtual power
exerted by macroscale entities at point xM ∈ ΩM must equal to the total power exerted in
the corresponding microscale (the RVE). Mathematically, this is stated below

Principle 2 (of Multiscale Virtual Power) It is said that the elements
(ΣM |xM , fM |xM ) ∈ (RxM

EM
)′× (RxM

UM
)′ and (Σµ, fµ) ∈ E ′µ×U ′

µ are equilibrated if the following
variational equation is satisfied

P int
M,xM (D̂M |xM )− Pext

M,xM (ûM |xM ) = P int
µ

(
D̂M |xM ,Dµ(ˆ̃uµ)

)
−

Pext
µ

(
ûM |xM , D̂M |xM , ˆ̃uµ

)
, ∀ûM |xM , D̂M |xM , ˆ̃uµ kin. admissibles

(2.27)

or equivalently

ΣM |xM • D̂M |xM − fM |xM ? ûM |xM =

〈Σµ, D̂M |xM +Dµ(ˆ̃uµ)〉E ′µ×Eµ − 〈fµ,JU
µ (ûM |xM ) + JE

µ (D̂M |xM ) + ˆ̃uµ〉U ′µ×Uµ

∀(ûM |xM , D̂M |xM , ˆ̃uµ) ∈ R̂xM
UM
× R̂xM

EM
× Ũµ.

(2.28)

It follows from (2.28) three variational consequences:

1. Homogenisation of generalised internal stresses: Choosing ûM |xM = 0 and ˆ̃uµ = 0,
it is possible to find the explicit expression for ΣM |xM in terms of the pair (Σµ, fµ).
Along this process the so-called generalised stress homogenisation operator HxM

ΣM :
E ′µ ×U ′

µ → (RxM
EM

)′ is identified.

2. Homogenisation of generalised external forces: Choosing D̂M |xM = 0 and ˆ̃uµ = 0, an
explicit expression for fM |xM as function of fµ is found. This process also identifies
the so-called generalised external force homogenisation operator HxM

fM
: U ′

µ → (RxM
UM

)′.

3. Equilibrium problem at microscale: Choosing ûM |xM = 0 and D̂M |xM = 0 a
variational equation for equilibrium problem is derived. As solution of this equation
the fluctuation field ũµ ∈ Ũµ is determined.

The explicit shape of these results is problem dependent. Therefore we will
characterise these forms in due time.

2.3 Application in solid mechanics
Let us start with the simplest scenario for the present context, which is that of

multiscale modelling in continuum solid mechanics. For the purpose of this work, finite
strain regime is adopted for both scales and by convention all fields are defined in the
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material configuration. Although the problem presented is in the context of first-order
(conventional) continuum mechanics, we highlight that the very same methodology has
already been proved to be easily extended to other fields as heat transfer (BLANCO;
GIUSTI, 2014), fluid mechanics (BLANCO; CLAUSSE; FEIJÓO, 2017), second-order
continuum mechanics (BLANCO et al., 2016), etc.

Importantly, we keep presentation brief since the very same steps are repeated in
the forthcoming chapters and the model to be presented is classical in the literature, see
(NETO et al., 2015) for example. Notwithstanding, the importance of this section is to
demonstrate the abstract theoretical setting applied to a standard, well-known model,
before moving to non-standard, still not estabilished, multiscale models. We postpone and
refer the reader to Chapter 3 for a more detailed explanation.

2.3.1 Macroscale model

At the macroscale we consider a standard model from continuum mechanics in
the finite strain regime. Let ΩM ⊂ Rnd , nd = 2, 3, be an open set which represents the
reference (or material) configuration of the body BM . Material points in ΩM are denoted
xM . The boundary of ΩM , ΓM , is split into Dirichlet (ΓDM) and Neumann (ΓNM) parts,
whose outward unit normal vector is nM . This setting is depicted in Fig. 6 (left). Let the
displacement be uM = uM ∈ UM = [H1(ΩM)]nd and the associated strain rate operator
DM = ∇xM (note that in this case the strain measure coincides with DM). This defines
DM = GM = ∇xMuM ∈ DM(UM) ⊂ EM = [L2(ΩM)]nd×nd . Note that the traditional
gradient of deformation is retrieved by FM = I + GM .

Insertion + Homogenisation
(Displacement/Strain)

Homogenisation
(Force/Stress)

Matrix, inclusions, 
voids, etc

Macroscale realm Microscale realm

,

,

Figure 6 – Multiscale setting for the modelling in continuum solid mechanics.
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Concerning Dirichlet boundary conditions, we have
KinUM =

{
uM ∈ [H1(ΩM)]nd ; uM = uDM on ΓDM

}
and its space of variations

VarUM =
{
ûM ∈ [H1(ΩM)]nd ; ûM = 0 on ΓDM

}
. This also defines ĜM = DM(ûM)

for ûM ∈ VarUM . We assume P int
M (ĜM ) =

∫
ΩM PM ·ĜM dΩM , where the power-conjugated

stress tensor to the adopted strain measure is the first Piola-Kirchhoff stress tensor
(PKST) ΣM = PM . Finally, Pext

M (ûM ) =
∫

ΩM bM · ûM dΩM +
∫

ΓNM
tM · ûM dΓNM , where the

admissible external forces are given by body forces bM ∈ [L2(ΩM)]nd and tractions along
the Neumann boundary tM ∈ [L2(ΓNM )]nd , this defines fM = (bM , tM ). All such definitions
define the mechanical problem at the macroscale given below.

Problem 1 (Macroscale Mechanical Problem) Given an admissible external force
system (bM , tM), find the displacement field uM ∈ KinUM such that the following
variational equation is satisfied∫

ΩM
PM · ĜM dΩM =

∫
ΩM

bM · ûM dΩM +
∫

ΓNM
tM · ûM dΓNM ∀ûM ∈ VarUM , (2.29)

where PM is given by some constitutive law of the kind PM = F (Gt
M) 2.

Finally, for point-valued versions of the virtual powers at a point xM ∈ ΩM we
have P int

M,xM (ĜM |xM ) = PM |xM • ĜM |xM = |Ωµ|PM |xM · ĜM |xM and Pext
M,xM (ûM |xM ) =

bM |xM ? ûM |xM = |Ωµ|bM |xM · ûM |xM . Note that the factor |Ωµ| in the definition of •
and ? is used to take into account the size of the RVE. Moreover, tractions applied on
boundary have no effect in the external virtual power exerted at a point in the bulk of the
domain, xM ∈ ΩM . The above comments are employed in Section 2.3.4.

2.3.2 Microscale kinematics

In terms of kinematics, at microscale we also assume the standard model from
continuum mechanics in the finite strain regime. Using an analogous notation we have
Ωµ ⊂ Rnd , nd = 2, 3, an open set which represents the reference (or material) configuration
of the RVE, with boundary Γµ and outward unit normal nµ. Material points in Ωµ are
denoted by xµ. Also following a similar notation we have uµ = uµ ∈ Uµ = [H1(Ωµ)]nd ,
Dµ = ∇xµ and Dµ = Gµ = ∇xµuµ ∈ Dµ(Uµ) ⊂ Eµ = [L2(Ωµ)]nd×nd , for the microscopic
displacement, strain rate operator and strain tensor, respectively. It is important to
remember that RVE encloses a portion of the body which has a representative structure
of the material, being the characteristic size of Ωµ generally much smaller than the size of
ΩM , but sufficiently large to be considered representative.
2 In a multiscale approach, the constitutive functional F is implicitly defined by solving a microscale

problem (in the RVE) and by applying a certain homogenisation procedure to entities defined at the
microscale level. This is one of goals of the forthcoming sections.
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2.3.3 Multiscale kinematics

For a given point xM ∈ ΩM , according to the spaces UM and EM defined in 2.3.1, we
have uM |xM = uM (xM ) ∈ RxM

UM
= Rnd and GM |xM = GM (xM ) ∈ RxM

EM
= Rnd×nd . Insertion

operators are established as JU
µ (uM |xM ) = uM |xM and JE

µ (GM |xM ) = GM |xM (xµ − xGµ ),
with xGµ := 1

|Ωµ|
∫
Ωµ xµ dΩµ (centroid of the RVE), which yields the usual decomposition

uµ(xµ) = uM |xM + GM |xM (xµ − xGµ ) + ũµ(xµ) ∀xµ ∈ Ωµ, (2.30)

where ũµ = ũµ ∈ Ũµ ⊂ Uµ and Ũµ (space of admissible fluctuations) to be defined
in the following steps. First, we postulate the kinematical homogenisation operators
HU
µ (uµ) = 1

|Ωµ|
∫

Ωµ uµ dΩµ and HE
µ (Gµ) = 1

|Ωµ|
∫

Ωµ Gµ dΩµ and from the basic kinematical
conservation restrictions for HU

µ (2.15) and HE
µ (2.20), anagously to (2.24), we arrive at

Ũ M
µ =

{
ũµ ∈ Uµ ;

∫
Ωµ

ũµ dΩµ = 0 ,
∫

Ωµ
∇xµũµ dΩµ = O

}

=
{

ũµ ∈ Uµ ;
∫

Ωµ
ũµ dΩµ = 0 ,

∫
Γµ

ũµ ⊗ nµ dΓµ = O
}
.

(2.31)

This space is the Minimally Constrained Kinematically admissible Multiscale Model
(MCKMM), also known as uniform traction model. It consists in the minimally constrained
space that can be employed as admissible space of fluctuations. Hereafter, when the context
is clear, Ũ M

µ is simply denoted by Ũµ. Otherwise Ũµ refers to a generic submodel of Ũ M
µ ,

such that Ũµ ⊂ Ũ M
µ . Examples of that are given in the following.

2.3.3.1 Specific subspaces of multiscale models

So far, only the minimally constrained space of admissible fluctuations Ũ M
µ (2.31)

has been established. Note that any subspace of Ũ M
µ could be considered in the analysis.

In this sense, we present three different subspaces possibilities:

1. Taylor model:

Ũ T
µ := {0} (2.32)

2. Linear boundary model:

Ũ L
µ := {ũµ ∈ Ũ M

µ ; ũµ|Γµ = 0} (2.33)

3. Periodic boundary model:

Ũ P
µ := {ũµ ∈ Ũ M

µ ; ũµ|Γi,+µ = ũµ|Γi,−µ , ∀i = 1} (2.34)

where Γµ =
⋃
i

(
Γi,+µ ∪ Γi,−µ

)
, with Γi,+µ and Γi,−µ disjoints and with opposite outward

normal vectors. This model is known to lead to skew-periodic tractions on the
boundary.
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Note that Ũ T
µ ⊂ Ũ L

µ ⊂ Ũ P
µ ⊂ Ũ M

µ . For the sake of simplicity, when the choice is
irrelevant, we use Ũµ as notation for any of the particular models.

Alternative boundary conditions (to the linear, periodic and uniform traction
models) have been developed in the literature, most of them in an ad-hoc manner.
Some examples are the so-called mixed uniform boundary conditions (HAZANOV, 1998;
HAZANOV; HUET, 1994), where the linear model is considered for certain components
of the displacement field while for the other components a uniform traction approach
is postulated. An approach relying on similar ideas was proposed in (PAHR; ZYSSET,
2008) but incorporating periodic conditions in some components of the displacement
field and uniform traction for others. More recently, in (SANDSTRÖM; LARSSON, 2017;
SANDSTRÖM; LARSSON; RUNESSON, 2014; SVENNING; FAGERSTRÖM; LARSSON,
2016), the so-called weak periodicity was developed as a strategy to continuously range
between the uniform traction model and the periodic model.

2.3.4 Duality and PMVP

For the microscopic internal virtual functional we use a similar model than at
macroscale, i.e., P int

µ (Ĝµ) =
∫

Ωµ Pµ · Ĝµ dΩµ , where Σµ = Pµ is the microscopic version of
the PKST. Consequently, Pext

µ (ûµ) =
∫

Ωµ bµ · ûµ dΩµ, fµ = bµ ∈ [L2(Ωµ)]nd stands for the
admissible microscale body forces. Below it is shown the particularisation of the Principle
2 for the context of solid mechanics.

Problem 2 (Principle of Multiscale Virtual Power for Solid Mechanics) It is
said that the elements (PM |xM ,bM |xM ) ∈ (RxM

EM
)′ × RxM

UM
)′ and (Pµ,bµ) ∈ E ′µ × U ′

µ are
equilibrated if the following variational equation is satisfied

|Ωµ|PM |xM · ĜM |xM − |Ωµ|bM |xM · ûM |xM =∫
Ωµ

Pµ · Ĝµ dΩµ −
∫

Ωµ
bµ · ûµ dΩµ

∀(uM |xM , ĜM |xM , ˆ̃uµ) ∈ R̂xM
UM
× R̂xM

EM
× Ũµ.

(2.35)

Recalling ûµ = ûM |xM +ĜM |xM (xµ−xGµ )+ ˆ̃uµ and Ĝµ = ĜM |xM +∇xµ ˆ̃uµ, replacing
into (2.35), after rearranging terms we have:(∫

Ωµ
bµ dΩµ − |Ωµ|bM |xM

)
· ûM |xM+(

|Ωµ|PM |xM +
∫

Ωµ
bµ ⊗ (xµ − xGµ ) dΩµ −

∫
Ωµ

Pµ dΩµ

)
· ĜM |xM+∫

Ωµ
(−Pµ · ∇xµ ˆ̃uµ + bµ · ˆ̃uµ) dΩµ = 0 ∀(ûM |xM , ĜM |xM , ˆ̃uµ) ∈ R̂xM

UM
× R̂xM

EM
× Ũµ

(2.36)
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Setting in the first place ĜM |xM = O and ˆ̃uµ = 0 in expression (2.36) we get the
homogenisation operator for body forces

bM |xM = HxM
bM (bµ) = 1

|Ωµ|

∫
Ωµ

bµ dΩµ. (2.37)

(2.38)

Secondly, assuming ûM |xM = 0 and ˆ̃uµ = 0 in (2.36), then we arrive at the
homogenisation operator for PKST, given below:

PM |xM = HxM
PM (Pµ,bµ) = 1

|Ωµ|

(∫
Ωµ

Pµ dΩµ −
∫

Ωµ
bµ ⊗ (xµ − xGµ ) dΩµ

)
(2.39)

Note that, differently from what is usually assumed in the literature, the
homogenisation of the stress is not simply the average of microscale stress field, but
body forces also play a role.

Finally, setting ûM |xM = 0 and ĜM |xM = O in (2.36) and by assuming a given
constitutive law Pµ = Fµ(Gµ) we arrive at a field problem, denoted RVE microscopic
equilibrium problem, in which solution is obtained by finding ũµ ∈ Ũµ such that∫

Ωµ
Pµ(GM |xM +∇xµũµ) · ∇xµ ˆ̃uµ dΩµ −

∫
Ωµ

bµ · ˆ̃uµ dΩµ = 0 ∀ˆ̃uµ ∈ Ũµ. (2.40)

By integrating by parts, it follows the resulting Euler-Lagrange equationsdivxµ Pµ + b̃µ = 0 in Ωµ

Pµnµ = PM |xMnµ on Γµ
(2.41)

where b̃µ := bµ − bM |xM and nµ is the unit outward normal vector to Γµ.

Remark 3 Alternatively, from (2.39) and using (2.41), it is possible to derive an equivalent
homogenisation formula just in terms of boundary data as below

PM |xM = HxM ,∗
PM (tµ) = 1

|Ωµ|

∫
Γµ

tµ ⊗ (xµ − xGµ ) dΓµ, (2.42)

and tµ := Pµnµ is the microcospic traction vector.

Remark 4 Also note that if the microscale force per unit volume is constant, say bµ = b,
and also from the definition of RVE centroid, the homogenisation formula (2.39) becomes

PM |xM = 1
|Ωµ|

∫
Ωµ

Pµ dΩµ. (2.43)

Remark 5 Recalling from classical continuum mechanics that (σM )m = 1
det FM

PM (FM )T

is the material description of the Cauchy stress tensor, and noting that (σM)m|xM =
1

det FM |xM
PM |xM (FM |xM )T is the evaluation of the Cauchy stress at the material point

xM ∈ ΩM , we have that the Cauchy stress tensor can be obtained by post-processing the
point-valued Piola-Kirchhoff stress tensor PM |xM resulting from a given homogenisation
operator.
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2.4 Miscelanneous topics
This section is devoted to present some additional topics concerning the multiscale

solid mechanics model of Section 2.3 that are also useful for other contexts. Section 2.4.1
and Section 2.4.2 are also applied to the model of Chapter 3 and Section 2.4.3 is generic
for all kinds of models presented in the thesis.

2.4.1 Linearisation of the microscale model

The nonlinear variational problem in (2.40) needs some adequate special numerical
method to be solved. Here we adopt the Newton-Raphson method, and the linearised
version can be written as follows: Given ũkµ ∈ Ũµ and Gk

µ = GM |xM +∇xµũkµ , find δũkµ ∈ Ũµ

such that: ∫
Ωµ

Aµ(Gk
µ)∇xµδũkµ · ∇xµ ˆ̃uµ dΩm =

−
∫

Ωµ
Pµ(Gk

µ) · ∇xµ ˆ̃uµ dΩµ +
∫

Ωµ
bµ · ˆ̃uµ dΩµ ∀ˆ̃uµ ∈ Ũµ,

(2.44)

where the constitutive microscopic tangent tensor is

Aµ(Gµ) = ∂GµPµ(Gµ). (2.45)

The next step is to perform the increment of ũµ for the next iteration as

ũk+1
µ = ũkµ + δũkµ (2.46)

until a convergence criterion is achieved.

Remark 6 Note that the same procedure is also applied to macroscale mechanical problem.
Therefore, there will be the need of the macroscale homogenised constitutive tangent AM

derived from the homogenised stress. This is subject of the next Section 2.4.2.

2.4.2 Homogenised constitutive tangent

Similar to (2.45), we define the homogenised tangent tensor as the derivative of
PM , the homogenised PKST, with respect to the macroscale displacement gradient GM ,
that is:

AM(GM) := ∂GM
PM(GM) (2.47)

Considering an infinitesimal perturbation in the component (GM)kl , for k, l = 1, . . . nd,
we rewrite (2.47) as :

AM(GM) = lim
ε→0

[PM(GM + εek ⊗ el)−PM(GM)]ij
ε

ei ⊗ ej ⊗ ek ⊗ el (2.48)
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Note that although (2.47) is valid for the entire ΩM , we are looking at a specific point
xM ∈ ΩM . Hence, hereafter consider all objects evaluated for this point. Also, body forces
are omitted just for sake of simplicity.

We now set an auxiliar vector ũkl,εµ ∈ Ũµ, which is the the solution of the perturbed
microscale fluctuation problem as follows:∫

Ωµ
Pµ(GM |xM + εek ⊗ el +∇xµũkl,εµ ) · ∇xµ ˆ̃uµ dΩµ = 0 ∀ˆ̃uµ ∈ Ũµ (2.49)

Defining ucankl through the relation:

ũkl,εµ = ũµ + εucankl (2.50)

We expand (2.49) by Taylor series∫
Ωµ

Pµ(Gµ + εek ⊗ el + ε∇xµucankl ) · ∇xµ ˆ̃uµ dΩµ =
∫

Ωµ
Pµ(Gµ) · ∇xµ ˆ̃uµdΩµ︸ ︷︷ ︸

:=0 from (2.40)

+

ε
∫

Ωµ
Aµ(Gµ)(ek ⊗ el +∇xµucankl ) · ∇xµ ˆ̃uµ dΩµ +O(ε2) = 0 ∀ˆ̃uµ ∈ Ũµ

Dividing last equation by ε and since we are interested in the limit when ε→ 0, O(ε2)/ε =
O(ε) vanishes, we get the following canonical problem to find ucankl ∈ Ũµ:∫

Ωµ
Aµ(Gµ)∇xµucankl · ∇xµ ˆ̃uµ dΩµ = −

∫
Ωµ

Aµ(Gµ)(ek ⊗ el) · ∇xµ ˆ̃uµ dΩµ

∀ˆ̃uµ ∈ Ũµ.

(2.51)

Developing (2.48) in Taylor expansion for the perturbation in kl we have:

lim
ε→0

1
ε

[PM |xM (GM |xM + εek ⊗ el)−PM |xM (GM |xM )]⊗ ek ⊗ el

=
[

1
|Ωµ|

∫
Ωµ

lim
ε→0

1
ε

(
Pµ(Gµ + εek ⊗ el + ε∇xµucankl )−Pµ(Gµ)

)
dΩµ

]
⊗ ek ⊗ el

=
[

1
|Ωµ|

∫
Ωµ

lim
ε→0

Aµ(Gµ)(ek ⊗ el +∇xµucankl ) +O(ε) dΩµ

]
⊗ ek ⊗ el

=
[

1
|Ωµ|

∫
Ωµ

[Aµ(Gµ)]ijpq[ek ⊗ el +∇xµucankl ]pq dΩµ

]
ei ⊗ ej ⊗ ek ⊗ el

=


1
|Ωµ|

∫
Ωµ

[Aµ(Gµ)]ijkl dΩµ︸ ︷︷ ︸
:=[AM ]ijkl

+ 1
|Ωµ|

∫
Ωµ

[Aµ(Gµ)]ijpq[∇xµucankl ]pq dΩµ︸ ︷︷ ︸
:=[ÃM ]ijkl

 ei ⊗ ej ⊗ ek ⊗ el

Thus we have identified above the components that define the Taylor and fluctuation
contributions, respectively, as the tensors AM and ÃM , yielding AM = AM + ÃM . In
intrinsic notation we have

AM = 1
|Ωµ|

∫
Ωµ

Aµ dΩµ (2.52)
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and

ÃM =
[

1
|Ωµ|

∫
Ωµ

Aµ∇xµucankl dΩµ

]
⊗ ek ⊗ el (2.53)

where ucankl , k, l = 1, . . . ,nd, are the solutions of the canonical problems formulated in
(2.51).

2.4.2.1 Proof of the major-symmetry

Now we want to prove an important aspect of AM , its major symmetry. As a matter
of fact, saying that a general fourth-order tensor A has major symmetry is equivalent to
have

AC ·D = AD ·C for any C,D second-order tensors, (2.54)

where conventional product between fourth-order and second-order tensors as well as
the conventional dot product for second-order tensors have been admitted. In cartesian
coordinates and using indicial notation this means [A]ijkl = [A]klij for any i, j, k, l ∈
{1, 2, . . . , nd}.

From (2.52) and by assuming that Aµ is major-symmetric, the contribution AM is
major-symmetric. Now we will prove the same property to ÃM . For this aim, first take
ˆ̃uµ = ucanij ∈ Ũµ in (2.51), so∫

Ωµ
Aµ∇xµucankl · ∇xµucanij dΩµ = −

∫
Ωµ

Aµ(ek ⊗ el) · ∇xµucanij dΩµ

= −
∫

Ωµ
AT
µ∇xµucanij · (ek ⊗ el) dΩµ

= −
∫

Ωµ
Aµ∇xµucanij dΩµ︸ ︷︷ ︸

:Jij

· (ek ⊗ el)︸ ︷︷ ︸
:Ekl

= −Jij · Ekl

(2.55)

On the other hand, we have∫
Ωµ

Aµ∇xµucankl · ∇xµucanij dΩµ =
∫

Ωµ
Aµ∇xµucanij · ∇xµucankl dΩµ = −Jkl · Eij (2.56)

Thus, it follows that Jkl · Eij = Jij · Ekl.

Clearly the set {Epq}p,q=1,...,nd is a basis to the second-order tensor space, so Jkl can
be expressed as the summation Jkl = (Jkl ·Eij)Eij, where Einstein’s notation is implied.
By using this decomposition we have

Jkl ⊗ Ekl = ((Jkl · Eij)Eij)⊗ Ekl = Eij ⊗ ((Jkl · Eij)Ekl) =

Eij ⊗ ((Jij · Ekl)Ekl) = Eij ⊗ Jij = Ekl ⊗ Jkl. (2.57)

Finally, from the above conclusion and recalling (2.53) we have ÃM = 1
|Ωµ|Jkl ⊗ Ekl =

1
|Ωµ|Ekl ⊗ Jkl. Indeed, if a fourth-order tensor satisfies the former commutation property,
thus (2.54) holds straightforwardly.
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2.4.3 Incompressible Materials

An important class of materials of special interest to the mechanics of soft tissues
is the one of incompressible materials. In brief, a material is said to be incompressible if it
undergoes a motion without changing of volume locally, i.e., for every material point in
the body, the determinant of the deformation gradient is positive unitary. Focusing on the
multiscale constitutive modelling of such materials, we are interested in the case in which
the macroscale kinematics verifies the incompressibility constraint whilst the microscale
kinematic may be compressible, i.e., it does not fulfil the incompressibility constraint
point-wisely. Moreover, the resulting homogenised stress only provides a constitutive law
for isochoric (or deviatoric) 3 for the PKST.

It is worth mentioning that as our modification of the traditional is postulated
at the macroscale level, the proposed procedure is independent of the mechanical model
adopted for the microscale. Hence, the very same procedure shown in this section can
be applied either for continuum mechanical models at the microscale, as in this chapter,
as well as for the discrete mechanical model considered at the microscale which is to be
detailed in Chapter 4 for fibrous materials.

2.4.3.1 Admissible macroscale displacement set

Given the scenario described previously, the strategy to address this issue in the
framework of the MMVP is straightforward. As usual in variational formulations, the
kinematics has to be changed accordingly. Let us admit the space UM and an admissible set
of displacements KinUM , which is not incompressible yet. In the case of an incompressible
macroscale model, the set of kinematically admissible displacement fields is

Kininc
UM

= {uM ∈ KinUM ; det(I +∇xMuM) = 1 in ΩM}. (2.58)

Since the above manifold is nonlinear, the associated space of admissible virtual
displacements follows from the corresponding tangent space given below

Varinc
UM

={ûM ∈ VarUM ; (I +∇xMuM)−T · ∇ûM = 0 in ΩM}

={ûM ∈ VarUM ; tr
(
∇xM ûM (I +∇xMuM)−1

)
= 0 in ΩM} (2.59)

Accordingly, the variational formulation in Problem 1 needs to be slightly changed by
switching KinUM and VarUM to Kininc

UM
and Varinc

UM
, respectively.

3 By isochoric (or deviatoric) part of the PKST we mean that the trace of the corresponding Cauchy
stress is zero. The classical transformation between Piola-Kirchhoff and Cauchy stress tensors is recalled
in Remark 5.
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2.4.3.2 Point-valued strain and strain rate set

For a specific point xM ∈ ΩM , from the definition in (2.58) and (2.59) it follows

GM |xM ∈ RxM ,inc
EM

= {A ∈ Rnd×nd ; det(I + A) = 1}, (2.60)

ĜM |xM ∈ R̂xM ,inc
EM

= {Â ∈ Rnd×nd ; tr
(
Â(I + G)−1

)
= 0}. (2.61)

The PMVP in Problem 2 is easily cast into the incompressible case by appropriately
replacing RxM

EM
and R̂xM

EM
by the subsets RxM ,inc

EM
and R̂xM ,inc

EM
, respectively (recall that it is

assumed RxM
EM

= R̂xM
EM

= Rnd×nd).

2.4.3.3 Homogenisation formula

Let us analyse the impact of the modified admissible sets accounting for
incompressibility upon the related variational consequences of the PMVP, particularly, in
the homogenisation operator. First, let us retake (2.36) for ûM |xM = 0 and ˆ̃uµ = 0 and
also considering the expression for HxM

PM in (2.39), then(
PM |xM −H

xM
PM (Pµ,bµ)

)
· ĜM |xM = 0 ∀ĜM |xM ∈ R̂xM

EM
(2.62)

Now, instead of PM |xM let us consider Piso
M |xM . Then, replacing R̂xM

EM
by R̂xM ,inc

EM
yields(

Piso
M |xM −H

xM
PM (Pµ,bµ)

)
· ĜM |xM = 0 ∀ĜM |xM ∈ R̂xM ,inc

EM
(2.63)

Using classical tensor identities4 and noting that FM |xM = I + GM |xM is nonsingular, we
have that condition (2.63) is equivalent to(

Piso
M |xM −H

xM
PM (Pµ,bµ)

)
FT
M |xM · ĜM |xMF−1

M |xM = 0 ∀ĜM |xM ∈ Tinc, (2.64)

but, since tr(ĜM |xMF−1
M |xM ) = 0, it results(

Piso
M |xM −H

xM
PM (Pµ,bµ)

)
FT
M |xM = βI, (2.65)

with β ∈ R. Hence Piso
M |xM is of the form

Piso
M |xM = HxM

PM (Pµ,bµ) + βF−TM |xM . (2.66)

Taking β such that tr
(

1
det FM |x

Piso
M |xMFT

M |xM
)

= 0 (see Remark 5) we have

β = − 1
nd

tr(HxM
PM (Pµ,bµ)FT

M |xM ) = − 1
nd
HxM

PM (Pµ,bµ) · FM |xM , (2.67)

which replaced in (2.66) gives

Piso
M |xM = HxM

PM (Pµ,bµ)− 1
nd

(
HxM

PM (Pµ,bµ) · FM |xM
)
F−TM |xM

= HxM
PM (Pµ,bµ)− 1

nd
(F−TM |xM ⊗ FM |xM )HxM

PM (Pµ,bµ). (2.68)

4 For any A1, A2 and A3 second order tensors the following identity holds: A1 ·A2A3 = A1AT
3 ·A2.
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Finally, defining the fourth order tensor

Tiso|x = I− 1
nd

F−TM |xM ⊗ FM |xM , (2.69)

with I being fourth-order identity tensor, we have the isochoric part of the stress, which is

Piso
M |xM = HxM ,iso

PM (Pµ,bµ) = Tiso|xHxM
PM (Pµ,bµ). (2.70)

We highlight that the only difference between (2.39) and (2.70) is the pre-
multiplication of the projection isochoric tensor in the former homogenisation formula.
Moreover, by construction the homogenised Piola-Kirchhoff macroscale stress tensor in the
incompressible case, transformed into the corresponding Cauchy stress, features null trace.

2.5 Closing remarks
In this chapter we have reviewed the Method of Multiscale Virtual Power (MMVP)

(BLANCO et al., 2014; BLANCO et al., 2016), which is the basic tool that will guide the
theoretical development of the forthcoming chapters. Such a unified variational theory
addresses a general class of multiscale models based on the concept of Representative
Volume Element and is based on three fundamental principles: (i) kinematical admissibility,
(ii) duality and (ii) the Principle of Multiscale Virtual Power (PMVP). Particularly
important is the fact that the MMVP allows the construction of non-standard multiscale
models in a relatively intuitive manner, without ambiguities. In fact, as usual in variational
formulations, the postulation of the kinematics is the only degree of arbitrariness of the
methodology. This was illustrated by presenting the classical multiscale model for solid
mechanics.

It is shown that the proposed systematisation of RVE-based multiscale modelling is
particularly relevant in the two forthcoming chapters. Firstly, in Chapter 3, in the context
of porous micro-structures, we change the definitions of insertion kinematical operators.
Thus, macroscale kinematical descriptors are inserted exclusively on the solid part of the
RVE domain. This subtle change leads to a novel multiscale formulation which resolves the
inconsistencies that may arise when voids reach the RVE boundary in a random manner.
Secondly, in Chapter 4, we propose a model with dissimilar kinematics, being a discrete
network of fibres at microscale and the usual finite strain continuum at macroscale. Also,
it is demonstrated that a postulation of a different kinematical setting at microscale leads
to the emergence of non-trivial additional ingredients.

Finally, it is worth mentioning that although this chapter is not devoted to the
presentation of the major contributions of this thesis, the topics of Section 2.4 are
particularly relevant, since these results are not readily found in the literature in a such
level of details. In fact, the demonstration of the major-symmetry of AM in Section 2.4.2,
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at least up to the author’s knowledge, is novel. The analogous proof for the homogenised
tangent tensor for the fibrous material is presented in Chapter 5 and is also a contribution
of this thesis (ROCHA et al., 2019). Note that in the latter context, the major-symmetry
has important consequences concerning the discontinuous bifurcation analysis.
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3 A Consistent Multiscale Model for Solids
with Voids reaching Boundary

Everything should be made as simple as possible,
but not simpler.

Albert Einstein

Retaking the problematic about the random porous materials already discussed
in Section 1.3, multiscale models relying on the concept of RVE have been consistently
formulated, largely tested and widely understood for the cases where either microscopic
voids did not reach the RVE boundary or they did reach it in a structured manner. The
case of randomly distributed voids which randomly reach the boundary of the RVE has not
received the same focus, and the utilisation in this latter case of the concepts and strategies
borrowed from the former cases may yield results which are, at least, questionable from
the mathematical/physical point of view.

Consider, for example, the fenestrated microcell illustrated in Fig. 7, featuring a
random distribution of voids, which ultimately reach the boundary in a truly random
manner. A more constrained model (upper bound in stress) is easily postulated using
the linear boundary model of the previous chapter (see (2.33)). On the contrary, the
definition of a minimally constrained space (lower bound) in this kind of microstructure
is problematic, and to some extent debatable. Clearly, if we apply a uniform traction
(actually a uniform stress tensor applied over the normal vector to the solid boundary)
acting over the solid boundary, the RVE is then subjected to a system of boundary forces
which is not self-equilibrated. The lack of self-equilibrium of such uniform traction model
is originated from the fact that the solid part of the RVE boundary does not form a
balanced surface (the integral of the normal vector over solid part of the boundary is
not zero). We conclude, then, that the so-called called uniform traction model in the
previous sense (see (2.31)) has to be revised in the context of RVEs as in Fig. 7. Note
that neither can the classical periodic model (see (2.34)) be applied because there is no
one-to-one correspondence between material particles oppositely lying at both parallel
(vertical and horizontal) sides of the boundary. The naive solution, and actually what
is normally employed in the literature, is the utilisation of the linear boundary model.
However, while it is a practical solution, it is known that this model can result much stiffer
than it should be, not providing insight about the lower bound for the material response.

The case of fibrous materials in which fibres are distributed randomly (also known
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as non-woven materials) is a typical example of which the hypothesis of periodic structure
of voids reaching boundary fails. In this direction, this chapter addresses the construction
of a multiscale model for continuum solid media featuring a random distribution of voids
(see Fig. 7). Therefore, the target of the present chapter is to provide the theoretical
continuum groundwork in which the proper discrete multiscale theory for fibrous materials,
to be presented in Chapter 4, is built upon.

The chapter is organised following an analagous structure to that of Section 2.3,
in which the standard multiscale model for solid mechanics was presented. Section 3.1
discusses the multiscale setting and also some preliminary notation required for a clear
definition of the parts of a porous RVE. Section 3.2 describes the kinematics at the
microscale, where subtle differences between the standard model and the proposed one
appear, resulting in a novel space of kinematically admissible fluctuation fields. Section 3.3
presents the postulation of the PMVP followed by the derivation of its corollaries. An
important attention shall be given to Section 3.3.4, where an analysis based on the concept
of Lagrange Multipliers unveils the physical interpretation of the model putting in evidence
the principal advantages of the proposed theory. It is worth mentioning that for the sake
of readability a lighter notation (if compared to Chapter 2), is adopted hereafter, i.e., less
indexes and use of operators. Also, many of the developments of Section 2.3 is reutilised
here.

Figure 7 – Microscale domain with random distribution of circular voids. The integral of
the normal vector over the solid part of the RVE boundary (in bold) is not
zero.

3.1 Multiscale setting and preliminary notation
Consider the multiscale setting shown in Fig. 8 that keeps the very same format

to one presented in Section 2.3 (Fig. 6). As it can be appreciated, the only important
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difference here is the massive presence of voids in the RVE domain, in particular crossing
the imaginary square window of observation of the RVE. We refer the reader to Section
2.3.1 for comments concerning the macroscale model. Importantly, we drop subindexes for
kinematical and force/stress-like objects, e.g, G is used instead of GM and so on.

ΩM

ΓM

xM

Macroscale realm Microscale realm

RVE domain

xµ

Ωµ

Γµ

Insertion+homogenisation
(Displacement/Strain)

u, G

homogenisation
(Force/Stress) b, P

Figure 8 – Multiscale setting for the modelling in continuum mechanics in random porous
media.

Let Ωµ ⊂ Rnd be the microscale domain in which the mechanical problem is to
be postulated. This domain requires consistent and suitable boundary conditions as we
will see. As anticipated in the introduction, we are interested in modelling families of
microstructures with aleatory arrangement of voids (periodicity condition is not satisfied).
In an attempt to tipify the microscale domain we can isolate a small portion of the material.
In doing this, the so-defined RVE domain will feature internal voids, but also parts of
these voids will eventually be cut by the RVE boundary (see sketches in Figures 7 and
10). Such general context poses some critical issues for the setting of consistent boundary
conditions, as we illustrate in forthcoming sections.

We define the following sets of points in the RVE domain:

• Ωµ: the entire RVE domain including solid material and voids;

• Ωs
µ: solid part of the RVE domain;

• Ωv
µ: region occupied by voids in the RVE domain;

With the previous definitions we have that Ωµ = (Ωs
µ ∪ Ωv

µ)◦. Thus, we have

• Γµ: boundary of the RVE domain;
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• Γsµ: boundary of Ωs
µ;

• Γs,vµ : boundary of Ωs
µ shared with the boundaries of the voids (either internal or

external voids;

• Γs,bµ : boundary of Ωs
µ shared with the RVE boundary.

Some of boundaries are depicted on Figure 9. With the previous definitions it is Γs,bµ =
Γµ ∩ Γsµ, and also

Γsµ = Γs,vµ ∪ Γs,bµ . (3.1)

At this point, we introduce a fundamental definition required for the developments
to come. We say that the RVE is nµ-balanced if the following condition is satisfied∫

Γs,bµ
nµ dΓµ = 0, (3.2)

where nµ is the outward unit normal vector to Γs,bµ . If (3.2) is not satisfied, then the RVE
is said to be nµ-unbalanced.

Remark 7 Usually, in the literature, the microscale domains regarded in multiscale
simulations are such that the entire RVE boundary is solid, or at least periodic, cases in
which (3.2) trivially holds, and so this kind of RVE choices are nµ-balanced (see first and
second columns in Figure 10). In general, a RVE may not guarantee (3.2), and so it is
nµ-unbalanced (see third column in Figure 10).

Figure 9 – Scheme of the boundary partitioning for a generic porous RVE geometry.

3.2 Kinematics
Henceforward, we consider the macroscale kinematics at a point xM ∈ ΩM defined

by u ∈ Rnd and G ∈ Rnd×nd (contraction of notations uM |xM and GM |xM , respectively).
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3.2.1 Kinematical insertion

We assume that the displacement u and the displacement gradient G are inserted
into the solid part of the microscale domain Ωs

µ following an affine relation, that is

uµ(xµ) = u + G(xµ − xGµ ) + ũµ(xµ) xµ ∈ Ωs
µ, (3.3)

where ũµ is a fluctuating displacement field defined in the microscale solid part of the
domain and xGµ is defined in Section 3.2.2. Hence, we have that uµ, ũµ ∈ [H1(Ωs

µ)]nd . Hence,
the gradient of the microscale displacement field (3.3) is also defined for the solid part as

Gµ(xµ) = ∇xµuµ(xµ) = G +∇xµũµ(xµ) xµ ∈ Ωs
µ. (3.4)

Hereafter we drop the functional dependence for ease of notation.

Remark 8 Notice that the kinematics is exclusively defined in the solid part of the RVE
domain, where actually material particles lie. No kinematics whatsoever is regarded in the
empty domain of the voids.

3.2.2 Displacement homogenisation

Now, we postulate the homogenisation formula for the displacement field as follows

u = 1
|Ωs

µ|

∫
Ωsµ

uµ dΩs
µ, (3.5)

that is, the average of the microscale displacement field in the solid domain Ωs
µ must be

equal to the macroscale displacement field. By introducing (3.3) into (3.5) we have

u = u + G
(

1
|Ωs

µ|

∫
Ωsµ

(xµ − xGµ ) dΩs
µ

)
+ 1
|Ωs

µ|

∫
Ωsµ

ũµ dΩs
µ. (3.6)

By considering first ũµ = 0, (3.6) leads us to

xGµ = 1
|Ωs

µ|

∫
Ωsµ

xµ dΩs
µ. (3.7)

Inserting (3.7) into the homogenisation rule (3.6) we have that it is trivially verified
provided that the fluctuation field ũµ satisfies the following constraint∫

Ωsµ
ũµ dΩs

µ = 0. (3.8)

To end this section, it is worth noting that the constraint (3.8) and the definition
(3.7) are consequences of applying the kinematically admissibility concept to the macro and
microscale displacement fields, which are connected through the homogenisation operator
(3.5), as postulated in the framework of the MMVP in Chapter 2.
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3.2.3 Gradient homogenisation

The homogenisation formula for the first order gradient of the microscale
displacement field is postulated as follows

G = 1
|Ωs

µ|

[ ∫
Ωsµ
∇xµuµ dΩs

µ −
∫

Γs,vµ
ũµ ⊗ nµ dΓµ −

∫
Γs,bµ

ũµ ⊗ n̄µ dΓµ
]
, (3.9)

where nµ is the outward unit normal vector to the solid boundary Γsµ.

Regarding the classical model of the Section 2.3 three major differences are worth
to be commented:

1. First, by the fact of the insertion of the macroscale kinematics is now only defined
for the solid domain, we have |Ωs

µ| instead of |Ωµ| in the denominator of the leading
fraction.

2. Also because of the insertion definition, fluctuations are only defined in the solid part
of the domain, which induces the introduction of the second integral in (3.9) in order
to accommodate the fluctuations over the solid-void boundary. This modification and
the latter do not change the final multiscale model in terms of admissible fluctuation
space.

3. Finally, a novel term appears in (3.9) which is related to a vector denoted by n̄µ.
This new term is motivated by the fact that the homogenisation formula per se,
i.e. without considering any other restriction on ũµ, must be such that no spurious
gradient should appear when considering a uniform displacement fluctuation field. In
fact, this fundamental notion of invariance to rigid translations is a basic property
that any homogenisation formula must guarantee. Mathematically, introducing a
fluctuation field of the form ũµ = c, i.e., an arbitrary uniform field, we can express
this fact as follows

HE
µ (Dµ(u + G(xµ − xGµ ) + c)) = G, (3.10)

where the operator HE
µ ◦Dµ is defined by (3.9), where Dµ coincides with the gradient

in the solid part of domain as in (3.4), but should be understood in a more general
sense for the solid boundary.

To check the effect of property (3.10) above, let us use the Green formula in the
first term of the right hand side, and recall (3.1), therefore equation (3.9) is rewritten as

O = 1
|Ωs

µ|

[ ∫
Γsµ

ũµ ⊗ nµ dΓµ −
∫

Γs,vµ
ũµ ⊗ nµ dΓµ −

∫
Γs,bµ

ũµ ⊗ n̄µ dΓµ
]

=

1
|Ωs

µ|

[ ∫
Γs,bµ

ũµ ⊗ (nµ − n̄µ) dΓµ
]
. (3.11)
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Hence, making ũµ = c above gives the definition of the vector n̄µ

n̄µ = 1
|Γs,bµ |

∫
Γs,bµ

nµ dΓµ, (3.12)

such that property (3.10) holds. Note that

n̄µ

= 0 RVE is nµ-balanced,

6= 0 RVE is nµ-unbalanced,
(3.13)

Remark 9 Property (3.10) applied to the novel homogenisation formula proposed in (3.9)
univocally led us to the form of vector n̄µ (see (3.12)). Moreover, it has fundamental
mechanical consequences related to the (self-) equilibrium of tractions distributed over the
RVE boundary. This is discussed in detail in forthcoming sections.

For the definition
of n̄µ see (3.12)

Case I:
internal voids

n̄µ = 0

Γs
,b µ

=
Γ µ

Case II:
voids reach the boundary

n̄µ = 0

Γs
,b µ

Case III:
voids reach the boundary

n̄µ 6= 0
Γs

,b µ

Figure 10 – Different types of RVE domains with the corresponding denomination for the
different parts of the boundaries. Case I: internal voids imply that the RVE
is nµ-balanced (n̄µ = 0). Case II: voids reach the boundary, but due to the
structured arrangement of the voids the RVE is nµ-balanced (n̄µ = 0). Case III:
voids reach the boundary in a random manner, so the RVE is nµ-unbalanced
(n̄µ 6= 0).

Now, by introducing (3.4) into (3.9) we obtain

G = 1
|Ωs

µ|

[ ∫
Ωsµ

[
G +∇xµũµ

]
dΩs

µ −
∫

Γs,vµ
ũµ ⊗ nµ dΓµ −

∫
Γs,bµ

ũµ ⊗ n̄µ dΓµ
]

=

G + 1
|Ωs

µ|

∫
Γs,bµ

ũµ ⊗ (nµ − n̄µ) dΓµ, (3.14)

and, so, (3.9) holds provided that the fluctuation displacement field satisfies the following
constraint ∫

Γs,bµ
ũµ ⊗ (nµ − n̄µ) dΓµ = O. (3.15)



Chapter 3. A Consistent Multiscale Model for Solids with Voids reaching Boundary 68

As before, observe that the constraint (3.15) and the characterisation given by
(3.12) are simple consequences of imposing the kinematically admissibility concept to the
macro and microscale displacement gradients related through the homogenisation operator
(3.9), just as stipulated in the MMVP.

3.2.4 Spaces of admissible displacement fluctuations

Let us provide the characterisation of kinematically admissible fluctuation
displacement fields. Within the present theory (see (BLANCO et al., 2014; BLANCO et
al., 2016)) and from the kinematical restrictions imposed over the fluctuation fields, as
given by (3.8) and (3.15), we say that a fluctuation field is kinematically admissible if it
belongs to the following space

Ũ M
µ =

{
ũµ ∈ [H1(Ωs

µ)]nd ;
∫

Ωsµ
ũµ dΩs

µ = 0,
∫

Γs,bµ
ũµ ⊗ (nµ − n̄µ) dΓµ = O

}
. (3.16)

As stated in the introduction, the aim of the present work is to define, through (3.16),
the minimally constrained space of kinematically admissible displacement fluctuation fields,
that is the MCKMM, in the general case of porous media with a random distribution of
voids. In other words, the model proposed here provides a mechanically consistent lower
bound concerning the homogenised response of the material. Consequently, any space Ũµ

satisfying Ũµ ⊂ Ũ M
µ can be regarded as kinematically admissible, and can be consistently

employed in the mechanical analysis of arbitrary porous materials, keeping in mind that it
will result in a more constrained kinematical model (i.e. a stiffer model).

Remark 10 If the RVE is nµ-balanced, that is, if it verifies n̄µ = 0 (see (3.2)), space
Ũ M
µ defined in (3.16) becomes

Ũ M,0
µ =

{
ũµ ∈ [H1(Ωs

µ)]nd ;
∫

Ωsµ
ũµ dΩs

µ = 0,
∫

Γs,bµ
ũµ ⊗ nµ dΓµ = O

}
, (3.17)

which coincides with the classical definition of the MCKMM as in (2.31), if the solid
domain covers all the RVE, i.e., Ωs

µ = Ωµ. In the purely constitutive case (see Section
3.3.5), even for Ωs

µ⊂Ωµ (proper subset) but Γsµ = Γµ.

Space Ũ M,0
µ is valid and consistent when the whole RVE boundary contains material

particles, or in situations where the microstructure is periodic (see first and second columns
in Figure 10). In a general setting these specific situations do not hold (see third column in
Figure 10) and the definition provided in (3.16) has to be used in order to ensure a lower
bound model, also avoiding mechanical inconsistencies, as we shall discuss in Section 3.3.6.

A typical space of admissible fluctuation fields employed in multiscale simulations
of porous materials with random distribution of voids is the so-called linear boundary
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model. This implies in considering the space Ũ L
µ defined by

Ũ L
µ =

{
ũµ ∈ [H1(Ωs

µ)]nd ;
∫

Ωsµ
ũµ dΩs

µ = 0, ũµ = 0 on Γs,bµ
}
. (3.18)

The resulting mechanical response associated to fluctuations in Ũ L
µ (⊂ Ũ M

µ ) may
be too constrained in certain applications. This is the case where strain localisation
mechanisms develop in the microscale. Here, the fact that the fluctuation component of
the displacement field is set to zero over the boundary implies in an exaggeratedly stiff
model. This could be mitigated by increasing the microcell size, in detriment of more
expensive multiscale simulations.

Hereafter, for the sake of simplicity and unless stated otherwise, we consider
Ũµ = Ũ M

µ .

It is worth mentioning that in addition to the alternative models already commented
in Section 2.3.3.1, in (DIRRENBERGER; FOREST; JEULIN, 2014), a different type of
boundary condition was tested as a generalisation of the proposal presented in (HAZANOV;
HUET, 1994), which is a mixed boundary condition that changes according to the type
of loading applied to the MC to solve networks of fibers embedded in an empty space.
Notwithstanding the authors managed to set a kinematical model less constrained than the
linear model over microcells with arbitrary distribution of voids (the empty space), it is not
a lower bound for this kind of micro-structure. However, in these works, the consideration
of truly random distributions of voids within the RVE (and over its boundary) was not
tackled.

3.3 Principle of Multiscale Virtual Power
Finally, the last pillar in the context of the MMVP is the Principle of Multiscale

Virtual Power (PMVP) (BLANCO et al., 2014; BLANCO et al., 2016), which is employed
to mechanically connect both scales. In this context no major differences with respect to
Section 2.3 are introduced, however their forthcoming consequences for the new kinematical
setting are important. Then, we derive the generalised (force and stress) homogenisation
formulae implied by the PMVP, and we characterise the mechanical equilibrium problem
in variational and strong forms.

3.3.1 Variational formulation

As it is classic for models in solid mechanics, the total virtual power exerted at a
point xM in the macroscale, related to the microscale domain of size |Ωµ|, is expressed as
a linear functional of the pair (û, Ĝ), that is

Ptot
M,xM (û, Ĝ) = |Ωµ|

[
P · Ĝ− b · û

]
, (3.19)
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where P is the macroscale PKST and b is the macroscale force.

In turn, keeping the present analysis in the context of finite strain solid mechanics,
the total virtual power in the microscale domain results

Ptot
µ (ûµ,∇xµûµ) =

∫
Ωsµ

[
Pµ · ∇xµûµ − bµ · ûµ

]
dΩs

µ, (3.20)

where Pµ is the microscale PKST (for which a constitutive model is required) and bµ is
a vector force field per unit volume defined in the microscale domain. Observe that the
microscale virtual power is exclusively exerted in the solid domain Ωs

µ.

The PMVP is then stated as follows

P · Ĝ− b · û = 1
|Ωµ|

∫
Ωsµ

[
Pµ · ∇xµûµ − bµ · ûµ

]
dΩs

µ

∀(û, Ĝ, ˆ̃uµ) ∈ Rnd × Rnd×nd × Ũµ. (3.21)

Introducing (3.3)-(3.4) into (3.21) yields

P · Ĝ− b · û =
1
|Ωµ|

∫
Ωsµ

[
Pµ · (Ĝ +∇xµ ˆ̃uµ)− bµ · (û + Ĝ(xµ − xGµ ) + ˆ̃uµ)

]
dΩs

µ

∀(û, Ĝ, ˆ̃uµ) ∈ Rnd × Rnd×nd × Ũµ. (3.22)

3.3.2 Homogenisation formulae

Consider first Ĝ = O and ˆ̃uµ = 0 in (3.22). Then, we obtain

b · û = 1
|Ωµ|

∫
Ωsµ

bµ · û dΩs
µ ∀û ∈ Rnd , (3.23)

which gives the homogenisation formula for the macroscale force per unit volume b

b = 1
|Ωµ|

∫
Ωsµ

bµ dΩs
µ. (3.24)

Note that the integration takes place in the solid domain Ωs
µ, but it is normalised to the

size of the whole RVE domain Ωµ.

Now, take û = 0 and ˆ̃uµ = 0 in (3.22), which results in

P · Ĝ = 1
|Ωµ|

∫
Ωsµ

[
Pµ · Ĝ− bµ · (Ĝ(xµ − xGµ ))

]
dΩs

µ ∀Ĝ ∈ Rnd×nd . (3.25)

This implies in the following homogenisation formula for the macroscale stress tensor

P = 1
|Ωµ|

∫
Ωsµ

[
Pµ − bµ ⊗ (xµ − xGµ )

]
dΩs

µ. (3.26)

As with (3.24), while the integration takes place in Ωs
µ, the normalisation is ruled by the

size of the RVE domain Ωµ.



Chapter 3. A Consistent Multiscale Model for Solids with Voids reaching Boundary 71

Remark 11 The same comments of remarks 4 and 3 (Chapter 2) apply here, but they
need to be slightly rephrased. Naturally, in Remark 4, the integral over the entire RVE (Ωµ)
changes to an integral over the solid part of the RVE (Ωs

µ), i.e., where stress is defined,
while in Remark 3 the boundary integral is only considered over the solid boundary of RVE
(Γs,bµ ), i.e., where tractions are actually defined (see in the following (3.30)).

3.3.3 Micromechanical problem

Once the homogenisation formulae have been established, the expression (3.22)
results in the following variational formulation for the microscale equilibrium problem∫

Ωsµ

[
Pµ · ∇xµ ˆ̃uµ − bµ · ˆ̃uµ

]
dΩs

µ = 0 ∀ˆ̃uµ ∈ Ũµ. (3.27)

Let us obtain the strong form of the equilibrium and, at the same time, characterise
the system of reactive forces which are power-conjugate to the constraints considered
in the definition of the space Ũµ (see (3.16)), i.e. for the MCKMM. Accordingly, in the
variational equation (3.27), instead of the space Ũµ we consider the unconstrained space
[H1(Ωs

µ)]nd , but we introduce the constraints (3.8) and (3.15) through corresponding
Lagrange multipliers, say Θ ∈ Rnd and Λ ∈ Rnd×nd , respectively, as follows
∫

Ωsµ

[
Pµ · ∇xµ ˆ̃uµ − bµ · ˆ̃uµ

]
dΩs

µ + Θ ·
∫

Ωsµ
ˆ̃uµ dΩs

µ + Θ̂ ·
∫

Ωsµ
ũµ dΩs

µ

−Λ ·
∫

Γs,bµ
ˆ̃uµ ⊗ (nµ − n̄µ) dΓµ − Λ̂ ·

∫
Γs,bµ

ũµ ⊗ (nµ − n̄µ) dΓµ = 0

∀(ˆ̃uµ, Θ̂, Λ̂) ∈ [H1(Ωs
µ)]nd × Rnd × Rnd×nd . (3.28)

The equations associated to arbitrary variations Θ̂ and Λ̂ naturally lead to the constraints
(3.8) and (3.15). So, consider now Θ̂ = 0 and Λ̂ = O. Thus, by integrating by parts the
first term in (3.28), arranging terms and recalling (3.1), yields

−
∫

Ωsµ

[
divxµ Pµ + bµ −Θ

]
· ˆ̃uµ dΩs

µ +
∫

Γs,vµ
Pµnµ · ˆ̃uµ dΓµ

+
∫

Γs,bµ

[
Pµnµ −Λ(nµ − n̄µ)

]
· ˆ̃uµ dΓµ = 0 ∀ˆ̃uµ ∈ [H1(Ωs

µ)]nd . (3.29)

Using now classical arguments from the calculus of variations we readily obtain
the equilibrium problem in its strong form


− divxµ Pµ = bµ −Θ in Ωs

µ,

Pµnµ = 0 on Γs,vµ ,

Pµnµ = Λ(nµ − n̄µ) on Γs,bµ .

(3.30)
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Remark 12 It is important to note that, unlike the multiscale formulations available in
the literature, the novel homogenisation formula proposed in (3.9) results in a uniform
traction model, on Γs,bµ , whose strong formulation is (3.30), in which the traction over such
boundary is obtained by projecting the constant tensor Λ over the vector nµ − n̄µ. This
enables the model to have an equilibrated system of reactive boundary forces per unit area
over Γs,bµ . This fundamental issue is illustrated next (and also addressed in Section 3.3.6).

3.3.4 Reactive forces

In this section we provide a deeper characterisation of the Lagrange multiplers Θ
and Λ appearing in (3.28) and (3.30), again in the particular context of the MCKMM.

Consider in (3.28) that ˆ̃uµ = ĉ is a uniform field. Then, we have

− ĉ ·
(∫

Ωsµ
bµ dΩs

µ

)
+ |Ωs

µ|ĉ ·Θ−Λ ·
(

ĉ⊗
∫

Γs,bµ
(nµ − n̄µ) dΓµ

)
= 0

∀ĉ ∈ Rnd . (3.31)

Because of the definition of n̄µ introduced in (3.12), expression (3.31) gives

Θ = 1
|Ωs

µ|

∫
Ωsµ

bµ dΩs
µ = |Ωµ|
|Ωs

µ|
b. (3.32)

Hence, the reaction Θ balances the forces per unit volume, if any, which are characterised
by bµ in the microscale. This is a remarkable fact, because, in the proposed model, Θ is
not intended to play any role in providing mechanical balance to the tractions that arise
over the solid RVE boundary. Indirectly, (3.32) establishes that the system of reactive
forces over the solid boundary Γs,bµ is equilibrated as a consequence of the ingredients
embedded in the formulation. This is appreciated by dropping the third term in expression
(3.31), precluding Λ from appearing in (3.32).

On the other hand, the following identity
∫

Ωsµ
Pµ dΩs

µ = −
∫

Ωsµ
divxµ Pµ ⊗ (xµ − xGµ ) dΩs

µ +
∫

Γsµ
Pµnµ ⊗ (xµ − xGµ ) dΓµ, (3.33)

enables us to rewrite (3.26), by exploiting the strong forms of the equilibrium (3.30), which
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together with the definition of xGµ in (3.7) and the domain spliting given in (3.1), leads to

P = 1
|Ωµ|

[
−
∫

Ωsµ

[
divxµ Pµ + bµ

]
⊗ (xµ − xGµ ) dΩs

µ

+
∫

Γsµ
Pµnµ ⊗ (xµ − xGµ ) dΓµ

]
=

1
|Ωµ|

[
−Θ⊗

∫
Ωsµ

(xµ − xGµ ) dΩs
µ +

∫
Γs,bµ

Λ(nµ − n̄µ)⊗ (xµ − xGµ ) dΓµ
]

=

1
|Ωµ|

Λ
∫

Γs,bµ
(nµ − n̄µ)⊗ (xµ − xGµ ) dΓµ =

1
|Ωµ|

Λ
∫

Γs,bµ
(nµ − n̄µ)⊗ xµ dΓµ. (3.34)

where, from the definition of n̄µ, we can omit xGµ in the last equality above. Finally, we
obtain

Λ = |Ωµ|P
[ ∫

Γs,bµ
(nµ − n̄µ)⊗ xµ dΓµ

]−1

. (3.35)

The homogenisation formula (3.35) is a novel formula when compared to the
specialised literature. In the present work, this formula has been molded directly by the
new kinematical constraint (3.15). Furthermore, such formula holds whether the RVE is
nµ-balanced or not.

Remark 13 Particularly, if the RVE is nµ-balanced, and the RVE boundary is entirely
solid media (Γµ = Γs,bµ ), we have that (3.2) holds, and then n̄µ = 0 (see (3.12)). In such
case, (3.35) becomes

Λ = |Ωµ|P
[ ∫

Γµ
nµ ⊗ xµ dΓµ

]−1

= P. (3.36)

Therefore, the present formulation reduces to the classical one under the corresponding
hypotheses. This fact indicates the only situation in which the Lagrange multiplier associated
to the imposition of the MCKMM has exactly the meaning of the PKST.

3.3.5 Purely constitutive multiscale formulation

Consider the scenario in which forces per unit volume in the microscale are set
to zero. This is the case of pure constitutive modelling, in which the interest resides in
building a constitutive law relating the macroscale stress P to a macroscale measure of
strain, in this case G.

Since bµ = 0, from (3.24) we get b = 0, and the homogenisation formula for the
stress reduces to the classical one

P = 1
|Ωµ|

∫
Ωsµ

Pµ dΩs
µ. (3.37)
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Moreover, by virtue of (3.32), we conclude that the reactive force per unit volume is
Θ = 0.

Thus, the variational form of the equilibrium (3.27) turns into∫
Ωsµ

Pµ · ∇xµ ˆ̃uµ dΩs
µ = 0 ∀ˆ̃uµ ∈ Ũµ. (3.38)

The strong formulation of the equilibrium results


divxµ Pµ = 0 in Ωs

µ,

Pµnµ = 0 on Γs,vµ ,

Pµnµ = Λ(nµ − n̄µ) on Γs,bµ .

(3.39)

3.3.6 Consequences of omitting n̄µ (but n̄µ 6= 0)

Consider the constitutive multiscale model from Section 3.3.5. Let us take an
arbitrary RVE, which is in general nµ-unbalanced. Suppose that we neglect the last term
in (3.9) which brings the contribution of the average normal vector n̄µ to the gradient
homogenisation formula. This is equivalent to considering, in the variational statement of
the equilibrium (3.38), the space of kinematically admissible fluctuation displacements
Ũ 0
µ defined in (3.17), that is∫

Ωsµ
Pµ · ∇xµ ˆ̃uµ dΩs

µ = 0 ∀ˆ̃uµ ∈ Ũ 0
µ . (3.40)

Next, let us introduce the Lagrange multipliers, denoted correspondingly by Θ0 and Λ0,
to remove the kinematical constraints from the space Ũ 0

µ . The variational equilibrium
equation associated to the admissible variation of the fluctuation displacement field turns
into
∫

Ωsµ
Pµ · ∇xµ ˆ̃uµ dΩs

µ + Θ◦ ·
∫

Ωsµ
ˆ̃uµ dΩs

µ −Λ◦ ·
∫

Γs,bµ
ˆ̃uµ ⊗ nµ dΓµ = 0

∀ˆ̃uµ ∈ [H1(Ωs
µ)]nd . (3.41)

Going ahead as in (3.31), we consider now the uniform fluctuation ˆ̃uµ = ĉ, which in (3.41)
yields

ĉ ·
(
|Ωs

µ|Θ◦ − |Γs,bµ |Λ◦n̄µ
)

= 0 ∀ĉ ∈ Rnd , (3.42)

where we have used the definition (3.12). From (3.42) we can observe that since the RVE
is nµ-unbalanced, a reactive force per unit volume Θ0 emerges in order to equilibrate
the uniform traction acting over the RVE boundary, which is characterised by Λ0. This
spurious reactive force is

Θ0 =
|Γs,bµ |
|Ωs

µ|
Λ◦n̄µ. (3.43)
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The smaller the unbalance, that is, the smaller the magnitude of the vector |Γs,bµ |n̄µ, the
smaller the reaction force. Also the larger the size of the RVE, the smaller the Θ0. This
implies that by enlarging the microcell size we can mitigate the effect of this spurious
reactive force. However, enlarging the microcell size implies in solving larger problems,
which is not a viable solution in many cases.

Remark 14 As a consequence of neglecting the fact that the RVE is nµ-unbalanced, the
property (3.10) is violated, which has a profound impact, in the sense that the reactive
force over the boundary Γs,bµ is not equilibrated, requiring the appearance of a spurious force
per unit volume. In this context, we say that the use of the space Ũµ (see (3.16)) instead
of Ũ 0

µ (see (3.17)) is mechanically consistent, delivering a system of reactive boundary
forces which is equilibrated.

3.4 Closing remarks
It is important to remark that in addition to the inherent importance of the

developments presented in this chapter for the context for random porous RVEs, such
consistent model has also a very close relation with the main topic of this thesis, which is
the multiscale modelling of fibrous materials. Such connection is developed in detail in
Section 4.2.

We highlight that the subject of this chapter is the substrate of another contribution
of this thesis (BLANCO et al., 2019). In fact, the discrete model for fibre network (see
Chapter 4) has served as a concrete motivation to revise the standard model for multiscale
solid mechanics in order deal with a random pattern of voids reaching boundary, aspect
that had been neglected in the literature. A preliminary version of this model can also be
found in (ROCHA et al., 2018).
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4 Linking Networks of Fibres to Continua

All models are wrong, but some are useful.

George Box

This chapter constitutes in some sense the core of the thesis. So far, the variational
theory for the formulation of RVE-based multiscale models has been set in an abstract
format in Chapter 2 and used to systematically derive a consistent model for microstructures
in continuum media featuring random porous patterns in Chapter 3. Hereafter, while
the macroscale solid kinematics is modelled using a standard continuum approach in the
finite strain regime, the microscale mechanics is modelled using a discrete kinematics. The
continuum theory for solids is used as motivation to derive the discrete model and once
the discrete setting is established we proceed with a rigourous presentation of the discrete
model in the light of the MMVP. In the sense of models featuring different kinematics, and
in the context of applications of the MMVP, the present work is novel and can be used
to drive the construction of multiscale models with similar features in other applications,
such as those encountered in the modelling of textiles, polymeric materials and granular
materials.

The present chapter is organised as follows. In Section 4.1, we introduce some
hypotheses and the most important features of the proposed multiscale model for fibres.
For a reader interested in a continuum motivation of the discrete model to be derived next,
in Section 4.2 the continuum model with pores reaching boundary is used to motivate
the model of discrete fibres. The former section is not of mandatory reading. Concerning
the development of the model itself, it is divided in three parts, presented in Section 4.3
(kinematics), Section 4.4 (duality) and Section 4.5 (PMVP). Some theoretical aspects of
the present multiscale model are discussed in Section 4.6, particularly those related to the
mechanical significance of the generalised forces associated to the kinematical restrictions.
Section 5.2 is devoted to the constitutive modelling of fibres at the microscale, and numerical
tests are presented in Section 6.1. Extensions to the present model and limitations are
discussed in Section 6.1.3. Final remarks are outlined in Section 4.7. Throughout the
manuscript, an informative parallel with continuum multiscale formulations is discussed in
a series of remarks termed ”(Continuum Case)”.

4.1 Features of the fibrous microstructure
The present model aims to simulate the constitutive behaviour of biological tissues

with an underlying fibrous architecture, with special emphasis in arterial tissues for which
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Macroscale  Continuum

RVE (Microscale)

Joints

Fibres

Figure 11 – Macroscale continuum and discrete microscale RVE domains.

the network of collagen fibres is the structural element.

The fibres are very slender components, and therefore their behaviour is considered
through one-dimensional structural components. The basic hypotheses about the network
of fibres are the following:

• The network of fibres is an interconnected network of nonlinear rectilinear trusses.
Therefore, bending, shear and torsional effects in the fibres are neglected.

• Fibres are connected through perfect joints which neither detach nor offer resistance
to the relative change of direction of the fibres.

• Body forces per unit volume are neglected in the network.

• No matrix is considered as ground substance for the network, then the fibres are
surrounded by “empty space”.

Remark 15 For all purpose of this work, as “empty space” we consider a medium which
is mechanically irrelevant. For instance, in the case of a fluid surrounding the fibres,
if dissipative effects are disregarded, the contribution in stress state would be irrelevant,
however it could add a kinematical constraint to the overall behaviour of the material,
turning the tissue into an incompressible medium. Incompressibility is addressed in a series
of remarks throughout the manuscript.

Remark 16 Other constituents of arterial tissue such as elastin fibres and smooth muscle
cells could also be coupled with the present multiscale model, but their incorporation in the
present model is out of the scope of this work.

These hypotheses are physically reasonable and have been already
proposed in literature (see for example (STYLIANOPOULOS; BAROCAS, 2007a;
STYLIANOPOULOS; BAROCAS, 2007b)). Particularly, with respect to the interconnected
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network structure, in (CHANDRAN, 2005) it is argued that isolated fibres tend to
spontaneously cross-link in order to stabilise the structure.

Networks of fibres can be artificially generated using specific algorithms. Previous
works used Voronoi (ZHANG et al., 2012) and Delaunay (HADI; BAROCAS, 2013)
tessellations, as well as the so-called Mikado networks (HEUSSINGER; FREY, 2006),
which are randomly generated straight lines with cross-links identified at each crossing of
lines. Another alternative algorithm for network generation, similar to Mikado networks,
was presented in (STYLIANOPOULOS; BAROCAS, 2007a), but in such case, instead of
line segments, the nodes are primarily generated randomly. One may also want to consider
the segmentation of real microscopic images as in (STEIN et al., 2008).

Concerning the individual fibres, we take the following assumptions:

• Each single fibre is a straight segment 1 with uniform cross-sectional area, material
properties and strain.

• Fibres only support tensile stress in axial direction, or even they just may be activated
after exceeding a certain stretch, called activation stretch.

• A fibre features a hyperelastic behaviour inspired in phenomenological models.

These hipotheses are considered for the sake of simplicity, but do not impose
serious limitations to the formulation of the proposed multiscale model, which is the main
focus of our work. Again, analogous assumptions were already regarded in previous works
(STYLIANOPOULOS; BAROCAS, 2007a; STYLIANOPOULOS; BAROCAS, 2007b).

For those readers interested in a more sophisticated model in terms of fibre
kinematics, we refer to recent works including the geometrically exact beam theory
accounting different kinds of contacts between fibres (CYRON et al., 2013; MEIER et al.,
2017).

4.2 Motivation about the transition from continuum media to
discrete networks
In this section our aim is to succinctly retake the consistent formulation for pores

reaching the RVE boundary, presented in Chapter 3, which could be understood as the
groundwork for our model of a fibre networks. What is shown here is somewhat informal
and the rigorous presentation is postponed to the next section of this chapter.
1 The physical effect of waviness will considered in the constitutive law for each fibre but not in its

geometrical description.
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One important consideration to be highlighted once again is that our point of
depart is a formulation that is itself not classical in multiscale theory. Particularly, this is
because the displacement field is not well defined in the absence of material points, that is,
in the void (empty) domain. This is of crucial relevance if the RVE is basically composed
by empty space, as it is the case of fibrous materials.

Now, consider in a typical porous microstructure that the voids grow sufficiently so
that the solid part can be portioned in a number of slender parts (each one representing
a bundle of fibres) and in their intersections (joints) as in Fig. 12. As usual, Ωµ ⊂ Rnd

is an open bounded set that stands for the entire RVE domain. The domain Ωf
µ ⊂ Ωµ

denotes the volume occupied by a fibre indexed with the integer f ∈ {1, 2, . . . , Nfibres}
and Ωj

µ ⊂ Ωµ is the domain of a joint indexed by j ∈ {1, 2, . . . , Njoints}. Also, let us define
the following auxiliary notations

ΩF
µ =

Nfibres⋃
f=1

Ωf
µ , ΩJ

µ =
Njoints⋃
j=1

Ωi
µ , Ωs

µ = ΩF
µ ∪ ΩN

µ , Ωv
µ = Ωµ\Ωs

µ

Γr,tµ = Γrµ ∩ Γtµ for r, t ∈ {f, j, F, J, s, v}
(4.1)

Further, note that Γs,bµ = ∪Njointsj=1 Γj,bµ , i.e., the fibres are assumed to be always
connected to the boundary through a joint. By convention, a normal vector nr,t of a surface
Γr,tµ , always points from Ωr

µ to Ωt
µ, for r, t ∈ {f, j, F, J, s, v}.

It is important to remark here that in the following developments our aim is to
arrive at the same kinematics hypotheses as described in Section 4.1. Therefore, now we
introduce what we call the Hypothesis of Small Joints (HSJ) and Hypothesis of truss (HT)
which relies on the assumptions.

HSJ.1) For a given integrable function ϕ defined in Ωs
µ of any type value (scalar, vector,

tensor value), with reasonable same order of magnitude in Ωs
µ, the approximation

Nfibres∑
f=1

∫
Ωfµ
ϕ dΩf

µ �
Njoints∑
j=1

∫
Ωjµ
ϕ dΩj

µ, (4.2)

holds. One first corollary is that

|Ωs
µ| =

Nfibres∑
f=1

|Ωf
µ|+

Njoints∑
j=1
|Ωj

µ| ≈
Nfibres∑
f=1

|Ωf
µ| = |ΩF

µ |, (4.3)

which is obtained by taking ϕ = 1.

HSJ.2) The joints are so small that material points xµ ∈ Ωj
µ can be approximated by the

point x̄jµ at the centroid of Ωj
µ. For continuous vector fields (e.g displacements,

fluctuations of displacements, etc), let us say v : Ωj
µ → Rnd , it is reasonable that:

v(xµ) ≈ v(x̄jµ) := vj, ∀xµ ∈ Ωj
µ. (4.4)
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Hence, the above assumption and with HSJ.1 guide the future discrete structure in
form of nodal values in the network model.

Figure 12 – Example of a porous RVE featuring connected slender structural components.

(a) On an RVE side. (b) At an RVE corner.

Figure 13 – Typical joints reaching the RVE boundary.

HT) The slender parts of the solid are so slender that allow them to be modelled as
straight trusses with constant cross sections, denoted by Af , and length Lf . The
displacement at each bar must be constant in the cross section of the bar and is given
by the linear interpolation between the displacement at the initial, xifµ ∈ Γfµ∩Γifµ , and
at the end, xjfµ ∈ Γfµ∩Γjfµ points of the centreline of the bar. The above considerations
define the displacement field along the fibre ufµ as a linear field, that is

ufµ (s) :=
(

1− s

Lf

)
uµ(xifµ ) + s

Lf
uµ(xjfµ )

=
(

1− s

Lf

)
uifµ + s

Lf
ujfµ s ∈ [0, Lf ]. (4.5)
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Here, xifµ and xjfµ are points characterising the joints Ωif
µ and Ωjf

µ , with if , jf ∈
{1, 2, . . . , Njoints}, respectively. As a straightforward corollary of this assumption is
that the non null part of ∇xµuµ in Ωf

µ is given by d
ds(u

f
µ (s))⊗ tf , i.e.,

∇xµuµ
∣∣∣
Ωfµ

= d
dsufµ (s)⊗ tf = 1

Lf
(ujfµ − uifµ )⊗ tf , (4.6)

where tf is a unit vector pointing from xifµ towards xjfµ .

4.2.1 Discrete displacement homogenisation

Now, let us investigate the impact of the HSJ.1 and HT for the expressions related
to the homogenisation of the displacement field from Chapter 3. Recalling (3.5), it is easy
to see that the following simplifications holds

1
|Ωs

µ|

∫
Ωsµ

uµdΩs
µ = 1
|Ωs

µ|

Nfibres∑
f=1

∫
Ωfµ

uµdΩs
µ +

Njoints∑
j=1

∫
Ωjµ

uµ dΩs
µ


≈ 1
|ΩF

µ |

Nfibres∑
f=1

∫
Ωfµ

uµ dΩs
µ ≈

1
|ΩF

µ |

Nfibres∑
f=1

|Ωf
µ|

2 (uifµ + ujfµ ). (4.7)

The result above also leads to analogous specific expressions for the centroid and
restriction over the fluctuation field, to be seen in Section 4.3.

4.2.2 Discrete version for gradient-related integrals

We now investigate the impact of the HSJ.1 in the expression of the homogenisation
of the gradient field of Chapter 3. Firsly, working with the first two integrals of (3.9) we
have

∫
Ωsµ
∇xµuµ dΩs

µ −
∫

Γs,vµ
ũµ ⊗ ns,vµ dΓs,vµ =

Njoints∑
j=1

(∫
Ωjµ
∇xµuµ dΩi

µ −
∫

Γj,vµ
ũµ ⊗ nj,vµ dΓj,vµ

)

+
Nfibres∑
f=1

(∫
Ωfµ
∇xµuµ dΩf

µ −
∫

Γf,vµ
ũµ ⊗ nf,vµ dΓf,vµ

)

≈
Njoints∑
j=1

(∫
Γj,Fµ

ũµ ⊗ nj,Fµ dΓj,Fµ +
∫

Γj,bµ
ũµ ⊗ nj,bµ Γj,bµ

)
+

+
Nfibres∑
f=1

(∫
Ωfµ
∇xµuµ dΩf

µ −
∫

Γf,vµ
ũµ ⊗ nf,vµ Γf,vµ

)
. (4.8)
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Considering the last part of (4.8) (after the approximation sign), it can be still
rewritten by taking into account HSJ.2 yielding

Njoints∑
j=1

(∫
Γj,Fµ

ũjµ ⊗ nj,Fµ dΓj,Fµ +
∫

Γj,bµ
ũjµ ⊗ nj,bµ dΓj,bµ

)
+

+
Nfibres∑
f=1

(∫
Ωfµ
∇xµuµ dΩf

µ −
∫

Γf,vµ
ũµ ⊗ nf,vµ dΓf,vµ

)
. (4.9)

Now, introducing HT and (4.6) into (4.9) we have
Njoints∑
j=1

Nfibres∑
f=1

|Γf,jµ |ũjµ ⊗ nj,fµ +
Njoints∑
j=1
|Γj,bµ |ũjµ ⊗ nj,bµ

+
Nfibres∑
f=1

LfAf

(
1
Lf

(ujfµ − uifµ )⊗ tf
)
.

(4.10)

Note that |Γf,jµ | =

0 if Γf,jµ = ∅

Af otherwise
. Moreover, we are supposing that the normal vectors

to the surfaces are aproximately constant. In Section 4.2.3 we show an estimate for |Γj,bµ |
and nj,bµ as a function of known properties of the structural components.

Now let us simplify the third integral in (3.9). Using HSJ.2 we have∫
Γs,bµ

ũµ ⊗ n̄µ dΓs,bµ =
Njoints∑
j=1

∫
Γj,bµ

uµ ⊗ n̄µ dΓj,bµ

≈
Njoints∑
j=1
|Γj,bµ |ũjµ ⊗ n̄µ. (4.11)

4.2.3 Comment on equivalent areas of boundary joints

Finally, the boundary areas are computed by projecting the fibre areas arriving at
a certain joint over the corresponding normal vector. For example, for the case of Fig. 13a
we have just one boundary surface, then

Āi,1 = |ni,1 · a|A+ |ni,1 · a′|A′, (4.12)

where A and A′ are the areas related to the fibres with unit vector a and a′, respectively.
For the case of Fig. 13a we have two boundary surfaces, then

Āj,1 = |nj,1 · a∗|A∗, (4.13)

Āj,2 = |nj,2 · a∗|A∗, (4.14)

where A∗ is the area associated to fibre whose unit vector is a∗. These ideas are of easy
generalisation as defined in (4.30). Equivalent areas and normals are obtained using
(4.31) and (4.32), respectively. In the case of Fig. 13a, these expressions trivially lead
to Āi := |Γi,bµ | = Āi,1 and ni := ni,1. For the case of Fig. 13b, it is easy to verify that
Āj := |Γj,bµ | = A∗ and nj := −a∗.
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4.3 Kinematics
In this section we present the microscale kinematical setting for the network of

fibres and its connection to the macroscale kinematics within the framework of the MMVP,
which is illustrated in Figure 11. The adopted macroscale kinematics is equal to the
previous chapters and we refer to Section 2.3.1 to recall the notation. For the sake of
simplicity, we shorten the notation to the point-valued kinematical entities evaluated at
the point xM ∈ ΩM , then hereafter uM |xM simplifies to u and GM |xM becomes G, where
the same notation is applied to the their variations. Also to keep the presentation simple,
we admit u ∈ Rnd×nd G ∈ Rnd×nd , however it was already seen that the MMVP is suffient
general to handle other situations such as those arising in the case of incompressibility
(see Section 2.4.3). Finally, Section 4.3.1 is devoted to present the discrete structure that
partially fills the volume Ωµ ⊂ Rnd (the RVE associated to the macroscale point).

4.3.1 Characterisation of microscale fibre network

Before providing the specific description of the microscale kinematics, in this section
we introduce some basic notations. As already commented, our microscale network model
consists of interconnected straight trusses, which models the real fibrous structure at the
microscale. Each truss is an idealisation of a collagen bundle (a group of collagen fibres
in the present context) and is geometrically represented by a line segment between two
points. As an abuse of notation, when referring to a truss we simply call it fibre. For more
considerations and its constitutive implications, see Section 5.2.

The other object that has to be modelled in the network is the joint that
interconnects fibre segments, which represents the interaction between two or more bundle
of collagen fibres crossing each other. In this work, there is no relative displacement among
the fibres reaching the joint. Moreover, as the characteristic size of a joint is much smaller
than that of fibres, we idealise these entities as nodes (or simply points), that is, geometrical
entities without dimension.

Next, the kinematical framework for the components at microscale in a pure discrete
form is presented. As already shown, the justifications for this model from a continuum
perspective has been discussed in Section 4.2.

To denote the set of fibres which are interconnected through nodes we introduce
the following notation

Nnet = list of nodes in the network

= {i; i = 1, 2, . . . , Njoints}, (4.15)

Fnet = list of fibres in the network

= {α = (iα, jα) ∈ Nnet ×Nnet; iα 6= jα}, (4.16)
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where iα and jα stand for initial and final node of fibre α, respectively.

To complement the geometrical characterisation of the oriented graph (Nnet,Fnet),
we introduce the following sets

N Γ
net = boundary nodes in the network (N Γ

net ⊂ Nnet), (4.17)
◦
N net = interior nodes in the network = Nnet\N Γ

net, (4.18)

Xnet = node positions = {xiµ ∈ Ωµ, i ∈ Nnet}, (4.19)

Anet = fibre transversal areas = {Aα ∈ R+, α ∈ Fnet}. (4.20)

Then, the representation of the network of fibres is fully characterised by the following
object

NET = (N Γ
net,

◦
N net,Fnet,Xnet,Anet), (4.21)

which for brevity is simply called Network, and whose basic elements are schematically
shown in Fig. 14. Note that Nnet is already implicit in (4.21) since Nnet = N Γ

net ∪
◦
N net.

It is worth mentioning that the property Anet equips the one-dimensional discrete
model with a realistic three-dimensional structure of the continuum model, which is further
complemented by the activation stretch that is related to the tortuosity of the real fibre.
This is taken into account later in Section 5.2 when addressing the constitutive behaviour
of the fibres.

Figure 14 – Notation and basic ingredients in the geometrical/topological description of
the Network of fibres.

Consider now the length of fibre α given by

Lα = ‖xjαµ − xiαµ ‖2, (4.22)

where ‖·‖2 is the standard Euclidean norm in Rnd . Let us define the volume of the fibre
Vα and the measure of the whole set of fibres |Fnet| as follows

Vα = AαLα, α ∈ Fnet, (4.23)

|Fnet| =
∑

α∈Fnet

Vα. (4.24)
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The difference between any generic variable related to extreme points of fibre α, that is,
(·)jα − (·)iα , is denoted by the following operator

∆α(·) := (·)jα − (·)iα . (4.25)

In addition, we introduce the fibre-node signal brackets [·, ·] defined by

[α, i] =


1 if jα = i,

−1 if iα = i,

0 otherwise.

(4.26)

This operation contains the same information as the standard fibre (mesh) connectivity
data structure, being an alternative way to describe it, but significantly simplifies the
derivations in this work. Note that [α, i] is different from zero only when α is in the set

F inet = fibres sharing node i

= {α = (iα, jα) ∈ Fnet, iα = i or jα = i}. (4.27)

Operator ∆α can be expressed in terms of the fibre-node signal brackets as follows

∆α(·) =
∑

i∈Nnet

[α, i](·)i. (4.28)

Also, we introduce the unit vector aα defined by fibre α and directed from the
initial node iα to the final node jα, that is

aα = 1
Lα

∆αxµ. (4.29)

Associated to each node i ∈ N Γ
net, lying over the boundary of the RVE, we have

the node boundary area(s) Āi,k and the node boundary normal vector(s) ni,k, where
k ∈ {1, . . . , kmaxi }, being kmaxi the number of RVE faces sharing node i. For example, for
a two-dimensional squared RVE as in Fig. 14, for a node i ∈ N Γ

net over a RVE corner
corresponds kmaxi = 2, otherwise it is kmaxi = 1. In a three-dimensional cubic RVE, kmaxi

may assume the values of 3 (at vertices), 2 (on edges) or 1 (over faces).

The area(s) Āi,k is(are) calculated accounting for the area Aα and direction of
fibres aα that reach the boundary at a node i ∈ N Γ

net and its/their respective normal(s)
ni,k, which is(are) the corresponding outward unit normal vector(s) to the boundary Γµ,
as follows

Āi,k =
∑

α∈Finet

|ni,k · aα|Aα for i ∈ N Γ
net, k ∈ {1, . . . , kmaxi }. (4.30)
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The geometrical interpretation can be found in Section 4.2.3 where typical examples
of joints are analysed in Fig. 13 and equations therein.

To shorten notation let us introduce the equivalent boundary area and normal for
a node over the boundary as

Āi =
∥∥∥∥∥
kmaxi∑
k=1

Āi,kni,k
∥∥∥∥∥

2
, (4.31)

ni = 1
Āi

kmaxi∑
k=1

Āi,kni,k. (4.32)

Now, let us define the joint normal vector mi for every i ∈ Nnet accounting for
the surface integral of the normals for a given joint collapsed into its corresponding node.
As explained in 4.2, the surface considered is the internal solid surface, which means the
intersection of the joint and fibres for internal nodes, added to the intersection between
joint and RVE borders for boundary nodes. Using definitions (4.31) and (4.32) we can
define mi as:

mi =

−
∑
α∈Finet

[α, i]Aαaα i ∈
◦
N net,

Āini −
∑
α∈Finet

[α, i]Aαaα i ∈ N Γ
net.

(4.33)

Note that the negative sign and fibre-node signal brackets in the definition naturally
accommodates the orientation of fibre unit vector to point outwards the joint domain as
can be appreciated in Fig. 15.

Figure 15 – Concept of joint normal vector in different situations. Left inset: regular
hexagonally-shaped joint with Aα1 = Aα2 = Aα3 , yielding mi = 0. Middle
inset: arbitrary joint with Aα1 6= Aα2 6= Aα3 and so mi 6= 0. Right inset: Joint
at a corner.

In the present framework, the discrete structure of NET of an RVE is just admissible
when the graph (Nnet,Fnet) is connected, that is, any two nodes of the network are connected
by at least one path of fibres.

Remark 17 Hereafter, in order to facilitate the reading of the manuscript, we adopt
different fonts to represent tensorial (including vectors) quantities associated to fibres and
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nodes, such as aα (α ∈ Fnet) for fibre and xiµ (i ∈ Nnet) for nodes. For n-tuples of tensors
we consider Blackboard bold fonts, for example A = {aα}α∈Fnet, generally with the same
letter to represent the n-tuple as well as its elements. This notation is extensively used in
the forthcoming sections.

4.3.2 Microscale displacement

Given a NET we are interested in describing the displacement experienced by
material points in this Network. By material points we have the joints (nodes) and the
points that compose the fibres (points of the straight lines).

The displacement at the nodes is an element of the following vector space

U N
µ = {UN

µ = {uiµ}i∈Nnet ; uiµ ∈ Rnd , i ∈ Nnet}. (4.34)

It consists of a |Nnet|-tuple of vectors (|Nnet| the cardinality of Nnet) in the nd-dimensional
space, each vector representing the displacement at each node of the Network, thus we
denote uiµ the displacement of node i ∈ Nnet.

For a given UN
µ ∈ U N

µ , the fibre displacements fields are in the vector functional
space

U F
µ := {UF

µ = {uαµ}α∈Fnet ; uαµ : [0, Lα]→ Rnd ;

uαµ(s) =
(
1− s

Lα

)
uiαµ + s

Lα
ujαµ , s ∈ [0, Lα], α = (iα, jα) ∈ Fnet}, (4.35)

where the vector field uαµ associated to each fibre α ∈ Fnet represents the displacement
field along the centreline of the fibre in the nd-dimensional space. Notice that, the space
U F
µ is univocally established once UN

µ ∈ U N
µ is specified. As a consequence, if two fibres

share a node, the displacement at such node is the same, which is one of the hypotheses
considered in this work.

Therefore, the displacement in the network is completely characterised by the space

Uµ := {Uµ = (UN
µ ,U

F
µ ) ∈ U N

µ ×U F
µ }. (4.36)

The operation of addition in Uµ is such that for W1,W2 ∈ Uµ yields W3 =
W1 + W2 ∈ Uµ with

wi
3 = wi

1 + wi
2 ∀i ∈ Nnet, (4.37)

wα
3 (s) = wα

1 (s) + wα
2 (s) ∀α ∈ Fnet, ∀s ∈ [0, Lα], (4.38)

where Wk = ({wi
k}i∈Nnet , {{wα

k}α∈Fnet}), k = 1, 2, 3. The zero element in this space is
denoted by O in such way that W + O = W, ∀W ∈ Uµ, which means that O has zero-
valued vectors for the nodes part and zero-valued constant vector functions for the fibre
part. Analogous interpretation of addition is considered for any other space to be defined
in terms of tuples in this manuscript.
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Remark 18 From the definition of U F
µ in (4.35), it is easy to see that the space Uµ has

the same dimension than U N
µ . In other words, an element Uµ ∈ Uµ is uniquely determined

by a choice of UN
µ ∈ U N

µ . We extensively use this property overall the manuscript by
defining quantities exclusively in terms of UN

µ .

4.3.3 Insertion operators

So far, the discrete kinematics groundwork has been established for a network
of fibres. Now, in the same spirit of Section 2.2.2.1, we estabilish that the macroscale
displacement at point xM ∈ ΩM is mapped into the microscale kinematics using the
following operator

JU
µ : Rnd → Uµ,

u 7→ JU
µ (u) = (JU,N

µ (u),JU,F
µ (u)),

(4.39)

defined by

[JU,N
µ (u)]i = u i ∈ Nnet, (4.40)

[JU,F
µ (u)]α(s) = u α ∈ Fnet, s ∈ [0, Lα], (4.41)

i.e.,. the macroscale displacement at point xM is inserted uniformly in the network (joints
and trusses). The macroscale gradient tensor at point x is mapped into the microscale
kinematics through the following operator

JE
µ : Rnd×nd → Uµ,

G 7→ JE
µ (G) = (JE,N

µ (G),JE,F
µ (G)),

(4.42)

defined by

[JE,N
µ (G)]i = G(xiµ − xGµ ), i ∈ Nnet, (4.43)

[JE,F
µ (G)]α(s) = G

((
1− s

Lα

)
xiαµ + s

Lα
xjαµ − xGµ

)
,

α ∈ Fnet, s ∈ [0, Lα]. (4.44)

where xGµ is the geometric center for the network of fibres, still to be defined in (4.56).

Remark 19 The macroscale displacement and gradient are only inserted in the material
domain, that is, in the locus of material particles at the microscale, specifically at nodes
and in fibres. The empty space surrounding the network plays no role in the definition of
the microscale kinematics.
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We introduce the so-called microscale displacement fluctuations Ũµ ∈ Uµ (see Remark
20) such that the microscale displacement (and its virtual variations) can be expressed
through the following expansion

Uµ = JU
µ (u) + JE

µ (G) + Ũµ, (4.45)

which, in the nodal-wise sense results

uiµ = u + G(xiµ − xGµ ) + ũiµ i ∈ Nnet, (4.46)

where ũiµ is the displacement fluctuations of a node i ∈ Nnet of the generalised fluctuation
Ũµ (notation is as in (4.34)).

Remark 20 Fluctuations Ũµ is not an arbitrary element of Uµ but it belongs to a specific
space (subspace of Uµ), the so-called space of admissible displacement fluctuations, denoted
by Ũµ. So far, it is only important to keep in mind that the different manners to define Ũµ

imply in more or less constrained kinematics, as illustrated in Fig. 16. The mathematical
characterisation of this family of spaces is subject of Section 4.3.5.3.

Remark 21 From definition (4.45), the triple (u,G, Ũµ) ∈ Rnd × Rnd×nd × Ũµ (see
Remark 20) uniquely characterises the displacement Uµ ∈ Uµ. This connection is used in
Section 4.3.4.

Underformed Network

Nonaffine  Model 

Affine (or Linear) Boundary Model

Affine (or Taylor) Model

Figure 16 – Affine kinematics and nonaffine kinematics due to the existence of fluctuations.
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4.3.4 Generalised microscale gradient operator

In this section we define the generalised gradient operation in the microscale
reference configuration. This operator, similarly to the gradient in continuum mechanics,
provides the measure of the first order variation of the displacement field defined in the
network.

Associated to Uµ, we have the space of generalised gradients given by

Eµ = {Gµ = ({Gi
µ}i∈Nnet , {Gα

µ}α∈Fnet);

Gi
µ ∈ Rnd×nd , i ∈ Nnet,Gα

µ ∈ Rnd×nd , α ∈ Fnet}. (4.47)

The addition in Eµ is defined in the same sense as in (4.37)-(4.38).

For a given NET-gradient Gµ ∈ Eµ, we denote the N-gradient Gi
µ a generalised

gradient measure at node i ∈ Nnet and the F-gradient Gα
µ a generalised gradient for fibre

α ∈ Fnet. The relation between node displacements and the generalised gradients in nodes
and fibres is given through the generalised microscale gradient operator

Dµ : Uµ → Eµ,

Uµ 7→ Gµ = Dµ(Uµ),
(4.48)

where Gµ = ({Gi
µ}i∈Nnet , {Gα

µ}α∈Fnet) is defined through

Gi
µ := ũiµ ⊗mi ∀i ∈ Nnet, (4.49)

Gα
µ := 1

Lα
∆αUµ ⊗ aα ∀α ∈ Fnet, (4.50)

with mi being the joint normal vector defined in (4.33). An alternative form to (4.50) is
given by

Gα
µ = Gaα ⊗ aα + 1

Lα
∆αŨµ ⊗ aα. (4.51)

The definition of the N-gradient, given by (4.49), is reached by considering the
integral of the gradient of the displacement field in the domain of a joint, as detailed in
Section 4.2.2, where it can be appreciated the correspondence with the first two summations
of (4.10). Hence, if we understand the gradient as a measure of the non-homogeneity of
the displacement field, the N-gradient amounts to the total non-homogeneity lumped at
a joint connecting a certain number of concurrent fibres. As can also be appreciated in
Section 4.2.2, it can be proved that only fluctuations play an important role in our model
in which joints are idealised to be small.

Definition (4.50) can be regarded as the gradient of the displacement field in some
fixed (global) coordinate frame of a straight truss. Remember that for the truss the only
mechanically relevant kinematics is along its axial coordinate. The alternative expression
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(4.51) is obtained by the replacing (4.45) into (4.50). It is important to remember that
the full derivations in the continuum setting are exposed in Section 4.2, where the result
obtained in (4.6) was a consequence of the truss hipothesis.

The physical meaning of the F-gradient2 in each fibre is such that a vector qαµ =
(I + Gα

µ)aα is pointed towards the actual direction of the fibre and its euclidean norm is
the stretch of the fibre (ratio between actual and original lengths). This motivates the
definition of the so-called generalised fibre strain vector as

gαµ := Gα
µaα (4.52)

The representation using the vector gαµ instead of the second-order tensor Gα
µ is preferred

in Chapter 5.

It is important to remember that the NET-gradient Gµ collects generalised gradients
from two different kinds of components, i.e., nodes and fibres, being these, respectively, zero-
dimensional and one-dimensional entities. Therefore, units are not homogeneous between
N-gradient and F-gradient. Specifically in the case of N-gradient, it is not dimensionless,
as classical gradients are, but it already has units of volume (this is actually a matter of
convention). Although not classical, our special definition for Gµ shows to be particularly
suitable when we postulate the homogenisation for gradients in Section 4.3.5.2.

Remark 22 At this point, it is important to highlight that the RVE domain Ωµ and the
network of fibres NET are different concepts. Domain Ωµ is understood as an observational
window of the macroscale point xM ∈ ΩM , while NET is the collection of material particles
for which a minimum set of geometrical and topological information was endowed to
adequately describe the discrete kinematical structure for the problem. The RVE domain Ωµ

contains the NET and empty space surrounding the NET. Hence, the NET provides the
material substrate on top of which kinematical quantities and generalised gradient measures
are defined.

Remark 23 Both definitions, (4.49) and (4.50), imply certain geometrical considerations.
In the former, only the solid part of the joint boundary is considered as it comes from
the definition of joint normal vector in (4.33). In the later, only the axial part of the
gradient plays a role for the strain tensor as dictated by the one-dimensional character of
fibres. As discussed in Section 4.3.5, these two model simplifications have to be taken into
consideration when homogenisation operators are postulated.
2 Instead of Gα

µ as primary generalised gradient variable, we can equivalently define Fαµ = (I + Gα
µ) as

the generalised deformation gradient associated to Gα
µ , which leads to an equivalent formulation.
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4.3.5 Kinematic homogenisation operators

Based on what has been discussed in Section 4.2.1 and Section 4.2.2, in this section
we define the homogenisation operators providing a sense of kinematic conservation in the
transfer between both scales.

4.3.5.1 Homogenisation of displacements

First, consider the homogenisation operator for the displacement field (and for its
virtual variations) defined as

HU
µ : Uµ → Rnd ,

Uµ 7→ HU
µ (Uµ) = 1

|Fnet|
∑

α∈Fnet

Vα
2 (uiαµ + ujαµ ).

(4.53)

Note that (4.53) is inspired by (4.7) and by construction, HU
µ satisfies

HU
µ (JU

µ (u)) = u. (4.54)

We also require
HU
µ (JE

µ (G)) = 0, (4.55)

that leads to
xGµ = 1

|Fnet|
∑

α∈Fnet

Vα
2 (xiαµ + xjαµ ), (4.56)

whose proof is given in Section 4.3.6. Note that constraint (4.55) is needed for the
homogenised displacement to be independent from the macroscale gradient.

The macroscale and microscale displacement fields (or its virtual variations) are
constrained to satisfy the following

HU
µ (Uµ) = u. (4.57)

Since the operator is linear, this is equivalent to

HU
µ (Uµ) = HU

µ (JU
µ (u)) +HU

µ (JE
µ (G)) +HU

µ (Ũµ) = u, (4.58)

which implies, from (4.54) and (4.55), that the fluctuation Ũµ must satisfy

HU
µ (Ũµ) = 1

|Fnet|
∑

α∈Fnet

Vα
2 (ũiαµ + ũjαµ ) = 0. (4.59)

Note that (4.53) is a discrete counterpart of the standard displacement
homogenisation for continua as presented in Section 2.3.2.
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4.3.5.2 Homogenisation of generalised microscale gradient

We propose the homogenisation operator for the generalised microscale gradient
(and for its virtual variations)

HE
µ : Eµ → Rnd×nd ,

Gµ 7→ HE
µ (Gµ),

(4.60)

defined by

HE
µ (Gµ) = 1

|Fnet|

( ∑
α∈Fnet

VαGα
µ +

∑
i∈Nnet

Gi
µ −

∑
i∈NΓ

net

Āiũiµ ⊗ n̄µ
)

B−1, (4.61)

where B is an invertible second order tensor called structural tensor and n̄µ is the average
normal vector. These two geometric objects are defined in (4.65) and (4.69), respectively.
Note that (4.61) can be seen as a discrete counterpart of the integral of the gradient of the
displacement field in the material domain plus the incorporation of additional terms that
make the homogenisation consistent. The full justification, based on the kinematics of
continua, is found in Section 4.2, where the first two summations of the (4.61) are found
in (4.10) and the last summation in (4.11).

Before proceeding with the definitions for B and n̄µ, let us first rewrite (4.61). Let
us simplify the first two summations in (4.61), by using (4.49) and (4.51), as next

∑
α∈Fnet

VαGα
µ +

∑
i∈Nnet

Gi
µ =

∑
α∈Fnet

Vα

(
Gaα ⊗ aα + 1

Lα
∆αŨµ ⊗ aα

)
+

∑
i∈Nnet

ũiµ ⊗mi =
∑

α∈Fnet

VαGaα ⊗ aα +
∑

i∈Nnet

∑
α∈Finet

[α, i]Aαũiµ ⊗ aα

+
∑

i∈
◦
Nnet

ũiµ ⊗
(
−

∑
α∈Finet

[α, i]Aαaα
)

+
∑

i∈NΓ
net

ũiµ ⊗
(
Āini −

∑
α∈Finet

[α, i]Aαaα
)

=

∑
α∈Fnet

VαGaα ⊗ aα +
∑

i∈NΓ
net

Āiũiµ ⊗ ni. (4.62)

Replacing the above expression into (4.61) we get the equivalent homogenisation relation
below

HE
µ (Gµ) = 1

|Fnet|

( ∑
α∈Fnet

VαGaα ⊗ aα +
∑

i∈NΓ
net

Āiũiµ ⊗ (ni − n̄µ)
)

B−1. (4.63)

The first fundamental requirement the operator HE
µ (·) must fulfill is that, for an affine

model (i.e. Ũµ = O), one has to retrieve the macroscale gradient G, that is

HE
µ (Gµ

∣∣∣
Ũµ=O

) = G, (4.64)
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then, from (4.63) we are led to the definition of B as

B := 1
|Fnet|

( ∑
α∈Fnet

Vαaα ⊗ aα
)
. (4.65)

This tensor, named here as structural tensor (also called orientation tensor), is a concept
which has also been found in the phenomenological modelling (GASSER; OGDEN;
HOLZAPFEL, 2006; ZHANG et al., 2012). This theoretical connection can be regarded as
a mathematical justification for the phenomenological importance of this tensor.

In turn, a second fundamental property of operator HE
µ (·) is that, for a uniform

fluctuation field (Ũµ = C), we get the very same macroscale gradient, this means

HE
µ (Gµ

∣∣∣
Ũµ=C

) = G. (4.66)

Since HE
µ is a linear operator, from (4.66) we obtain

HE
µ (Gµ|Ũµ=C) = HE

µ (Gµ

∣∣∣
Ũµ=O

) + HE
µ (Gµ

∣∣∣
G=O,Ũµ=C

) = G, (4.67)

which gives HE
µ (Gµ

∣∣∣
G=O,Ũµ=C

) = O by using (4.64). Finally, since

HE
µ (Gµ

∣∣∣
G=O,Ũµ=C

) = 1
|Fnet|

( ∑
i∈NΓ

net

Āiũiµ ⊗ (ni − n̄µ)
)

B−1 = O, (4.68)

we obtain the definition for the vector n̄µ as

n̄µ := 1∑
i∈NΓ

net

Āi

( ∑
i∈NΓ

net

Āini
)
. (4.69)

Remark 24 Note that the final expression for n̄µ in (4.69) is simply the average normal
over the solid boundary. The average normal vector is a measure of the geometric unbalance
in the solid part of the RVE boundary and, as we will see, it plays a fundamental role in
the minimally constrained kinematical model, and consequently in the characterization of
the dual entities.

Remark 25 Properties (4.64) and (4.66), which ensure the conservation of the
deformation gradient and kinematical consistency of our model, naturally and univocally
shape the tensor B and the vector n̄µ. In other words, the expressions (4.65) and (4.69)
result from the homogenisation of gradient postulated in (4.61), which embodies the choice
for the NET-gradient in (4.48), altogether with the considerations taken for the structural
elements in the network (nodes and bars).
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Analogously to (4.57), the microscale gradient measure is constrained to satisfy
the following

HE
µ (Gµ) = G, (4.70)

which implies, by linearity, that the fluctuation must satisfy

HE
µ (Gµ

∣∣∣
G=O

) = O, (4.71)

or, more explicitly, and by using (4.63), the fluctuation must be compliant with the
following constraint

HE
µ (Gµ|G=O) = 1

|Fnet|

( ∑
i∈NΓ

net

Āiũiµ ⊗ (ni − n̄µ)
)

B−1 = O. (4.72)

The fact that (4.72) solely depends on boundary data is reasonable as one should
expect to be able to control the RVE deformation exclusively by using the displacement
field defined over the material points of the RVE that reach the boundary.

Remark 26 (Continuum Case) As the tensor B is assumed to be invertible, post-
multiplication of (4.72) by B leads to the alternative restriction∑

i∈NΓ
net

Āiũiµ ⊗ (ni − n̄µ) = O. (4.73)

This last expression has a clear parallel with that one encountered in multiscale models
with voids reaching boundary as in Chapter 3 (see (3.15)) We highlight that in our context,
i.e., fibrous materials, the empty space between fibres (voids) is in general the major part
of the RVE boundary, making the proposed generalisation of the classical constraint a true
cornerstone.

4.3.5.3 Space of admissible fluctuations

Using kinematical constraints given in (4.57) and (4.70), which ensure preservation
of kinematical descriptors between macro and micro scales, we arrive respectively to the
restrictions (4.59) and (4.73) for fluctuations. This allows us to define the largest space of
kinematically admissible displacement fluctuations (and its virtual variations)

Ũ M
µ =

{
Ũµ ∈ Uµ;

∑
α∈Fnet

Vα
2 (ũiαµ + ũjαµ ) = 0;

∑
i∈NΓ

net

Āiũiµ ⊗ (ni − n̄µ) = O
}
. (4.74)

The space Ũ M
µ is a subspace of Uµ whose elements satisfy the minimum set of

constraints such that kinematic conservation is guaranteed. Hence, space Ũ M
µ defines the

minimally constrained multiscale model (MCMM), also known in literature as uniform
traction model for the very same reasons as in (2.41). As usual, other more constrained
models, defined by corresponding spaces Ũ ∗

µ are also possible, provided they satisfy
Ũ ∗
µ ⊂ Ũ M

µ . Three sub-models with theoretical and practical relevance are the following:
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1. Affine model (also called Taylor model or rule of mixtures): this model does not
allow fluctuations neither in interior nodes neither on the boundary, being the most
kinematically constrained scenario. Such model can be obtained as sub-model of the
MCMM proposed here by taking

Ũ T
µ = {Ũµ ∈ Uµ; ũiµ = 0, i ∈ Nnet}. (4.75)

2. Affine boundary model (also called linear boundary model): this model allows nonzero
fluctuations only in interior nodes which renders this scenario be less constrained
than the Affine model. Mathematically we have

Ũ L
µ = {Ũµ ∈ Uµ; HU

µ (Ũµ) = 0, ũiµ = 0, i ∈ N Γ
net}. (4.76)

3. Periodic boundary model 3: Still less constrained than the Affine boundary model,
this model allows nonzero fluctuations over the RVE boundary such that

Ũ P
µ = {Ũµ ∈ Uµ; HU

µ (Ũµ) = 0, ũi+µ = ũi−µ ,

(i+, i−) ∈ (N Γ
net)+ × (N Γ

net)− is a periodic pair }, (4.77)

where by periodic pair it is meant that Āi+,k+ = Āi−,k− and ni+,k+ = −ni−,k− , given
that {(N Γ

net)+, (N Γ
net)−} is a partition of N Γ

net. Since n̄µ = 0 in this case, it is not
difficult to see that Ũ P

µ ⊂ Ũ M
µ .

As already pointed out, the characterisation of the minimal set of kinematical
constraints in the present context is a valuable aspect of the proposed model, because the
space Ũ M

µ established the admissible kinematical ground to derive other sub-models whose
admissibility is guaranteed. An example of a non-classical subspace, not yet explored in
the literature, is given by splitting the summation appearing in (4.73) and enforcing each
of these parts to be zero.

Note that the aforementioned spaces satisfy the following hierarchy Ũ T
µ ⊂ Ũ L

µ ⊂
Ũ P
µ ⊂ Ũ M

µ . A helpful visualisation to show the transition from a more constrained model
to a less constrained one is seen in Fig. 16. In particular, numerical examples presented in
Section 6.1 address the effect of the choice of the fluctuation displacement spaces in the
homogenised stress tensor at macro scale.

Finally, hereafter we denote Ũµ to the space Ũ M
µ . In turn, the space of kinematically

admissible virtual variations associated to Ũµ is itself Ũµ, i.e., if ˆ̃Uµ = (Ũµ)1 − (Ũµ)2 with
(Ũµ)1, (Ũµ)2 ∈ Ũµ, hence ˆ̃Uµ ∈ Ũµ.
3 It requires geometric periodicity of fibres reaching the boundary in terms of direction, area and

position.
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4.3.6 Consistency of kinematical operators

In order to finalise the presentation of the multiscale kinematical for network of
fibres model, we provide the proofs of consistency for all new discrete kinematical operators
proposed. By consistency here we mean the fulfilment of certain kinematical restrictions
to be satisfied by operators JU

µ , JE
µ , Dµ, HU

µ , HE
µ . In the original works (BLANCO et al.,

2016; BLANCO et al., 2014), and as reviewed in Chapter 2, it was seen that the functional
forms of the insertion, deformation and homogenisation operators can be arbitrarily defined
provided they keep some relation between them. These relations were emphasised during
the text, but in some cases the proof was skipped. This section aims to present the
rigorous justifications (not necessarily proofs) for all necessary relations between operators
proposed in this work, confirming that the formulation proposed is consistent with abstract
framework constructed in (BLANCO et al., 2016; BLANCO et al., 2014).

First, consider the operators JU
µ , JE

µ , Dµ, HU
µ , HE

µ as defined in (4.39), (4.42),
(4.48), (4.53) and (4.60), respectively. Given u ∈ Rnd ,G ∈ Rnd×nd and Ũµ ∈ Ũµ the
following relations are satisfied:

1. Dµ(JU
µ (u)) = O.

2. HU
µ (JU

µ (u)) = u.

3. HE
µ (Dµ(JE

µ (G))) = G.

4. HU
µ (JE

µ (G))) = 0.

5. HU
µ (Ũµ) = 0.

6. HE
µ (Dµ(Ũµ))) = O.

Below, the proofs for these propositions follow.

1. From the definitions of the operators, for any α ∈ Fnet we have
[
Dµ(JU

µ (u))
]α

= 1
Lα

∆αJU
µ (u)⊗ aα = 1

Lα
(u− u)⊗ aα = O.

Recalling that joint gradients only depend on the fluctuations, for any i ∈ Nnet we
have [

Dµ(JU
µ (u))

]i
= O.

Finally we conclude that Dµ(JU
µ (u)) = O.
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2. Take

HU
µ (JU

µ (u)) = 1
|Fnet|

∑
α∈Fnet

Vα
2 ([JU

µ (u)]iα + [JU
µ (u)]jα) =

1
|Fnet|

∑
α∈Fnet

Vα
2 (u + u) = 1

|Fnet|

( ∑
α∈Fnet

Vα

)
u = u,

so, the result follows.

3. First recalling that joint gradients only depend on the fluctuations we have

HE
µ (Dµ(JE

µ (G))) = 1
|Fnet|

( ∑
α∈Fnet

Vα
[
Dµ(JE

µ (G))
]α )

B−1 =

1
|Fnet|

( ∑
α∈Fnet

VαGaα ⊗ aα
)

B−1 =

G
1
|Fnet|

( ∑
α∈Fnet

Vαaα ⊗ aα
)

︸ ︷︷ ︸
=B from (4.65)

B−1 = G,

and the result is verified.

4. Take now

HU
µ (JE

µ (G))) = 1
|Fnet|

∑
α∈Fnet

Vα
2 ([JE

µ (G)]iα + [JE
µ (G)]jα) =

1
|Fnet|

∑
α∈Fnet

Vα
2 G(xiαµ + xjαµ − 2xGµ ) =

G
(

1
|Fnet|

∑
α∈Fnet

Vα
2 (xiαµ + xjαµ )︸ ︷︷ ︸

=xGµ from (4.56)

− 1
|Fnet|

( ∑
α∈Fnet

Vα

)
xGµ

)
= 0,

so the statement holds.

5. This restriction is directly taken into account in the definition of the space Ũµ (see
(4.74)).

6. Also, this restriction is also directly enforced in the space Ũµ.

4.4 Mathematical duality and virtual power
In this section the virtual power functionals at both scales are postulated according

to the kinematical framework considered at each scale.

At the macroscale, and in view of the model already presented in Section 2.3.1,
we recall that the internal virtual power exerted at a given point xM in a volume |Ωµ| is
characterised as follows P int

M |x(Ĝ) = |Ωµ|P · Ĝ where P stands for PM |xM and |Ωµ| is the
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volume of the microscale domain (void and solid) where, from the macroscale standpoint,
the internal power is considered to be exerted. As already commented, body forces are
disregarded in this model for sake of simplicity, so external macroscale virtual power
vanishes.

Regarding the microscale, and according to the microscale kinematical setting
presented in Section 4.3.1, the internal virtual power is a linear functional of Ĝµ. Then, by
duality arguments it admits the following characterisation

P̃ int
µ (Ĝµ) =

∑
α∈Fnet

VαSαµ · Ĝ
α

µ +
∑

i∈Nnet

Siµ · Ĝi
µ, (4.78)

where Sαµ and Siµ are generalised stresses for a fibre α ∈ Fnet and for a node i ∈ Nnet,
respectively.

Hence, the model allows the N-gradient at each node to be different from zero as
would be the case of torsional resistance at fibre connections because of fibre entanglement.
However, as postulated earlier in this work, we admit that the generalised stress at nodes
is zero, then (4.78) becomes

P int
µ (Ĝµ) =

∑
α∈Fnet

VαSαµ · Ĝ
α

µ, (4.79)

which is the final format for the microscale internal virtual power used in the following
developments.

According to (4.50), the stress tensor Sαµ has the structure Sαµ = sαµ ⊗ aα with
sαµ ∈ Rnd 4. Then, the stress field in the entire network SFµ is a field

Sµ = {SFµ = {Sαµ}α∈Fnet : Fnet → Rnd×nd , Sαµ = sαµ ⊗ aα, sαµ ∈ Rnd}. (4.80)

Remark 27 Note that the microscale stress field is defined just in Fnet and not in Nnet×
Fnet as in Eµ (see definition (4.47)). This is a primary consequence of (4.79) that led to
the definition of the internal virtual power in the microscale, which neglects any virtual
power exerted at the nodes in the network.

4.5 Principle of Multiscale Virtual Power
In this section the PMVP (see Section 2.2.4) is postulated for the case of networks of

fibres in which virtual power functionals defined in Section 4.4 are invoked. Mathematically,
this is

P int
M |x(Ĝ) = P int

µ (Ĝµ) ∀(Ĝ, Ĝµ) kinematically admissible, (4.81)
4 The vector sαµ is the so-called generalised fibre stress vector and in fact is the power-conjugate of the

fibre strain vector gαµ , defined in (4.52). These representations are particularly useful in Chapter 5.
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where Ĝµ = Ĝµ(Ĝ, ˆ̃Uµ). Using the virtual power functionals for the previous section and
also (4.51) we formulate the PMVP as follows.

Problem 3 (Principle of multiscale Virtual Power) For the macroscale gradient
measure G ∈ Rnd×nd, it is said that the macroscale stress tensor at this point, P, is
in mechanical equilibrium with the network stress state, SFµ = {Sαµ}α∈Fnet, if the following
variational equation is satisfied

P · Ĝ = 1
|Ωµ|

∑
α∈Fnet

VαSαµ ·
(

Ĝaα ⊗ aα + 1
Lα

∆α ˆ̃Uµ ⊗ aα
)

∀(Ĝ, ˆ̃Uµ) ∈ Rnd×nd × Ũµ. (4.82)

As natural consequences of the PMVP we have: (i) the homogenisation formula for
P (see Section 4.5.1), and (ii) the variational problem that characterises the mechanical
equilibrium at the microscale in terms of the fluctuations of the displacement field (see
Section 4.5.2).

Remark 28 In variational equation (4.82), it is clear the distinction between the RVE
domain, called Ωµ, and the network NET, as already pointed by Remark 22. While the
microscale virtual power is truly exerted in the trusses that form the NET, from the
macroscale point of view this corresponds to a subdomain of macro-continuum material
whose size is defined to be |Ωµ|. This RVE volume is partially filled by |Fnet| plus the
surrounding substance, as already discussed in Remark 15.

4.5.1 Stress homogenisation

Let us take ˆ̃Uµ = O in (4.82). We then derive the homogenisation formula for the
stress tensor P at point xM as follows

P · Ĝ = 1
|Ωµ|

∑
α∈Fnet

VαSαµ · (Ĝaα ⊗ aα) ∀Ĝ ∈ Rnd×nd , (4.83)

which yields (
P− 1

|Ωµ|
∑

α∈Fnet

VαSαµaα ⊗ aα
)
· Ĝ = 0 ∀Ĝ ∈ Rnd×nd . (4.84)

Therefore, the homogenisation of the PKST follows

P = 1
|Ωµ|

∑
α∈Fnet

VαSαµaα ⊗ aα. (4.85)

Using the representation Sαµ = sαµ ⊗ aα (see (4.80)) we have

Sαµaα ⊗ aα = (sαµ ⊗ aα)aα ⊗ aα = sαµ ⊗ aα = Sαµ, (4.86)
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and, so, the Stress Homogenisation operator results

HP : Sµ → Rnd×nd

SFµ 7→ HP(SFµ ) := 1
|Ωµ|

∑
α∈Fnet

VαSαµ = 1
|Ωµ|

∑
α∈Fnet

Vαsαµ ⊗ aα, (4.87)

in such way that P = HP(SFµ ).

It is also possible to derive a homogenisation formula completely equivalent to
(4.87) but depending only on boundary data, i.e.., on the stress state of fibres that reach
the boundary (see Section 4.6).

4.5.2 Microscale mechanical equilibrium problem

Now, taking Ĝ = O in (4.82) yields

∑
α∈Fnet

VαSαµ ·
(

1
Lα

∆α ˆ̃Uµ ⊗ aα
)

=
∑

α∈Fnet

Aα(Sαµaα) ·∆α ˆ̃Uµ =

∑
α∈Fnet

Aαsαµ ·∆α ˆ̃Uµ = 0 ∀ ˆ̃Uµ ∈ Ũµ. (4.88)

Consequently we have the following problem to be solved at the RVE.

Problem 4 (Microscale mechanical equilibrium) Given G ∈ Rnd×nd, find Ũµ ∈ Ũµ

such that the stress vector {sαµ}α∈Fnet is such that the following variational equation holds
∑

α∈Fnet

Aαsαµ ·∆α ˆ̃Uµ = 0 ∀ ˆ̃Uµ ∈ Ũµ, (4.89)

where sαµ is related to Gα
µ = Gaα ⊗ aα + 1

Lα
∆αŨµ ⊗ aα through a microscale constitutive

functional of the form sαµ = Fα
µ (Gα

µ).

Once Problem 4 is solved, the evaluation of the microscale fibre stresses is
straightforward, from which the homogenisation of the macroscale PKST follows directly
using (4.87). For details concerning the constitutive law for the fibre, see Section 5.2.

In practice, constitutive and geometrical nonlinearities present in variational
equation (4.89) can be addressed using the classical Newton-Raphson linearisation strategy.
We omit the details here for the sake of brevity, but this issue is addressed in Problem 7
of Chapter 5, in the context of fibres, but has also been presented in Section 2.4.1 for the
continuum formulation. Also in Chapter 5, in Section 5.2, we discuss the issue of for the
constitutive laws for fibres.

The kinematical constraints in Ũµ (see (4.57) and (4.70)) are imposed using the
saddle point problem associated to (4.89) in which Lagrange multipliers are added to relax
such constraints. This is detailed in Section 4.6.
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Remark 29 The Variational formulation (4.89) for the microscale problem is the classical
problem of nonlinear trusses connected at end points with the exception of the specific
constraints in the spaces of admissible functions. A standard approach to this problem
is presented in (WRIGGERS, 2008, Chapter 9), where elemental stiffness matrices and
residual vectors are derived in a reference frame aligned with the truss, and then properly
rotated to assemble them in the global system of equations. The present formulation is
absolutely equivalent to such classical formulation (proof omitted for the sake of brevity).
The difference is that in the present work a global reference frame has been employed,
which is advantageous to deal more directly with the kinematical constraints imposed by
the kinematic coupling between scales.

4.6 Reactive forces
To investigate the reactive forces, in the same fashion as done in Section 3.3.4 for

porous RVEs, in this section we aim to rewrite Problem 4 relaxing the constrains in space
Ũµ through the introduction of Lagrange multipliers. Thus, we have the following problem.

Problem 5 (Lagrange multiplier formulation for the RVE problem) Given
G ∈ Rnd×nd, find (Ũµ,Λ,Θ) ∈ Uµ × Rnd×nd × Rnd such that

∑
α∈Fnet

Aαsαµ ·∆α ˆ̃Uµ −Λ ·
( ∑
i∈NΓ

net

Āi ˆ̃uiµ ⊗ (ni − n̄µ)
)
− Λ̂ ·

( ∑
i∈NΓ

net

Āiũiµ ⊗ (ni − n̄µ)
)

+ Θ ·
( ∑
α∈Fnet

Vα
2 (ˆ̃uiαµ + ˆ̃ujαµ )

)
+ Θ̂ ·

( ∑
α∈Fnet

Vα
2 (ũiαµ + ũjαµ )

)
= 0

∀( ˆ̃Uµ, Λ̂, Θ̂) ∈ Uµ × Rnd×nd × Rnd , (4.90)

where sαµ = Fα
µ (Gα

µ), with Gα
µ = Gaα ⊗ aα + 1

Lα
∆αŨµ ⊗ aα.

First, taking ˆ̃Uµ = O and Θ̂ = 0 in (4.90) we retrieve, now as a natural consequence
of the variational equation, the kinematical restriction (4.73), which is equivalent to
HE
µ (Dµ(Ũµ)) = O. Secondly, taking ˆ̃Uµ = O and Λ̂ = O we arrive at (4.59), i.e.,HU

µ (Ũµ) = 0.
Thirdly, taking Λ̂ = O and Θ̂ = 0 result in

∑
α∈Fnet

Aαsαµ ·∆α ˆ̃Uµ −Λ ·
( ∑
i∈NΓ

net

Āi ˆ̃uiµ ⊗ (ni − n̄µ)
)

+ Θ ·
( ∑
α∈Fnet

Vα
2 (ˆ̃uiαµ + ˆ̃ujαµ )

)
= 0 ∀ ˆ̃Uµ ∈ Uµ. (4.91)
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In particular, expression (4.91) is valid for ˆ̃Uµ = C (an uniform fluctuation field,
i.e., ˆ̃uiµ = c, ∀i ∈ Nnet). After some manipulation we have(

−Λ
( ∑
i∈NΓ

net

Āi(ni − n̄µ)
)

+ |Fnet|Θ
)
· c = 0, (4.92)

and by the fact that c is arbitrary and using the definition of n̄µ in (4.69), we arrive at

Θ = Λ
(

1
|Fnet|

∑
i∈NΓ

net

Āi(ni − n̄µ)
)

= 0. (4.93)

Finally, rewriting (4.91) by taking into account (4.28) and (4.93) and splitting
summations into interior and boundary nodes we have

∑
i∈NΓ

net

(( ∑
α∈Finet

[α, i]Aαsαµ
)
− ĀiΛ(ni − n̄µ)

)
· ˆ̃uiµ+

∑
i∈
◦
Nnet

( ∑
α∈Finet

[α, i]Aαsαµ
)
· ˆ̃uiµ = 0 ∀ ˆ̃Uµ ∈ Uµ. (4.94)

This leads to the Euler-Lagrange equations
∑
α∈Finet

[α, i]Aαsαµ = 0 ∀i ∈
◦
N net,∑

α∈Finet
[α, i]Aαsαµ = ĀiΛ(ni − n̄µ) ∀i ∈ N Γ

net.
(4.95)

The first equation expresses the equilibrium of fibre forces at each interior node. The second
equation stands for the equilibrium between forces at the nodes over the RVE boundary.
This equilibrium is satisfied by the summation of fibre forces [α, i]Aαsαµ, α ∈ F inet, and by
the reactive force ĀiΛ(ni − n̄µ) (usually acknowledged as a uniform traction). This later
expression also gives a first physical interpretation for the Lagrange multiplier Λ5. In fact,
the total force (traction ti = ĀiΛ(ni − n̄µ)) supported by the bars reaching the boundary
node i ∈ N Γ

net depends on the constant second-order tensor Λ and the difference between
the unitary outward normal vector of the RVE and the average normal vector.

Remark 30 By construction of (4.93) the reactive force Θ is zero. Therefore, from (4.95)
(first line) the forces per unit area over the RVE boundary are self-equilibrated.

Remark 31 (Continuum Case) We can understand the Euler-Lagrange equations
(4.95) as discrete counterparts of the continuum formulation for porous RVEs in strong
form (partial differential equations form) given in (3.39), the part of

◦
N net related to the

divergence and the part N Γ
net corresponding to boundary tractions.

5 Connection between Λ and the homogenised stress tensor P is addressed in Section 4.6.1
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4.6.1 Stress homogenisation from boundary data

We focus now on finding an alternative expression for the homogenisation of
the stress tensor depending only on boundary data. As an additional consequence, an
alternative physical interpretation for the Lagrange Multiplier Λ is also achieved.

Considering (4.95) for the boundary nodes, let us call ĀiΛ(ni − n̄µ) = ti (traction)
and consider the summation over i ∈ N Γ

net as follows∑
i∈NΓ

net

(
ĀiΛ(ni − n̄µ)

)
⊗ (xiµ − xGµ ) =

∑
i∈NΓ

net

ti ⊗ (xiµ − xGµ ) =

∑
i∈NΓ

net

( ∑
α∈Finet

[α, i]Aαsαµ
)
⊗ (xiµ − xGµ ) +

∑
i∈
◦
Nnet

( ∑
α∈Finet

[α, i]Aαsαµ
)

︸ ︷︷ ︸
=0 from (4.95)

⊗(xiµ − xGµ ) =

∑
i∈Nnet

∑
α∈Finet

[α, i]Aαsα ⊗ (xiµ − xGµ ) =

∑
α∈Fnet

Aαsα ⊗∆αxµ =
∑

α∈Fnet

Vαsα ⊗ aα = |Ωµ|P, (4.96)

where we have also used (4.28) and (4.29). From the development in (4.96), before adding
the summation over internal nodes, we have that P depends only on boundary information,
that is

P = 1
|Ωµ|

∑
i∈NΓ

net

ti ⊗ (xiµ − xGµ ). (4.97)

The homogenisation for stress given by (4.97) is completely equivalent to that
derived in (4.87). The former can be understood as the discrete counterpart of the
well known homogenisation formula for stress based only on boundary data in classical
continuum shown in (2.42).

Now, let us define the auxiliary tensor

BΓ := 1
|Ωµ|

∑
i∈NΓ

net

Āi(ni − n̄µ)⊗ (xiµ − xGµ ). (4.98)

With (4.98) into (4.96), and since Λ is a constant tensor, we have

|Ωµ|ΛBΓ = |Ωµ|P, (4.99)

which leads us to conclude that
Λ = P(BΓ)−1. (4.100)

This establishes that the reactive generalised force due to the imposition of the minimum
kinematical constraint of the space Ũ M

µ is in direct connection with the homogenised stress
tensor.



Chapter 4. Linking Networks of Fibres to Continua 105

Remark 32 Recall that the very same analysis for the continuum limit has been performed
in Section 3.3.4, and as commented in Remark 13, just in the particular case without pores
over the boundary, we have Λ = P. Moreover, from a purely geometrical perspective, the
well-posedness of the present multiscale formulation is inherently built upon the fact that B
and BΓ, defined in (4.65) and (4.98) respectively, are non-singular second order tensors.

4.7 Concluding remarks
In this chapter, a multiscale model for microscopic fibre networks has been developed

in order to retrieve an homogenised constitutive response corresponding to that of a
continuum. Although the focus has been on modelling arterial tissue, the theory is general
and can be applied to any fibrous material. The main contributions of the present work
consists in a rigorous and general derivation of the micro-mechanical equilibrium problem
as well as of the homogenisation formula for the dual stress entity from a minimum
set of basic kinematical hypotheses and through the use of the Principle of Multiscale
Virtual Power (BLANCO et al., 2016; BLANCO et al., 2014). Furthermore, intrinsic to the
proposed multiscale formulation is the construction of the so-called minimally constrained
model, resulting in a lower bound for the homogenised mechanical response, of great
theoretical and practical interest. As a sub-product of the proposed variational setting, a
specific homogenisation formula for incompressible materials has also been established. In
addition, we have also shown that the proposed minimally constrained multiscale model is
equivalent to setting a uniform traction model, and an alternative formulation of practical
interest has been reported resorting to the theory of Lagrange Multipliers.

A definite motivation for the development of this kind of multiscale model is
the modelling of fibre damage processes, and the impact of these mechanisms into the
macromechanics of materials. Clearly, loading of fibrous specimens featuring damage yields
more intricate mechanical interactions, which makes even more complex the constitutive
analysis because of the highly heterogeneous strain patterns developed in the fibre network.
In essence, the consideration of degradation processes weakens some parts of the networks
as a consequence of the fibre geometry, orientation, history of loadings, etc. This is known
in the continuum mechanics realm as strain localisation phenomena and results in the
softening of the overall constitutive response. It has already been experimentally shown that
in biological fibrous tissues the unstable part of the constitutive response is characterised
by a series of bumps in the stress-stretch response, that is a series of softening and
hardening stages. Classical phenomenological damage modelling usually associates a single
damage parameter for each fibre family (BALZANI; BRINKHUES; HOLZAPFEL, 2012;
LI; ROBERTSON, 2009), which seems not to be enough to precisely model such complex
interplay involving deactivation, activation, reorientation and degradation of fibres. In this
direction, we oversee a great applicability of the proposed theoretical multiscale model,
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which is addressed in detail in Chapter 5.

Finally, several numerical experiments showing different key aspects of the theory
are demonstrated in Chapter 6, particularly in Section 6.1. For the interested reader in these
examples, Chapter 5 can be skipped in a first reading. In these numerical studies, special
emphasis is given to the study of the sensitivity of the homogenised constitutive with respect
to different kinds of heterogeneities in the fibrous network architecture and with respect
to the choice of kinematically admissible boundary conditions for the micro-mechanical
equilibrium problem. The present theoretical framework and the aforementioned numerical
examples constitute a further contribution of this thesis (ROCHA et al., 2018).
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5 Damage Modelling and Failure Detection
in Fibrous Materials

L’endommagement, comme le diable, invisible mais redoutable.a

a Damage, like the devil, invisible but fearsome. (free translation)
Jean Lemaître and Jean-Louis Chaboche (LEMAITRE; CHABOCHE, 1990)

Material rupture is usually driven by micromechanical failure mechanisms. In the
case of biological fibrous tissues, whose main load-bearing constituents at the microscale
are arranged as a fibre network, strain localisation due to progressive damage evolution in
the fibres is the main cause of nucleation of macroscale cracks. As already commented, the
consideration of the novel Minimally Constrained Model (proposed in Chapter 4) is an
important springboard to perform multiscale analyses and comparisons with existing models
which already exploit, due to its simplicity, the Affine Boundary Model. Moreover, noting
that an important characteristic of the aforementioned damage process is the propagation
of a strain localisation band throughout the network of fibres, a less constrained kinematics
over boundary is required in order not to preclude these deformation modes from unfolding
naturally. This main characteristic motivates the construction of the model to be proposed
in this chapter.

Hence, in this chapter, we investigate the application of the RVE-based multiscale
formulation for fibres networks presented in Chapter 4, but within a framework in which
microscale fibre damage can lead to macroscale localisation phenomena. For such an
analysis, as required, the homogenised tangent tensor is derived and afterward utilised
to detect the so-called bifurcation point (also called critical instant, or critical point). In
addition, special attention is given to the regularised damage model adopted for the fibre,
as well as the consistent algorithmic tangent for the fibres for the adopted time-discrete
scheme to be employed.

This chapter is organised as follows. In Section 5.1, the multiscale model for fibres
of Chapter 4 is briefly revisited. Also, notation is slightly adapted for sake of convenience
to the present context of inelastic behaviour. Section 5.2 is devoted to the constitutive
modelling of the fibres and the framework utilised for modelling damage processes is
presented in Section 5.3. The regularisation of this damage model is the subject of Section
5.4. Section 5.5 is devoted to the derivation of the consistent algorithmic tangent for
the adopted damage model and for a given time-discrete integration scheme. Related to
that, a strategy for numerical solution of the nonlinear problem is proposed in Section
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5.6. Concerning the bifurcation analysis, whose aim is the detection of the critical point,
Section 5.5 provides the derivation of homogenised tangent tensor that is employed in the
discontinuous bifurcation analysis (DBA) of Section 5.8, followed by an alternative method
proposed to find the initial opening direction at the critical instant. In Section 5.10 we
outline the final remarks.

Finally, the proposed analysis is able to precisely determine the instant at which
the macroscale problem becomes ill-posed. At such point, the spectral analysis provides
information about the macroscale failure pattern (unit normal and crack opening vectors).
Numerical examples showing the suitability of the present methodology is shown in Chapter
6, specifically in Section 6.2. Relevant discussions are provided in Section 6.2.5.

5.1 Multiscale model for fibres network revisited
In this section we briefly revisit and extend the model of Chapter 4, depicted in

Fig. 11, to model inelastic mechanisms taking place at the microscale. For this aim, an
additional hypothesis to the those already presented in Section 4.1 is needed. Now, each
fibre behaves inelastically and to model this feature an internal variable is introduced
at the fibre level. The same way that strain and material properties are supposed to be
homogeneous for each fibre segment, the internal variable is also constant along each fibre
segment. For the sake of convenience, first consider some notational changes and comments
below:

• Hereafter, boldface fonts are preferred, instead of blackboard bold ones, to designate
displacements in the fibre network. Thus, uµ replaces Uµ ∈ Uµ, ũµ stands for Ũµ ∈ Ũµ,
and so on.

• The kinematical setting in both scales is identical to that introduced in Chapter 4.
Importantly, for a purely constitutive theory (no body forces involved), G ∈ Rnd×nd is
inserted the macroscale point xM into the microscale domain Ωµ. For computational
convenience, at the microscale, instead of using the second-order tensor Gα

µ to describe
the strain at a fibre, we use the generalised strain vector gα already defined in (4.52).
Here, we rewrite the definition of this vector in terms of displacements as

gα := 1
Lα

∆αuµ = Gaα + 1
Lα

∆αũµ, (5.1)

where the index (·)µ or (·)µ is dropped for ease of notation. Note that the ratio
between the actual length of the fibre, `α, and its original length Lα, known as fibre
stretch (see Fig. 17), is defined as

λα = `α
Lα

= ‖aα + gα‖2 (5.2)
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Figure 17 – Fibre in its material and spatial configurations, and interpretation of the
generalised strain and stress vectors.

• As already pointed out in Section 4.4, power-conjugated to gα we have the generalised
fibre stress vector sα. Then, some constitutive functional Fα has to be provided
such that sα = Fα(gtα), where (·)t represents the history of the variable (·) up to
the pseudo-time t. Actually, it is proved in Section 5.2 that

sα = sα
λα

(aα + gα), (5.3)

where sα is the scalar axial stress of the fibre and, from (5.2), (aα+gα)
λα

is a unitary
vector pointing towards the actual direction of the fibre (see Fig. 17). Thus, sα
solely takes into account the constitutive aspects of the fibre which is supposed to
depend only on the history of the uniaxial stretch, so sα = Fα((λα)t) = Fα(λα,Πα)
where Πα represents the actual state of internal variables that encloses all necessary
historical information related to λα, as it is traditional to the realm of theories
relying on internal variables. Details are discussed in Section 5.3.

• Accordingly, the macroscopic stress tensor P = F (Gt) = F (G,Π), where Π is a
generic set of internal variables. In a pseudo-time stepping procedure, it may be
useful to express this constitutive functional for the pseudo-time increment from
tn−1 to tn as Pn = F (Gn,Πn−1), where Πn−1 is a generic set of internal variables
at the instant tn−1 and F stands for the time-discrete constitutive functional. As
usual, in a multiscale approach, the constitutive functional F (and consequently
F ) is implicitly defined through the microscale mechanical equilibrium and by the
application of a certain homogenisation procedure, recalled in Problem 6 and in
(5.5), respectively. Note that in this case Π = {Πα}α∈Fnet stands for the collection
of the internal variables of all fibres of the network.

With the above comments, and using the very same statement of the PMVP for
fibres networks as in Problem 3, now are able to recall its the variational consequences
adapted to the present context. First, the microscale mechanical equilibrium problem is
formulated as follows:
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Problem 6 (Microscale mechanical equilibrium) Given a macroscale gradient G ∈
Rnd×nd 1 and the known set of internal variables Π = {Πα}α∈Fnet find ũµ ∈ Ũµ such that
the following variational equation is satisfied:

∑
α∈Fnet

Aαsα ·∆α ˆ̃uµ = 0 ∀ˆ̃uµ ∈ Ũµ. (5.4)

Secondly, the macroscale stress is given by the following homogenisation rule

P = 1
|Ωµ|

∑
α∈Fnet

Vαsα ⊗ aα. (5.5)

In the same fashion as in Section 2.4.1, the nonlinear Problem 6 needs to be solved
through an adequate iterative method. Here, we use the Newton-Raphson method, where
(5.4) is linearised, leading to the following linear problem, which is solved iteratively until
a given convergence criterion is achieved.

Problem 7 (Newton-Raphson Iteration) From same conditions as Problem 6, find
the incremental displacement fluctuation δũµ ∈ Ũµ such that:

∑
α∈Fnet

Aα
Lα

Dα∆αδũµ ·∆α ˆ̃uµ = −
∑

α∈Fnet

Aαsα ·∆α ˆ̃uµ ∀ˆ̃uµ ∈ Ũµ, (5.6)

where Dα = ∂gαsα is the constitutive second-order tangent tensor for a fibre.

As it is well-known that the quadratic convergence rate ensured by the Newton
method can be achieved only if Dα is obtained consistently, i.e., by considering in its
derivation the integration scheme for the constitutive law (SIMO; TAYLOR, 1985). Here,
the consistent algorithmic tangent is presented in Section 5.5 for the fibre constitutive
model to be shown in Section 5.3.

Remark 33 Solution of the Problem 6 together with the homogenisation in (5.5)
determines the constitutive functional F (or F ). For a the pseudo-time increment from
tn−1 to tn, in the setting of Problem 6, we need to understand G as Gn and Π as Πn−1,
hence delivering Pn = F (Gn,Πn−1).

5.2 Constitutive models for fibres
This section discusses the most relevant constitutive aspects of a fibre (more

precisely, of a bundle of collagen fibres). First, for the sake of simplicity, dissipative effects
1 For sake of simplicity consider the space to be Rnd×nd , but the model also remains valid for subsets of

it as extensively discussed in the work (ROCHA et al., 2018), specified for the case of incompressible
materials.
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Figure 18 – Imaginary cylinder (truss) in different deformed configurations enclosing a
bundle of collagen fibres.

such as damage or viscoelasticity are neglected, and are posteriorly incorporated in Section
5.3. For other approaches, see (VITA, 2005) and (BALZANI; BRINKHUES; HOLZAPFEL,
2012) for the consideration of these phenomena.

It is well-known in the biomechanics field (e.g. (VITA, 2005; DAVIS; VITA, 2012)
and references therein) that collagen molecules are packed in form of collagen fibrils, which,
in turn, aggregate to form collagen fibres. Collagen fibres are arranged in distinct and
parallel bundles (also called fascicles), which are, in general, wavily deposited in a load-free
state. This scale can be visualised in Fig. 18 for a fibre bundle α ∈ Fnet, where Lα is the
length of an imaginary cylinder embracing fibres featuring similar waviness and directions.
When this cylinder is stretched up to a length `aα, the fibres align and start bearing axial
load. This defines the activation stretch (also called recruitment stretch) as the ratio:

λaα = `aα
Lα
. (5.7)

The focus of the present contribution is at the scale of the network of fibre bundles,
while the detailed description of smaller scales, ranging from collagen molecules up to
bundle of fibres is out of scope of this contribution.

For this aim, let

Ψ0
α : R→ R+

λα 7→ Ψ0
α(λα)

(5.8)

be an hyperelastic strain energy function (SEF) representing the rate-independent
behaviour of a collagen bundle α ∈ Fnet (or simply fibre segment) without experiencing
damage. Here, we use the super-index (·)0 to indicates undamaged quantities, in contrast
to the damaged ones to be introduced in Section 5.3. This potential is assumed to be
convex in terms of λα (i.e. ∂2

λαΨ0
α ≥ 0 for the entire range of stretches) and also the fibre

only bears load in tension and once the activation stretch is reached.
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Under standard assumptions, the Clausius-Duhem inequality can be written for a
single fibre as follows

D
∫
α = sαλ̇α − Ψ̇0

α ≥ 0, (5.9)

for any admissible λ̇α. Remembering that for the moment the fibre is considered hyperelastic
we have D

∫
α = 0 and thus

s0
αλ̇α − ∂λαΨ0

αλ̇α = 0, (5.10)

which defines the scalar uniaxial stress s0
α as

s0
α(λα) = ∂λαΨ0

α(λα) (5.11)

Examples of SEFs are:

1. In (THUNES et al., 2016), the following SEF that yields to a linear constitutive law
for the stress is used:

Ψ0
α(λα) =


Eα
2 (λα − λaα)2 λα > λaα,

0 otherwise
(5.12)

Parameters of this equation are the elastic modulus Eα and the activation stretch
λaα.

2. In (LI; OGDEN; HOLZAPFEL, 2016), the following SEF that yields to a quadratic
constitutive law 2 is employed:

Ψ0
α(λα) =

k
α
1 (λ2

α − (λaα)2))2
λα > λaα,

0 otherwise
(5.13)

The elastic parameter kα1 and the already defined λaα characterise this SEF.

As anticipated in Section 5.1 we need expressions for s0
α and D0

α (undamaged
versions of sα and Dα respectively). From the very same argument of (5.9) and (5.10), we
can define s0

α as below

s0
α(gα) := ∂gαΨ0

α(gα) = ∂λαΨ0
α(λα)︸ ︷︷ ︸

=s0α

(aα + gα
λα

)
, (5.14)

2 The term (λα)2 is analogous to the invariant I4 defined for transversally isotropic materials and the
energy is equal to the first nonzero term of the Taylor expansion for the exponential model evaluated
at (λα)2 = (λaα)2 (see (HOLZAPFEL; OGDEN, 2010) for example). Then (5.13) is considered linear
in the measure I4 = (λα)2.
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where (5.2) and the chain rule have been used. Note that (5.14) proves (5.3) for the
undamaged case. Proceeding to compute D0

α, also by successive applications of the chain
rule we have

D0
α :=∂gαs0

α = s0
α

λα
I + 1

(λα)2

(
c0
α −

s0
α

λα

)
Aα (5.15)

with

c0
α := ∂λαs

0
α, (5.16)

being the scalar fibre tangent, and with the auxiliary second-order tensor

Aα := (aα + gα)⊗ (aα + gα). (5.17)

We recall that the second-order stress tensor, used in Chapter 4, is retrieved from
s0
α by taking (Sαµ)0 = s0

α ⊗ aα.

At this point it is important to highlight that Eα, kα1 and λaα, parameters of the
SEFs (5.12) and (5.13), have to be understood as homogenised quantities which arise
from smaller spatial length scales. We also note that the stress derived from this energy
function is non-linear with respect to the stretch λα (but it is less steep than exponential
models (HOLZAPFEL; GASSER; OGDEN, 2000)). It is believed that such nonlinearity,
emerges from geometrical aspects related to the collagen fibres (tortuosity) and from the
fact that bending phenomena are neglected (see (COMNINOU; YANNAS, 1976), where
the assumption of a sinusoidal shape for the fibre leads to an analytical expression for the
axial stress under tension). Another source of nonlinearity comes from the progressive
fibre activations taking place within the bundle (VITA, 2005). An analogous effect, but at
the scale of the network, is investigated in Section 6.1.1.3, where we reproduce a similar
result as a consequence of the heterogeneities in the definition of λaα among the fibres of
the network.

Finally, it is important to mention that (CHANDRAN; BAROCAS, 2007) reported
that the qualitative network behaviour is largely independent from the constitutive equation
assigned to individual fibres. Furthermore in physiological ranges of stretches caused by
arterial pressure, most of fibre bundles act on tension (STYLIANOPOULOS; BAROCAS,
2007a). Thus, it is expected that even when picking a relatively simple constitutive model
for individual fibres several important features of the multiscale model are manifested.

5.3 Damage modelling
In order to model softening effects we propose the use a standard continuum

damage approach with one scalar damage variable dα per fibre α ∈ Fnet, whose evolution
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is considered in the light of the framework introduced by (SIMO; JU, 1987) reviewed
below (recall that t is a generic pseudo-time):

rα(t) = max
τ∈[0,t]

(
√

2Ψ0
α(λα(τ)), r0

α), t > 0, (5.18a)

q̇α(t) = Hα(rα(t)) ṙα(t), (5.18b)

dα(t) = 1− qα(t)
rα(t) , dα ∈ [0, 1], (5.18c)

rα(0) = r0
α , qα(0) = q0

α , q
0
α = r0

α (5.18d)

Note that two additional auxiliary variables were introduced, rα and qα. The parameter
r0
α represents the threshold where the damage evolution begins and Hα is the so-called
softening modulus. The relation between the three entities are such that it guarantees
dα ∈ [0, 1], where dα = 0 represents the pristine material and dα = 1 the fully degraded
material. Moreover, due to thermodynamical arguments the evolution of damage satisfies:
ḋα ≥ 0 (see 5.4). Setting Πα = {rα, qα, dα} the damaged stress is then defined as below:

sα(λα,Πα) = (1− dα)s0
α(λα) (5.19)

Furthermore, the choices of the functions Ψ0
α and Hα fully define the constitutive

behaviour of one single fibre. Functional expressions Ψ0
α have been presented in (5.12) and

(5.13). For Hα, in this work, we assume to be the following:

Hα(rα) = −H0
α exp

[
−H0

α

(
rα − r0

α

r0
α

)]
, (5.20)

where H0
α (> 0) is a parameter that dictates the softening behaviour. As it is justified next

in Section 5.4, it is possible to characterise H0
α in terms of the Fracture Energy, Gf

α, which
is considered as a material parameter for each fibre, as follows:

H0
α =

[
Gf
α

(r0
α)2Lα

− 1
2

]−1

. (5.21)

Here we note that for r0
α sufficiently small (or conversely Gf

α large) it is assured that
H0
α > 0.

Recalling (5.11), the energy function assumed in (5.12) leads to a linear stress-strain
relation s0

α = Eα(λα−λaα), where εα = λα−λaα can be seen as a strain measure. Particularly
for this case of strain energy, it is easy to see that r0

α = suα√
Eα

, where suα represents the
damage threshold stress that triggers the inelastic behaviour of the fibre. For the sake
of clarity, suα will be the default parameter, instead of r0

α (the material parameter to be
characterised), acting as a damage initiation threshold in the numerical experiments of
Section 6.2. Note that just (5.12) is considered in these numerical experiments, but a
similar arrange of variables, in terms of suα, can be considered for (5.13), if necessary.
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Despite its simplicity, the linear stress-strain is widely used in the literature (e.g
(THUNES et al., 2016)), but the homogenised response of a fibre network ensemble may not
be so simple. This is because of several reasons, some of are the topological arrangement
of fibres, heterogeneous material behaviour, nonlinear character of the damage model, and
the nonlinearity of the geometry of large strains and deformations of the fibres.

Finally, the fibre stress vector for the damaged case is retrieved replacing Ψ0
α by

Ψα in (5.14), which yields

sα = sα(gα,Πα) = sα(λα(gα),Πα)
(aα + gα

λα

)
. (5.22)

The damaged version of the fibre tangent tensor in (5.15) follows directly from
the very same reasoning as above. We postpone this presentation to Section 5.5, when
presenting the consistent algorithmic tangent.

5.4 Regularised damage model
In this section, we perform a dissipation analysis to justify the adoption of (5.21).

We highlight that we designate the damage model, with the specific choice of (5.21) for H0
α,

as regularised, since it ensures that the physical quantity of Fracture Energy Gf
α (energy

per unit area) is dissipated regardless the size of the fibre segment Lα. Hence, Lα acts as
characteristic length parameter in (5.21).

For this aim, first let the SEF accounting for damage be defined as

Ψα(λα, dα) = (1− dα)Ψ0
α(λα). (5.23)

Now, let us invoke the Clausius-Duhem inequality (5.9) by considering the above damaged
SEF (5.23). Hence, we get

Dint
α =

(
sα − (1− dα)∂λαΨ0

α

)
λ̇α + ḋαΨ0

α (5.24)

where we recall that Dint
α is the dissipation per unit volume of the fibre.

The first term vanishes by considering the constitutive law introduced in (5.19)
and the second term is the only responsible for the dissipation process, then

Dint
α = ḋαΨ0

α. (5.25)

In a monotone loading regime the dissipation can be rewritten in terms of the auxiliary
variables qα and rα introduced in (5.18) as follows

Dint
α = 1

2(rα)2 qαṙα − q̇αrα
(rα)2 = 1

2(qα −Hαrα)ṙα (5.26)
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Integrating the dissipation in time and space yields the total energy dissipated by the
single fibre, say Gfα. By changing variables we get∫ t∞

t0

∫
Ωα
Dint
α dtdV = AαLα

∫ r∞α

r0
α

1
2(qα(r)−Hα(r)r)dr = Gfα, (5.27)

where Ωα is the fibre domain.

The regularised damage model proposed here assures that, for each fibre undergoing
damage, the integration of the dissipation, in time and space, yields the Fracture Energy
Gf
α (energy per unit area) times the fibre area. The Fracture Energy, Gf

α, is a material
parameter for each fibre, defined as follows

Gf
α = G

f
α

Aα
. (5.28)

For the specific choice of the softening-hardening function given in (5.20) and by
taking the limit r∞α →∞ after analytically solving the above integral we have

H0
α =

[
Gf
α

(r0
α)2Lα

− 1
2

]−1

. (5.29)

Here, if r0
α <

√
2G

f
α

Lα
the condition H0

α > 0 is satisfied, leading to a pure softening
behaviour ruled by (5.20) as already discussed. Moreover, when the characteristic length
Lα is small (which is mostly idealistic in cases where this length is the mesh size in finite
element simulation) the expression is simplified as

H0
α = (r0

α)2Lα

Gf
α

. (5.30)

Both formats, (5.29) and (5.30), are used in the literature for the same purposes. The
former is identical to one appearing in (COMELLAS; BELLOMO; OLLER, 2015) 3, in
the context of damage modelling in biomechanics, and the latter has been applied to
modelling concrete (SÁNCHEZ et al., 2012). It is worth mentioning that the derivation of
the regularised parameter is independent from the SEF adopted.

5.5 Consistent algorithmic tangent
In Section 5.3 the one dimensional problem has been presented in a continuous

framework, but now let us first show the leading incremental expressions and also derive
the algorithmic tangent for the case of problems in three-dimensional space, required for
the iterative solution by the Newton-Raphson method in Problem 7.
3 For complete analogy with (COMELLAS; BELLOMO; OLLER, 2015) set H0 = −A , r = τ and

r0 = Sd0 .
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In time-discrete form we have

snα(λnα,Πn−1
α ) = (1− dnα)∂λnαΨ0

α(λnα), (5.31)

where:

rnα = max
(
rn−1
α ,

√
2Ψ0

α(λnα)
)
, (5.32a)

rn,ωα = (1− ω)rn−1
α + θrnα, (5.32b)

qnα = qn−1
α +Hα(rn,ωα )(rnα − rn−1

α ), (5.32c)

dnα = 1− qnα
rnα
. (5.32d)

For convenience, for all the numerical examples of Section (6.2), we assume ω = 1
2

(mid-point rule) to integrate the model. Note that the time-discrete damage evolution
law is implicit regardless of the value of ω. We highlight that Πn

α, the updated internal
variable vector, is fully defined in (5.32).

The consistent algorithmic tangent for this one-dimensional model is defined by

cn,algα := ∂λnαs
n
α

=

(1− dnα)∂2
λnα

Ψ0
α rnα = rn−1

α

(1− dnα)∂2
λnα

Ψ0
α − 1

rnα
(∂rnαdnα)

(
∂λnαΨ0

α

)2
rnα > rn−1

α

, (5.33)

with

∂rnαd
n
α = 1

(rnα)2

[
qnα −

(
Hα(rn,ωα ) + ωH ′α(rn,ωα )(rnα − rn−1

α )
)
rnα
]
. (5.34)

Using the chain rule, the algorithmic tangent is determined by

Dn,alg
α :=∂gnαsnα

= snα
λnα

I + 1
(λnα)2

(
cn,algα − snα

λnα

)
An
α (5.35)

with cn,algα given in (5.33) and

An
α = (aα + gnα)⊗ (aα + gnα). (5.36)

Remark 34 Regarding the positive-definiteness of the tangent tensor, we have that, for a
generic non-zero vector w ∈ Rnd,

Dn,alg
α w ·w = snα

λnα

(
‖w‖2 − (w · (aα + gα))2

(λnα)2

)
+ (w · (aα + gα))2

(λnα)2 cn,algα

= ‖w‖2
(
snα
λnα

(1− cos2 φ) + cos2 φ cn,algα

)
> 0, (5.37)
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where φ is the angle between w and aα + gα. When w is parallel to aα + gα the positive-
definiteness condition is only based on the one-dimensional tangent of the fibre be positive,
i.e.

cn,algα > 0. (5.38)

On the other hand, if w is perpendicular to aα + gα the positive definiteness follows
trivially since snα and λnα are always positive if the fibre is bearing axial load. In other
words, the three-dimensional format of the fibre tangent has the same properties as the one-
dimensional constitutive law. In particular, if a fibre is in softening regime (i.e. cn,algα < 0),
its corresponding tangent tensor Dn,alg

α is not definite-positive.

Remark 35 Numerically the loss of positive-definiteness of the consistent algorithmic
tangent renders severe difficulties for the convergence of the Newton-Raphson procedure in
Problem 7. To circumvent this issue, as detailed in 5.6, whenever necessary a fictitious
viscosity parameter was incorporated into the one-dimensional fibre constitutive law. This
modification perturbs the tangent, improving the convergence of the iterative scheme in
the vicinity of critical points. Accordingly, the perturbation in the stress vanishes when
convergence has been achieved, up to the convergence tolerance.

5.6 Numerical regularisation based on artificial viscosity
As already commented, the numerical solution of the nonlinear problem associated

to the model proposed is extremely challenging. The reason for that is twofold: first, our
fibres (trusses) behave indeed like forceless components (cables) when the fibre stretch in
below the activation stretch; second, the damage model considered is updated using a fully
implicit numerical scheme. These two characteristics are well-known in the literature to
affect smoothness, and thus the numerical computations in the problem (BELYTSCHKO;
MISH, 2001). In other words, the robustness of the Newton-Raphson method is affected
by the aforementioned factors which deteriorate the positive-definiteness of the global
stiffness matrix resulting from the linearisation process. Even so, we decided not to use
more robust integration schemes as the so-called Implex method (OLIVER; HUESPE;
CANTE, 2008), because one of the drawbacks of the method is the presence of spurious
oscillations in the stress that could easily mask the physical ones that undeniably take
place in the material response of fibrous materials. In fact, the Implex method was tested,
but the results are not reported here. In turn, as explained in the sections describing the
numerical experiments, the strategies employed (which resulting in a convergent algorithm)
were: firstly, the adaptive selection of the pseudo-time step; and secondly, the consideration
of a numerical viscosity in the fibre material model, presented below.
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For the sake of simplicity, only in this section we consider that all variables
correspond to a single fibre α ∈ Fnet, actual pseudo-time n and for the current Newton-
Raphson iteration k, and so all indexes (α, n and k) are dropped everywhere. Consider
now that the stress state also depends on the stretch unbalance with the previous iteration
(k − 1) following a Kelvin-Voigt-like 4 model coupled with damage, that is:

sη = sη(λ, d) = (1− d)∂λΨ0(λ) + η(λ− λ(k−1)), (5.39)

where the subscript η in the stress highlights the difference with the inviscid form, here
represented by s0. Noticing that

sη = s0 + η(λ− λ(k−1)), (5.40)

the algorithmic tangent is:

calgη := ∂λsη = ∂λs0 + η∂λ(λ− λ(k−1)) = calg0 + η, (5.41)

where we have used (5.33).

Thus, we briefly conclude from (5.41) and (5.40) that the viscous numerical
regularisation affects by a constant term the LHS (delaying the fibre loss of positive-
definiteness, now calg0 < −η) and by a consistent term (vanishing together with the
convergence) the RHS in Problem 7.

It is important to underline that this modification only alters the tangent used
in the solution of the equilibrium problem, and so it does not affect the final converged
solution of Problem 6 by using Problem 7, nor all subsequent computations (solution
of the canonical problem, homogenisation of stress and tangent, determination of the
acoustic tensor, etc). Note that these calculations are performed in the other sections of
this chapter without making use of the numerical viscosity.

5.7 Homogenised constitutive tangent
In a multiscale analysis, the linearisation of the homogenisation formulae is

fundamental for the solution of the macroscale nonlinear equations through any gradient-
based method (such as the Newton-Raphson method). In the case of materials which
undergo degradation and failure, the calculation of the tangent operator also provides
further insight about the mechanical state of the microstructure, in fact, it makes possible
to carry out a discontinuous bifurcation analysis (DBA) to be considered next in Section
5.8. For convenience, right below in Problem 8 we summarise the necessary procedures for
4 Although we have used the viscosity simply for numerical purposes, the Kelvin-Voigt model has already

been used in the biomechanical literature to model some collagenous tissues such as tendons (VITA,
2005), where viscosity effects are more pronounced. Also, viscous damage has also been considered for
arterial tissues in the work of (PEÑA, 2011).
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obtaining computing homogenised constitutive tangent for fibre networks, and the rest of
the section is dedicated to make the origin of these calculations explicit.

Problem 8 (Homogenised constitutive tangent for fibre networks) The
homogenised tangent tensor results from the contribution of two terms (see (5.46)
and the derivations below) in the form

AM = AM + ÃM (5.42)

with AM being the so-called Taylor contribution, given by:

AM = 1
|Ωµ|

∑
α∈Fnet

VαDα⊗(aα ⊗ aα), (5.43)

where operation ⊗ is a non-standard tensor product defined in (LS.1). In turn, the
fluctuation contribution ÃM to the tangent, in Cartesian coordinates, is

ÃM = 1
|Ωµ|

∑
α∈Fnet

Aα(Dα∆αucankl )⊗ aα ⊗ ek ⊗ el (5.44)

where ucankl , for fixed k, l = 1, . . . ,nd, is the solution of the following linear variational
problem: find ucankl ∈ Ũµ such that:

∑
α∈Fnet

Aα
Lα

Dα∆αucankl ·∆α ˆ̃uµ = −
∑

α∈Fnet

Aα[aα]l(Dαek) ·∆α ˆ̃uµ,

∀ˆ̃uµ ∈ Ũµ. (5.45)

Note that the tensor Dα is evaluated at the solution ũµ ∈ Ũµ of the microscale equilibrium
Problem 6.

In what follows, the detailed derivation of the ingredients in Problem 8 is presented.
For ease of notation, just in this section we omit the constitutive dependence of the internal
variables and incremental superscripts. Thus, for instance, in the actual value for G = Gn,
then P = P(G) actually means Pn = F (Gn,Πn−1). The same holds for quantities at the
fibre level, for example sα = sα(gα), and also for the fluctuation ũµ = ũµ(G) (solution of
Problem 6).

From the definition of the constitutive tangent operator we have:

AM(G) := ∂GP(G) = lim
τ→0

[
P(G + τek ⊗ el)−P(G)

τ

]
⊗ ek ⊗ el (5.46)

where ek and el are the unitary canonical vectors in which the macroscale strain is
perturbed. Hereafter, for ease of notation let us use Ekl = ek⊗el. Definining the perturbed
generalised fibre strain as

(gα)τkl = (G + τEkl)aα + 1
Lα

∆α (ũµ(G) + τucankl (G + τEkl)) , (5.47)
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where ucankl , to be determined next, accounts for the derivative of the fluctuation field with
respect to the macroscale strain tensor. Rewriting (5.46) by using the homogenisation
formula given in (5.5) we obtain

AM = 1
|Ωµ|

∑
α∈Fnet

Vα

[
lim
τ→0

sα((gα)τkl)− sα(gα)
τ

]
︸ ︷︷ ︸

:=wα,τ
kl

⊗ aα ⊗ Ekl, (5.48)

which is explicitly given in Cartesian components as

[AM ]ijkl = 1
|Ωµ|

∑
α∈Fnet

Vα[wα,τ
kl ]i[aα]j (5.49)

Now, let us characterise the elements wα,τ
kl . By taking the Taylor expansion to the perturbed

fibre stress we get

sα((gα)τkl) = sα(gα) + τDα(gα)
(

(ek ⊗ el)aα + 1
Lα

∆αucankl
)

+ o(τ 2). (5.50)

Hence, we finally arrive at

wα,τ
kl = Dα(gα)

(
(aα)lek + 1

Lα
∆αucankl

)
. (5.51)

Replacing (5.51) into (5.49) we get

[AM ]ijkl =
 1
|Ωµ|

∑
α∈Fnet

Vα[Dα]ik[aα]j[aα]l

 +
 1
|Ωµ|

∑
α∈Fnet

Aα[Dα]ip[∆αucankl ]p[aα]j

 ,
(5.52)

or equivalently

AM =

AM︷ ︸︸ ︷
1
|Ωµ|

∑
α∈Fnet

VαDα⊗(aα ⊗ aα) +

ÃM︷ ︸︸ ︷
1
|Ωµ|

∑
α∈Fnet

Aα(Dα∆αucankl )⊗ aα ⊗ Ekl, (5.53)

where the operation ⊗ is a non-standard tensor product defined in (LS.1).

The characterisation of ucankl follows from the microscale mechanical problem
stated in Problem 6. Recalling, for a given perturbed macroscopic strain G + τEkl, find
(ũµ + τucankl ) ∈ Ũµ such that∑

α∈Fnet

Aαsα((gα)τkl) ·∆α ˆ̃uµ = 0 ∀ˆ̃uµ ∈ Ũµ, (5.54)

with (gα)τkl given by (5.47). From (5.54), considering the Taylor expansion in (5.50),
noticing that ũµ ∈ Ũµ satisfies the microscale mechanical equilibrium for the macroscale
gradient G, and by the fact Ũµ is a vector space, we have to find ucankl ∈ Ũµ such that:

∑
α∈Fnet

Aα
Lα

Dα∆αucankl · ∆α ˆ̃uµ = −
∑

α∈Fnet

Aα[aα]l(Dαek) · ∆α ˆ̃uµ ∀ˆ̃uµ ∈ Ũµ. (5.55)
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Now we want to prove the major symmetry of AM (remember (2.54)). From
definition of ⊗ in (LS.1) and (5.53), the contribution AM is major-symmetric. Now we
prove the same property to ÃM . For this aim, firstly take û = ucanij ∈ Ũµ in (5.55), so

∑
α∈Fnet

Aα
Lα

Dα∆αucankl · ucanij = −
∑

α∈Fnet

Aα[aα]l(Dαek) ·∆αucanij dΩµ

= −
∑

α∈Fnet

(AαDα∆αucanij ⊗ aα)︸ ︷︷ ︸
:=Jij

·Ekl = −Jij · Ekl. (5.56)

On the other hand, since Dα is symmetric (see (5.35)), we have
∑

α∈Fnet

Aα
Lα

Dα∆αucankl · ucanij =
∑

α∈Fnet

Aα
Lα

Dα∆αucanij · ucankl = −Jkl · Eij. (5.57)

These two former results show that Jkl · Eij = Jij · Ekl.

Clearly the set {Epq}p,q=1,...,nd is a basis to the second-order tensor space, so Jkl can
be expressed as the summation Jkl = (Jkl ·Eij)Eij, where Einstein’s notation is implied.
By using this decomposition we have

Jkl ⊗ Ekl = ((Jkl · Eij)Eij)⊗ Ekl = Eij ⊗ ((Jkl · Eij)Ekl) =

Eij ⊗ ((Jij · Ekl)Ekl) = Eij ⊗ Jij = Ekl ⊗ Jkl. (5.58)

Finally, from the above conclusion and recalling (5.53) we have ÃM = 1
|Ωµ|Jkl ⊗ Ekl =

1
|Ωµ|Ekl ⊗ Jkl. Indeed, if a fourth-order tensor satisfies the former commutation property,
thus (2.54) holds straightforwardly.

5.8 Discontinuous bifurcation analysis
Now we are able to describe how the discontinuous bifurcation analysis (DBA) is

performed in the same spirit of (RICE, 1976). The aforementioned criterion detects the
loss of strong ellipticity of the macroscale response, based on the spectral properties of the
so-called localisation tensor or acoustic tensor Q, to be defined next.

Consider now the instant t = tN at which a discontinuity surface in the macroscale
nucleates. The gradient of displacement rate is assumed to have the following tensor
structure (known as Maxwell’s kinematical compatibility condition (THOMAS, 1961)) 5:

JĠK = ζ̇β ⊗ n, (5.59)

where n is the unit normal vector of the surface, β is the unit opening direction vector, and
ζ̇ is the non-negative normalised opening rate at that instant. The latter is not relevant
5 Note that given a surface S with normal n we denote J(·)K = (·)|(x+dx) − (·)|(x−dx), ∀x ∈ S, with dx

parallel to the direction of n and ‖dx‖ → 0.
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for the purposes of this work and will be omitted if necessary. Enforcing the traction
continuity across the discontinuity surface, we arrive at the condition in which the strong
ellipticity is lost, here also referred to as discontinuous bifurcation condition:

JṖnK = JAM(G)ĠKn = ζ̇(AM(G)β ⊗ n)n := ζ̇Q(G,n)β = 0

for any β ∈ Rnd , ζ̇ > 0, (5.60)

where, in our multiscale modelling scenario, Q = Q(G,n) is the homogenised localisation
tensor. In Cartesian coordinates, Q is such that [Q]ik = [AM ]ijkl[n]j [n]l. Expression (5.60)
has non-trivial solutions if and only if Q is a singular tensor. Hence, if at a given instant
t = tN with macroscale gradient GN there exists an unit vector nN such that

det Q(GN ,nN) = 0, (5.61)

then we say that a discontinuous bifurcation (loss of strong ellipticity) has been detected,
and tN and nN are the nucleation pseudo-time and normal direction of the corresponding
opening macrocrack, respectively.

In practice, we determine the time instants tN − dt and tN , where the minimum of
det Q for any possible direction n, changes sign and becomes negative. Hence, determination
of β at time t = tN as the eigenvector of Q, associated to a null eigenvalue, turns out to
be inaccurate. This problem is circumvented by introducing the auxiliary complementary
tensor Q = Q(G,β), defined in Cartesian coordinates, [Q]jl = [AM ]ijkl[β]i[β]k (see Section
5.9 for its justification). The determination of β in the critical instant is analogous to the
process of finding n through the minimisation of det Q.

5.9 Method for determining the initial opening direction
As already discussed, the direct determination of the eigenvector β that solves

Qβ = 0 is not precise since the critical instant for which Q becomes singular is never
exactly determined. This section aims to propose an alternative path to overcome this
issue. Next, we present the basis upon which a heuristic strategy is proposed. This heuristic
is proven to yield consistent results in all examples tested along the present investigation.

The problem of interest can be cast equivalently as follows: find β ∈ Rnd such that

Qβ · v = 0 ∀v ∈ Rnd . (5.62)

Rearranging terms we have

Qβ · v = [Q]ik[β]k[v]i
= [AM ]ijkl[n]j[n]l[β]k[v]i = Qvn · n = 0 ∀v ∈ Rnd , (5.63)
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where Qv = Qv(G,β) is defined by

[Qv]jl := [AM ]ijkl[v]i[β]k. (5.64)

Consider a fixed and non-null vector v. Then, expression (5.63) is verified if:

1. Vector n is in the kernel of tensor Qv, that is, if Qvn = 0. So, the nontrivial solution
of this system implies that we must search for the vector β such that:

det Qv = 0 (5.65)

2. Vector Qvn is orthogonal to n, that is Qvn = τ , with τ ⊥ n. For sake of convenience,
assuming the spatial dimension to be nd = 2, without loss of generality, the orthogonal
vector is characterised as τ = −n2e1 + n1e2, where n1 and n2 are Cartesian

components of vector n. Taking the matrix representation Qv =
a11 a12

a21 a22

 we

have a11 a12

a21 a22

 n1

n2

 =
−n2

n1

 , (5.66)

leading to  a11 a12 + 1
a21 − 1 a22

n1

n2

 =
0

0

 , (5.67)

and thus

det
 a11 a12 + 1
a21 − 1 a22

 = a11a22 − a12a21 + 1 + a12 − a21 = 0, (5.68)

leading to
det Qv = a21 − a12 − 1. (5.69)

Note that (5.63) should be valid for all v ∈ Rnd . However, at the time-discrete level, one
should never expect that (5.63) is verified exactly, since the critical pseudo-time instant
is an unknown in the problem and can be determined up to an error of ∆t = tn − tn−1.
In our experience, the sensitivity of the problem to the choice of v is quite large, and
after a trial and error process we have been able to identify a heuristic procedure. This
heuristic consists in fixing a particular v such that some desirable properties are satisfied
and, more importantly, the results are physically consistent in terms of what is expected
in fully controlled scenarios. To this end, we recall that the determinant of Q is positive
during the earliest stages of the loading program, Q is symmetric and positive-definite
and, thus, all its eigenvalues are positive. Therefore, we found that by selecting v = β,
the tensor Qv=β (hereafter just Q), features the following properties:
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1. Q has (in all numerical experiments) a positive determinant in early stages of the
loading program, resembling to Q. For other choices of v, the tensor Qv failed to
hold this property.

2. Q is symmetric (see (5.64) and recall that AM does have major symmetry). This
guarantees that (5.69) simplifies to det Q = −1, which facilitates our analysis since
it follows from the previous property that (5.65) is always verified earlier than (5.69).
For this reason, it is sufficient to test (5.65).

The comparison between Q and Q indicates that in general Q 6= Q since AM has
no minor symmetries6 (recall expressions (5.42), (5.43) or (5.44)). Moreover, Q and Q
are both second order symmetric tensors, since AM does have major symmetry7, this fact
yields the existence of only real eigenvalues. Furthermore, the pseudo-time instants at
which conditions det Q = 0 and det Q = 0 hold coincides in every numerical experiment,
which tells us that both computations are consistent.

5.10 Closing Remarks
In this work, by exploiting a multiscale paradigm, we have presented a novel

framework to represent the connection between microscale damage processes occurring in
networks of fibres from biological tissues and the associated macroscale material response
corresponding to a continuum model. Through the combination of a multiscale model
suitably constructed to allow the evolution of localisation regions in the microscale domain,
and a specific discontinuous bifurcation analysis, our model provides the theoretical
ingredients to analyse the impact of material and geometrical heterogeneities in the
microscale domain not only in the effective material response, but also in the instant of
the loading program at which the macroscale strong ellipticity condition is lost, and the
nucleation of a macroscale crack is required to recover well-posedness of the macroscale
equilibrium problem.

We highlight that the numerical experiments showing the suitability of the present
methodology are found next in Chapter 6, particularly in Section 6.2. The theoretical
framework of this chapter, together with the aforementioned numerical experiments, is
another contribution of this thesis (ROCHA et al., 2019).

6 Note that in a theory formulated in terms of symmetric stress and strain tensors, the tangent tensor
does have minor simmetries and Q would coincide with Q.

7 This is true for a vast majority of constitutive laws, including hyperelasticity and continuum damage
models, which are sufficient for the present work. One classical example that violates this assumption
is non-associative plasticity, not considered in this work.
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6 Numerical Experiments

Anything that can go wrong will go wrong.

Murphy’s law

In this chapter, we present numerical experiments concerning the simulation of
fibrous materials microstructures with the proposed multiscale methodology developed in
this thesis. We cover both materials with fibres featuring pure hyperelastic constitutive
behaviour as well as those subjected to a level of inelastic dissipation modelled by
continuum damage theory, which are presented in two distinct parts. Section 6.1 addresses
two-dimensional (Section 6.1.1) and three-dimensional (Section 6.1.2) hyperelastic fibre
networks focusing on the analysis of different sources of heterogeneities and their influence
on the homogenised mechanical response. This former section is independent of the
theoretical framework developed in Chapter 5. Later, Section 6.2 mainly analyses the
phenomena of strain localisation in fibrous materials by using the concept of discontinuous
bifurcation analysis (DBA). Extensive discussions of results are provided for each type
of study and special attention is given for the advantages of the MKCMM for modelling
fibrous materials.

The numerical core of the implementation was programmed in Fortran 90 using
some of the infrastructure available in the in-house code SolverGP (URQUIZA; VéNERE,
2002) that, among other third-parties libraries, uses parallel linear algebra solvers provided
by the PETSC library (BALAY et al., 2018). The network of fibres generation was coded
in Python by using Numpy/Scipy (WALT; COLBERT; VAROQUAUX, 2011; JONES et
al., 2001–) facilities for creating Delaunay triangulations (in 2D) as well as the open source
library Voro++ (RYCROFT, 2009) and its wrapper for Python pyvoro1 for the construction
of tridimensional networks by using the Voronoi algorithm. Details are discussed in the
specific sections.

6.1 Hyperelastic fibre networks
In this section we investigate the constitutive behaviour of fibrous specimens as

predicted by the proposed multiscale model particularly in the presence of heterogeneities
along the network. We report simulations in two-dimensional and three-dimensional
settings, in Section 6.1.1 and Section 6.1.2, respectively.
1 URL: https://pypi.org/project/pyvoro/1.3.1/.
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6.1.1 Two-dimensional setting simulations

More precisely in the two-dimensional contexts, by heterogeneities we mean any
kind of deviation from a homogeneous network (as in Fig. 19). In a homogeneous network,
fibres associated to the same family set have the same properties, i.e. (i) the same fiber
orientation θ (associated to aα), (ii) the same length, (iii) the same area, A, and (iv) the
same activation stretch λa 2. In particular we denote X-heterogeneous network, the fibrous
RVE, obtained from a homogeneous network, whenever property X has lost its homogeneity
character, where X ∈ {θ, A, λa}. Cases in which two properties become heterogeneous the
notation becomes X1X2-heterogeneous network, with X1, X2 ∈ {θ, A, λa}.

It is important to note that, in the field of materials science, any network of
fibres is naturally a heterogeneous media, and particularly anisotropic due to the intrinsic
preferred directional distribution of the properties in the RVE domain. Therefore, the
characterisation employed here for a network as homogeneous (heterogeneous) must not
be confused with the classical concept of homogeneous (heterogeneous) material.

In this context, several realisations of fibrous RVEs are generated and compared for
different spaces of kinematically admissible fluctuation fields, specifically for the minimally
constrained space Ũ M

µ (see (4.74)) and for the linear displacement space Ũ L
µ (see (4.76)).

The generation of the fibrous networks, together with the definition of the properties
is outlined in Section 6.1.1.1. As it will be seen, the aim of this kind of study is to analyse
the sensitivity of the constitutive response to such heterogeneities as well as the sensitivity
to the choice of boundary conditions for the RVE.

In order to quantify the impact of topological and material RVE heterogeneities in
the solution of the microscale equilibrium problem, a measure of the non-affinity of the
fluctuation field is proposed, called non-affinity index, as follows

INA := 1
|Fnet|

∑
α∈Fnet

Vα
2 (‖ũiαµ ‖+ ‖ũjαµ ‖), (6.1)

where Vα is the volume of fibre α and |Fnet| is the volume of all fibres.

6.1.1.1 Random generation of fibrous networks

The network of fibres is computationally generated by providing a set of target
properties. Initially, for a given average fibre orientation, say θ, (measured from x-axis)
and for a certain number of fibres nfib, a homogeneous network is generated containing two
families of fibres symmetrically oriented, as in the example shown in Fig. 19. As already
said, crossing-points are junctions, which are the extremes of computational fibres.
2 For sake of simplicity, λa is the only source of heterogeneity in the constitutive response of individual

fibres since kα1 is kept constant in the strain energy (5.13) for all fibres.
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Figure 19 – Example of homogeneous network.

In a second stage, the position of each node is individually perturbed in a random
magnitude and direction. The maximum perturbation is limited by a given number δmax.
As outcome, we obtain the networks illustrated in Fig. 20 (second row) for two different
values of δmax. This kind of alteration in the network will render the irregularities in the
fibre orientations and lengths. Since orientations are relatively more affected than fibre
lengths, in what follows we simply refer to it as θ-heterogeneity.

The two other sources of geometrical and material heterogeneities are in the choice
of fibre areas and activation stretches, also called A-heterogeneity and λa-heterogeneity
respectively. These values are taken from probability distributions with mean value mA

(mλa) and standard deviation sA (sλa) for fibre area (activation stretch). Specifically, for
the case of heterogeneous activation stretches, the deviation from the unit value was
assumed to follow a Gamma-distribution 3 as suggested experimentally by the work of
(HILL et al., 2012). In turn, the fibre area is assumed to be normally distributed with
negative values disregarded.

For convenience, let us recall the most important parameters that define the
characteristics of a certain realisation of a network (i.e. a random generation of the
network). The set of parameters is: θ, nfib, δmax,mA, sA,mλa , sλa , and are defined for all
the examples presented below.

When referring to numerical examples, the characteristics that govern the
randomness of the network generation, such as δmax or sA, for example, are denoted
by pl,k meaning that the k-th realisation of the network was generated with level l for the
property p. The k value acts as a label of the initialisation of the pseudo-random number
generator. That is, we may have different values of k for the same level l, which means
that different realisations were taken from the same value of property. In addition, it is
possible to have different levels l for the k-th realisation, which means that the deviations
3 From (DEGROOT; SCHERVISH, 2012), the pdf of the Gamma-distribution is defined as fα,β(x) =

(βα/Γ(α))xα−1e−βx for x > 0 (zero otherwise), with expected value and variance only function of
the two parameters α > 0 and β > 0. Given the values of mλa and sλa we have α = (mλa/sλa)2 and
β = mλa/(sλa)2.
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are magnified but the random pattern remains the same.

6.1.1.2 Effect of fibre area and fibre orientation

In this section we test the effect of two sources of heterogeneities separately, namely:
fibre area and fibre orientation. In order to assess the impact of each parameter, 18 network
realisations were generated by the procedure described in Section 6.1.1.1. Within this set, 9
networks feature heterogenous fibre area and have a homogeneous fibre orientation, similar
to Fig. 19. The remaining 9 networks have heterogeneous fibre orientation, and constant
fibre area, for which some realisations representing different levels of node perturbation
are found in Fig. 20 (second row). Parameters that control the heterogeneities are the
area standard deviation sA and the node perturbation δmax, which are set corresponding
to three different levels with 3 realisations each, as summarised in Table 1.

All Realisations θ nfib mλa sλa
33.69◦ 216 1.0 0.0

Levels∗ l1 l2 l3 δmax = 0.0[L]
sA[L2] 0.002 0.004 0.006
Levels∗ l1 l2 l3 sA = 0.0[L2]
δmax[L] 0.002 0.004 0.006

Table 1 – Network parameters to study the effect of fibre area and orientation. ∗ for each
level, 3 realisations are considered.

The constitutive behaviour of single fibres at the microscale is characterised by the
strain energy function (5.13), with parameter kα1 = 900[F/L2] constant for all fibres. A
progressive stretch in the horizontal direction was applied with macroscale gradient given
by

Gt =
t 0

0 0

 , (6.2)

where t is a parameter in the range [0, 1] that increases linearly and monotonically through
50 load steps.

Fig. 21, on the left column, shows the dominant component of the PKST (P11,
from P =

(
P11 P12
P21 P22

)
) homogenised according to the proposed multiscale methodology as a

function of the macroscale stretch λ, i.e. λ = t+ 1, for the different sets of parameters. To
better understand the role of the displacement fluctuations in the constitutive response,
the right column in the same figure displays the non-affinity index INA (see (6.1)) which
measures the magnitude of the fluctuation field. In both cases (A-heterogeneity or θ-
heterogeneity) it is observed that the smaller the dispersion, the stiffer the constitutive
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Figure 20 – Reorientation of fibre families considering different fibre orientation angles
due to three different node perturbations (realisations for a fixed random seed
value). The angle distribution as a function of the macroscale stretch (top
row) and the topology of fibres in the original (mid row) and the deformed
network at the maximum level of stretch λ = 2.0 (bottom row).

response. Specifically, for the proposed scenarios, the mechanical response is more sensitive
to the definition of fibre area than to the fibre orientation.

Note that, when the fibre area is heterogeneous (see levels l2 and l3), the index INA

doubles that obtained when the fibre orientation is heterogeneous. Therefore, we conclude
that the determination of fibre areas is a sensitive aspect in the conformation of a fibrous
network, even more than the definition of fibre orientation angles.

From this study, it is also possible to analyse the reorientation of fibre families
and the resulting angle dispersion in the RVE as the deformation takes place. This is
reported in Fig. 20 (top row), where it is seen that the fibre dispersion diminishes as
the macroscale stretch increases, providing a sense of fibre orientation around an average
value. As expected, such average fibre angle reduces with the increasing stretch. Also, the
examples of the network realisations for δl1,1max, δ

l2,1
max, δ

l3,1
max are illustrated in Fig. 20 (bottom

and mid rows).
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Figure 21 – Homogenised constitutive response (left column) and non-affinity index (right
column) considering fibre area variation (top row) and fibre orientation (bottom
row).

6.1.1.3 Effect of the activation stretch

In this section, we study the impact of potential heterogeneities in the definition of
the fibre activation stretch parameter throughout the network. To this end, we consider
6 random network realisations parameterised as described in Table 2. Each realisation
corresponds to a pair (mλa , sλa), equivalently denoted by (m, s)λa , which aims to control
the activation stretch of fibres in the network. Since the definition of the activation stretches
does not affect the network configuration (position of nodes, connectivity, etc), the topology
is fixed for all realisations (same seed is used in the pseudo-random algorithm). Fig. 22
presents the distribution of the activation stretch as a function of the pair (m, s)λa .

The macroscale gradient applied to the specimens is that given by (6.2), and the
constitutive equation of individuals fibres follows (5.13). In this specific case, at early
stretching stages the RVE may be highly unstable because of the lack of fibre activation.
To circumvent this phase, a neo-hookean material 10−3 times softer than the fibre material
is considered to be a ground substance. Clearly, this is a pure numerical strategy necessary
to stabilise the problem in cases where just few (or even none) fibres are bearing load,
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All Realisations θ nfib δmax[L] mA[L2] sA[L2]
33.69◦ 216 0.03 0.01 0.001

Realisation 1 2 3 4 5 6
mλa 0.4 0.4 0.5 0.5 0.6 0.6
sλa 0.2 0.4 0.2 0.4 0.2 0.4

Table 2 – Network parameters to study the effect of fibre activation stretch.
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Figure 22 – Histogram of the activation stretch following a Gamma-distribution for the
different realisations defined in terms of the pair (m, s)λa .

but which introduces no artificial ingredients in the constitutive response once the fibres
activate start to be activated, as will be seen next.

Fig. 23 displays the homogenised P11 component, of the PKST, for the 6 realisations.
In general, the stress curves are right-shifted towards the value determined by mλa , while
the lower the standard deviation sλa the more pronounced the uprise in the stress value.
More specifically, three regions can be distinguished in each curve: toe-region, transition and
linear regime. For instance, for the realisation (m, s)λa = (0.4, 0.2), these regions correspond
approximately to the stretch intervals [1.0, 1.3], [1.3, 1.6] and [1.6, 2.0], respectively. In
order to quantify the fibres that are effectively bearing load, Fig. 24a features the relative
number of fibres whose stretch exceeds the activation stretch for all the realisations4.
Clearly, the three regions referred to before are unveiled. The toe region has none-to-few
activated fibres, while most of the fibres are engaged in the transition region, leading to
the recruitment of almost all fibres in the linear regime. Such mechanism is described in
the specialised literature, see for example (HILL et al., 2012). From a phenomenological
point of view, this is modelled at the macroscale either using exponential strain energy
function or a linear strain energy function convoluted with a probability density function.

4 A schematic representation of activated fibres in deformed networks is presented in the next numerical
experiment, specifically in Figs. 27 and 28.
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Figure 23 – Homogenised constitutive response for different distributions of the activation
stretch parameter.
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Figure 24 – λa-heterogeneity in the RVE for the different realisations: impact on the
non-affinity and overall activation ratio.

The heterogeneity in the fibre activation stretch leads to a complex pattern of
fibre engagement, which in turn affects the magnitude of the fluctuating component of
the displacement field in the network. This is manifested through the non-affinity index
INA, as appreciated in Fig. 24b. While INA is almost monotonously increasing with respect
to the stretch for wide activation stretch distributions (e.g. for sλa = 0.4), it features a
non-monotonic behaviour when the distribution is sharp (sλa = 0.2), and the magnitude
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of the fluctuation field becomes significantly bigger in the transition region. However, for
both cases, at late loading stages, the fluctuations accommodate to a certain value, which
suggests that the mechanical response has reached a stable regime.

6.1.1.4 On the choice of boundary conditions

In this last section, we aim to investigate the sensitivity of the constitutive response
with respect to the fibres network size, considering different sub-models from Section 4.3.5.3.
This raises a sense of convergence as the network size is increased and the homogenised
solution becomes independent from the choice of boundary conditions. Specifically, two
choices are analysed, the Affine Boundary Model, Ũ L

µ (see (4.76)), and the Minimally
Constrained Model, Ũ M

µ (see (4.74)). In the present case, the fibrous specimens to be
analysed feature heterogeneities of different kinds (fibre area, orientation and activation
stretch).

Firstly, two levels of perturbations were considered for the heterogeneities as detailed
in Table 3. These parameters were used to generate corresponding fibres networks which
have been replicated horizontally and vertically by a multiplication factor of 2, 3, 4 and 5.
The value for mλa is such that all fibres are activated when 50% of axial stretch is reached.
The resulting networks are shown in Fig. 25.

Ũ M
µ and Ũ L

µ

θ nfib mA[L2] mλa sλa
33.69◦ 96 0.02 1.366 0.2

Levels l1 l2

sA[L2] 0.025 0.075
δmax[L] 0.025 0.075

Table 3 – Network parameters for the study of boundary conditions related to Ũ L
µ and

Ũ M
µ .

As in the previous section, the loading protocol is defined by the macroscale gradient.
Also as before, the single fibre constitutive response is as in (5.13). Two strain paths were
considered with pseudo-time t ∈ [0, 1] sampled in 50 equally spaced increments for both
cases:

1. Axial stretch (pure axial test): Identically to experiments from previous sections,
and repeated here for convenience:

Gt =
t 0

0 0

 . (6.3)
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Figure 25 – Network of fibres generation through the replication of a basic unit pattern
(multiplication factor from 1 to 5, i.e. left to right panels). Perturbation level
l1 in top row, and perturbation level l2 in the bottom row. Gray color stands
for the fibre transversal area values (darker color indicates larger area).

2. Early axial stretch and late shear-like distortion (combined axial-shear test): In this
case the macroscale gradient is

Gt =
min(t, t0) max(0, t− t0)

0 0

 , (6.4)

where t0 = 0.5 for the reported numerical examples. Observe that (Gt)11 increases
linearly for t < t0, when this component saturates, whilst the shear component
(Gt)12 only assumes non-zeros values for t > t0. Around the maximum level of axial
stretch (t = t0), we have a minimum number of fibres activated necessary to make
the network stable during shear loading stage.

Fig. 26 displays the unit networks warped with the displacement fluctuation field,
where we can clearly appreciate how the selection of specific boundary conditions affects
the mechanical equilibrium in the RVE. As expected, the fluctuation displacement field is
larger in the Ũ M

µ model, because it is not constrained to be null over the boundary as in
the Ũ L

µ model. This reflects the expected less stiff response of the Ũ M
µ model.

Concerning the activation of fibres, Figs. 27 and 28 illustrate, for the pure axial
and the combined axial-shear tests, respectively, the progression of activated fibres along
the pseudo-time. For the sake of simplicity, only perturbation level l2 is reported in Fig. 27
and just level l1 is presented in Fig. 28, both for the Ũ M

µ model. In the pure axial test the
ratio of activation fibres increases monotonically and there is no clear tendency concerning
the spatial distribution of activation fibres. On the other hand, in the combined axial-shear
test and when distortion becomes increasingly important, some fibres even deactivate
along one preferred family, maintaining an activation trend in the other family.
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(a) Perturbation l1 . (b) Perturbation l2 .

Figure 26 – The impact of boundary conditions on the displacement fluctuation field.
Networks warped with the displacement fluctuation for models Ũ L

µ (red) and
Ũ M
µ (blue) at the last pseudo-time in the pure axial test.

(a) t = 0.2 (b) t = 0.4 (c) t = 0.6 (d) t = 1.0

Figure 27 – Total deformed configuration of the RVE along the pseudo-time showing
activated fibres (in red) for the Ũ M

µ model, at the perturbation level l2, and
for the pure axial test.

(a) t = 0.2 (b) t = 0.4 (c) t = 0.6 (d) t = 1.0

Figure 28 – Total deformed configuration of the RVE along the pseudo-time showing
activated fibres (in red) for the Ũ M

µ model, at the perturbation level l1, and
for the combined axial-shear test

.

In Fig. 29, the dependence of the homogenised PKST, P =
(
P11 P12
P21 P22

)
, on the RVE

size is shown for the two perturbation levels l1 and l2, and for the two tests. Such plot
was constructed considering t = 1 in the definition of the macroscale gradient. This figure
provides a sense of convergence of the RVE constitutive response as the RVE size is
enlarged, which makes the solution less sensitive to the choice of boundary conditions. We
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observe that in most of the situations the relative differences between the Ũ L
µ and the Ũ M

µ

are rather small, hence yielding sharp bounds, at least under the hypotheses considered,
for the constitutive response of these fibrous specimens.

Going into the details, for a more homogeneous RVE and pure axial test (see top
row in Fig. 29a), the Ũ L

µ model is less sensitive to the RVE size (see components P11,
P12 and P21). In contrast, when the heterogeneities in the RVE are more pronounced (see
bottom panels of Fig. 29b) the Ũ M

µ model performs better, with the dominant stress
components (see P11 and P22) being less sensitive to the RVE size.

Similar features are seen for the combined axial-shear test in Fig. 29b. For the
less perturbed state, the non-diagonal components, which are not negligible in this case,
found with the Ũ M

µ model are less sensitive to the RVE size. The opposite happens for the
diagonal components. In the second perturbation level, P11 computed with the Ũ M

µ model
is much less sensitive to the RVE size, while for the other components the sensitivity of
both models is comparable.

Note that a number of convergence patterns are found in Fig. 29 (see the behaviour
of red and blue lines). For instance, at the bottom right plot of Fig. 29b we have the
red curve decreasing, while the blue curve is increasing. In turn, in the top left plot of
Fig. 29a, both curves are increasing, with the linear model being stiffer than the minimally
constrained model. The explanation for the different patterns are twofold: i) some stress
components have negligible order of magnitudes with respect to others, thus in general we
should regard them according to their importance; and ii) the large levels of variability
in the parameters, specially the activation stretch. It is important to keep in mind that
for the dominant stress components, the linear model is always stiffer than the minimally
constrained one for the same RVE size. Importantly, by increasing the RVE size, both
models feature a convergent trend.

Using a different criterion to measure convergence with respect to the RVE size,
figures 30a and 30c show the convergence study with respect to the total averaged strain
energy in the RVE, i.e.,

Ψ := 1
|Ωµ|

∑
α∈Fnet

VαΨµ
α(λα), (6.5)

evaluated at the equilibrium point when reaching the last loading step. In this case we have
a very similar convergence pattern for all cases. Again, the linear model yields a stiffer
behaviour than the minimally constrained model. Evidently, in cases where the mechanical
problem can be understood as a minimisation problem (in the case of hyperelasticity),
the total energy is necessarily smaller for the larger admissible space (i.e. the minimally
constrained model).

Another interesting analysis consists in measuring the role played by the fluctuations
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(a) Pure axial test for heterogeneity levels l1 and l2.
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(b) Combined axial-shear test for heterogeneity levels l1 and l2.

Figure 29 – Convergence of the homogenised stress response with respect to the RVE size
for the Ũ L

µ (red dashed line) and Ũ M
µ (blue solid line) models.

in terms of energy. To this end, we propose the fluctuation energy ratio, defined as

Ψ̃rel := |Ψ−Ψ|
Ψ , (6.6)

where Ψ := Ψ|Ũµ=O is the averaged energy due to the linear part of displacements, i.e.,
vanishing displacement fluctuation. We remark that Ψ < Ψ always holds since Ũµ = O
represents the Taylor model, which renders a higher level of energy. For the simulations
reported in this section, the behaviour of this index is observed in figures 30b and 30d. As
expected, the fluctuation energy ratio is always larger for the minimally constrained model.
In addition, such contribution of energy becomes more important as the heterogeneities
are higher as well as we move towards to a shear dominated regime.

Such results point out the importance of an adequate minimally constrained
multiscale model, as proposed in this thesis, in order to provide consistent and sharp
bounds for the constitutive response. Even if the differences observed are in some cases
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(b) Fluctuation energy ratio for pure axial test.
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Ũ M
µ Ũ L
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(c) Total strain energy for combined axial-shear test.
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(d) Fluctuation energy ratio for combined axial-shear test.

Figure 30 – Convergence analyses with respect to the RVE size for the Ũ L
µ (red dashed

line) and Ũ M
µ (blue solid line) models. Heterogeneity levels l1 (left) and l2

(right).
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(a) Pure axial test for heterogeneity levels l1 and l2.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

P
11

[F
/L

2
],
l 1

0.0 0.2 0.4 0.6 0.8 1.0
−1

0

1

2

3

4

5

6

7

P
12

[F
/L

2
],
l 1

0.0 0.2 0.4 0.6 0.8 1.0
−2

0

2

4

6

8

10

12

14

P
21

[F
/L

2
],
l 1

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

P
22

[F
/L

2
],
l 1

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime t

0

2

4

6

8

10

12

14

16

18

P
11

[F
/L

2
],
l 2

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime t

−1

0

1

2

3

4

5

P
12

[F
/L

2
],
l 2

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime t

−2

0

2

4

6

8

10

P
21

[F
/L

2
],
l 2

0.0 0.2 0.4 0.6 0.8 1.0

Pseudotime t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
22

[F
/L

2
],
l 2

Homogenised Stress
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(b) Combined axial-shear test for heterogeneity levels l1 and l2.

Figure 31 – Homogenised stress for different boundary conditions. Stress components
during pseudo-time for the Ũ L

µ (dashed lines) and Ũ M
µ (solid lines) models.

negligible (notice in some cases the stress scale in the plots is really small), the correct
formulation of the Ũ M

µ allowed us to quantify the impact of the choice of boundary
conditions in the homogenised response in a wide variety of scenarios. Being more specific,
the minimally constrained model is a lower bound for the homogenised stress, and the
affine boundary model is an upper 5 bound of these curves. From Fig. 29, it is clear that
this observation is always true, save for few cases where for relatively small values of the
off-diagonal components these bounds are actually inverted.

To gain more insight into the complex behaviour the homogenised stress may
render, Fig. 31 provides the stress components along the evolution of the pseudo-time for
all the twenty cases (Ũ L

µ and Ũ M
µ with 5 RVE sizes each for pure axial and combined

axial-shear tests). The convergence of the solution in the dominant stress components
5 Naturally, the Taylor submodel provides a stiffer response than the affine boundary model. Thus, we

restrict the term ”upper bound” to boundary-like constraints, excluding the Taylor model from the
analysis.
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P11 and P22 always takes place as expected (see the insets in the corresponding panels),
with the Ũ L

µ model being an upper bound and the Ũ M
µ model behaving as a lower bound.

Remarkably, for the pure axial test and for components P12 and P21, the response delivered
by the Ũ L

µ model is much more sensitive to the RVE size than the corresponding to the
Ũ M
µ model. This effect is reduced when off-diagonal stress components gain importance as

in Fig. 31b. Observe that exactly at the point of axial phase becoming shear distortion the
stress curves are less similar, but the trend remains similar to the cases discussed before.

6.1.2 Three-dimensional simulations

Network generation of the three-dimensional random fibre network was based on
Voronoi tesselations. For this task, the open source library Voro++ (RYCROFT, 2009)
and its wrapper for Python pyvoro 6 have been employed. First, a certain number of points
are chosen at random positions, and maintaining a certain distance among them. These
points are used as barycentric of cells that form a partition of a rectangular parallelepiped
whose dimensions are also inputs to the algorithm. Then, a fibre is considered over cell
edges (transversal area and activation stretch are randomly assigned following a given
distribution). Edges lying on the RVE boundary are removed. A preference direction is
emulated by considering a preliminary network which is scaled differently in the different
directions. An example of network resulting from this pipeline is shown in Fig. 32. The RVE
is considered to be a representative piece of adventia layer (mainly composed by collagen)
in a model of an arterial vessel. The initial network was generated in 0.5×1.0×1.0L3 (sizes
in the directions eθ, ez and er, respectively) and then mapped to a size of 1.0× 1.0× 0.5L3.
The effect of this scaling procedure is translated in the, say, circumferential angle denoted
by β (assumed positive but equally valid for negative value), as observed in Fig. 32. In
this case β < 45◦ as the initial block was scaled in eθ direction, whereas β = 45◦ when no
scaling is involved.

6.1.2.1 Effect of circumferential angle

In this example we study the sensitivity of the mechanical response with respect to
differences in the circumferential angle β. To this end, we generated 6 networks, 3 for each
of the 2 cases as the following procedure:

1. Map from 1/2× 1.0× 1.0 to 1.0× 1.0× 0.5: β1 = arctan(1/2) = 26.57◦.

2. Map from 1/3× 1.0× 1.0 to 1.0× 1.0× 0.5: β2 = arctan(1/3) = 18.43◦.

In all cases 200 random points (centres of the Voronoi cells) were uniformly picked inside
the brick domain. This resulted in networks with approximately 750 fibres 7. In addition,
6 URL: https://pypi.org/project/pyvoro/1.3.1/.
7 A certain number of Voronoi cells does not yield the same certain number of fibres.
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Figure 32 – Three-dimensional RVE from a piece of an adventitia layer and projections
on the coordinate planes.
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Figure 33 – Homogenised stress tensor components along the loading program for the
different circumferential angles.

fibre areas were taken randomly from a normal distribution with mean 0.01L2 and standard
deviation of 0.0005L2. Fibre constitutive model was assumed to be the same than for the
examples from Section 6.1.1, with unitary uniform activation stretch for all fibres, and axial
load applied along the circumferential direction. The macroscale applied strain program
is characterised by the gradient Gt = teθ ⊗ eθ, with t ∈ [0.0, 0.7] divided into 20 equally
spaced pseudo-time steps. The realisations are denoted (βa)b, a ∈ {1, 2}, b ∈ {i, ii, iii}
and some examples of undeformed meshes can be seen in Fig. 34a and Fig. 34b, the later
displaying a smaller circumferential angle. To verify the preferred direction numerically we
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compute the structural tensors (see definition (4.65)) for the different cases

B(β1)i =


0.69740 −0.00513 0.00450
−0.00513 0.23118 0.00033
0.00450 0.00033 0.07142

 ,

B(β2)i =


0.82643 −0.01320 −0.00275
−0.01320 0.13334 0.00398
−0.00275 0.00398 0.04024

 ,
where the basis considered is {eθ, ez, er} (in this order). Regarding the first value of the
diagonal (related with the circumferential direction), we confirm the graphical suggestion,
in general fibres are more aligned with eθ in the case (β2)i than in case (β1)i.

Fig. 33 reports the components of the homogenised stress tensor for all three
normal realisations and for both circumferential angles. As expected, the realisations with
a smaller circumferential angle (group β2) feature a stiffer response in the circumferential
stress component, while for the axial and radial components RVEs in group β1 are stiffer.

(a) Undeformed network for case (β1)i. (b) Undeformed network for case (β2)i.

(c) Deformed network for case (β1)i. (d) Deformed network for case (β2)i.

Figure 34 – Reference and deformed configurations of 3D networks. Colours represent fibre
area at the begining of the loading program (first row) and the fluctuation
magnitude for the last loading step (second row).

6.1.3 Discussion

Based on the reported numerical experiments using the proposed novel multiscale
model for fibrous materials, we can highlight the following features:
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1. The mechanical response is sensitive to non-homogeneities in network parameters,
such as fibre orientation, fibre area or activation stretches. In fact, different RVE
realisations lead to different stress curves (see Fig. 21 left column).

2. The more structured and homogeneous the RVE, the stiffer the constitutive response
(see also Fig. 21 left column). This goes along with a larger non-affinity in the
network kinematics, as measures by the index INA (see Fig. 21 right column).

3. Concerning the dispersion of fibre orientations, it is observed that its variability and
mechanical effect becomes less evident when RVE is stretched (see Fig. 20). Such
fibre alignment reduces the rate of the non-affinity at late stretching stages (see
Fig. 21 bottom right column panel).

4. Concerning the dependence upon the activation stretch distribution, it is observed
that the homogenised mechanical response of an RVE, resulting from the
intermingling of progressively activated fibres (as noticed in Fig. 24a), assumes
a very distinct shape than the constitutive model adopted for a single fibre. In
our particular case, an exponential-shaped stress curve (see Fig. 23) is retrieved by
using simple linear (quadratic strain energy) constitutive laws for the microscale
constituents, i.e., the fibres.

5. Finally, the comparison between two boundary conditions have resulted in two
different scenarios. On the one hand, the more homogeneous, and then stiffer, the
network, the more suitable results the Affine Boundary Model in terms of the solution
delivered by small RVE sizes. On the other hand, for highly heterogeneous networks,
the use of the Minimally Constrained Model (MCKMM) proposed in the present
thesis yields better results in terms of the solution delivered by small RVE sizes. In
any case, the two tested boundary conditions, which lead to two multiscale models,
determine proper bounds (without considering Taylor submodel) for the constitutive
response of fibrous microstructures. In this sense, we highlight that the proposed
model constitutes an unprecedented lower bound for this kind of analyses.

Based on the results reported so far in this chapter, the relevance of a proper
multiscale model for fibrous tissues is larger as the network heterogeneities are more
pronounced, and this holds for any of the sources of heterogeneities studied in this work.
Some recent phenomenological models even include specific parameters to account for
the effect of dispersion in the fibre orientation (GASSER; OGDEN; HOLZAPFEL, 2006).
However, as seen in this work, this is not enough to effectively predict the constitutive
behaviour of fibrous networks with more accentuated heterogeneities. Moreover, up to the
authors’ knowledge, dispersion in fibre properties such as area and activation stretch have
been overlooked in most of phenomenological, or even histologically-inspired constitutive
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models. It is worth mentioning that these data can also be extracted from images by using
proper image processing techniques already available in the literature.

At last but not least, the proposed multiscale approach was straightforwardly
extended from 2D to 3D RVEs, which makes it a versatile candidate to guide the
construction of general constitutive laws capable of accounting for all the heterogeneities
studied in this work.

6.2 Fibre networks featuring softening
The numerical tests in the following aim to show the descriptive capabilities of the

multiscale theoretical framework presented here. Overall, four types of analyses are reported
in different sections, ranging from simple test cases to more involved microstructural
settings.

The constitutive behaviour considered for fibres is the one characterised by
expressions (5.12) and (5.20), so the set of material parameters {λaα, Eα, suα, Gf

α} needs to
be specified for each fibre. As already commented, due to numerical issues, a fictitious
viscosity parameter ηα, which is generally 2 orders of magnitude smaller than Eα is also
employed. In principle, these parameters differ for each fibre, and this poses a major source
of heterogeneity to the fibre network. Further sources of heterogeneity can be considered
such as fibres featuring different cross-sectional areas Aα, different spatial orientations
(denoted here φα) and different fibre agglomeration density throughout the microscale
domain of analysis.

The network of fibres is computationally generated by providing a set of target
properties. Initially, for a given average fibre orientation, say φα, (measured with respect
to the horizontal axis) and for a certain number of fibres nfib, a homogeneous network is
generated containing two families of fibres symmetrically oriented. Crossing-points are
considered to be junctions, which are the extremes of computational segments composing
the fibres. Then, the position of each node is individually perturbed in a random manner
in terms of distance and direction, limited by a circle of radius δmax. It turns out that the
orientation of each fibre φα results from a combination of a given mean value φα and the
perturbation. Once the network has been built, spatial distribution of material properties
and fibre areas are selected. In the study cases presented below we consider either properties
constant for all fibres, properties randomly sampled from a known probability density
function (e.g. a normal distribution), or specifically modified in a specific region of the
RVE, such as a band or ball. For the sake of simplicity, in the forthcoming examples the
damage threshold stress suα and the fibre area Aα are considered sources of heterogeneity.

The loading protocol is defined by the macroscale gradient, which progresses as a
function of the pseudo-time parameter t ∈ [tmin, tmax], discretised differently depending on
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the problem. Two strain paths are considered:

1. Axial stretch (pure axial test):

Gt =
t− 1 0

0 0

 . (6.7)

2. Early axial stretch and late shear-like distortion (combined axial-shear test):

Gt =
min(t− 1, t0 − 1) max(0, t− t0)

0 0

 , (6.8)

where t0 controls the size of the early axial stretch. The early pre-stretching stage is
required in many cases to circumvent the lacking resistance state of the RVE where
most of the fibres are compressively loaded.

Recalling the directions that emerge from the DBA, namely n and β, we parametrise
for in-plane case with two angles θ and β, respectively, as follows:

n = n(θ) = cos θe1 + sen θe2, (6.9)

β = β(β) = cos βe1 + sen βe2 (6.10)

The search of the minimum determinant of the acoustic tensor Q (or Q) is then performed
exhaustively by subdividing the range for θ (or β) (in the interval [−90◦, 90◦]) into 500
subintervals, sampled equally spaced.

For the sake of clarity, the dimensionless version of the acoustic tensor, defined as
Q∗ = 1

Eα
Q will be reported in the following examples. Note that we are using the elasticity

parameter of the fibre Eα (constant for all fibres and in all examples) as the normalising
factor. Moreover, as mentioned in 5.9, the determinant of tensor Q, effective to determine
β, changes its sign at the same instant than Q for all numerical examples reported in this
paper. Therefore, det Q is not plotted in the analysis shown next.

6.2.1 Study 1: Detection of critical point, angle and direction of discontinuous
bifurcation at macroscale

In this example we illustrate the detection of the critical point at which the problem
requires the nucleation of a macroscale crack. To this aim, we consider an RVE made
of a regular and homogeneous network of fibres. The only source of heterogeneity is the
fibre damage threshold stress suα, where a smaller value is assigned to a given location
in the RVE, resulting in a weakened band of fibrous material. Particularly, we study the
following three cases:

1. Vertical weakened fibre band, macroscale gradient as in (6.7), denoted Ex1-a.
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Property Ex1-a Ex1-b Ex1-c
λaα 1.0
Eα[F/L2] 250.0
ηα[F/L2] 0.0 5.0 5.0

suα[F/L2]
79.06

↓max= 50%
vertical band

79.06
↓max= 60%

21.8◦-inclined band

79.06
↓max= 50%
vertical band

Gf
α[F/L] 500.0

Aα[L2] 0.01
φα ±29.05◦ ±36.87◦ ±33.69◦
|Fnet|/|Ωµ| 0.2069 0.2994 0.2884
δp 0.0
nfib 180 432 384

Table 4 – Material, geometrical and numerical parameters for the cases in Study 1. ↓max:
maximum reduction.

2. Inclined weakened fibre band, macroscale gradient as in (6.7), denoted Ex1-b.

3. Vertical weakened fibre band, macroscale gradient as in (6.8), with t0 = 1.2, denoted
Ex1-c.

In all cases, the MCS is employed, and we take [tmin, tmax] = [1.0, 1.5], with 100
equally spaced pseudo-time steps. For the definition of all parameters see Table 4 8.

In Fig. 35, we can see the results obtained for the first study case. From Fig. 35a,
it can be seen that a vertical localisation band is obtained as a result of the applied load
and the geometrical distribution of the weakened material. This phenomenon is captured
by the DBA, as seen in Fig. 35b, where the vertical red line indicates the critical time
instant tN . In the bottom right panel we have that θ(tN) = 0 and β(tN) = 0, implying
that the RVE specimen begins to localise in a mode-I of fracture. Also, notice that, due
to the simplicity of the test, the critical point coincides with the maximum value of the
normal traction that in this case coincides with the stress component (P)11. This may not
be the case in more complex settings.

For the second study case the results are displayed in Fig. 36. Here, a mixed model
of fracture is obtained as a consequence of the inclination of the weakened band and the
loading program, see Fig. 36a. This phenomenon is predicted by the DBA, where two
distinct values of β and θ are found at the critical point (precisely tN = 1.26) , as seen
in the bottom-right inset in Fig. 36b. We can observe that the value predicted for θ(tN)
(precisely = 24.12◦) agrees well with the angle of the inclined band (precisely = 21.8◦, see
8 For cases Ex1-b and Ex1-c numerical viscosity was needed (taken η = 5.0F/L2) and was removed

after 5 pseudo-timesteps once the critical point was attained.
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(a) Undeformed mesh displaying suα distribution and deformed network showing the damage
state d at t = tmax.
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(b) DBA.

Figure 35 – Results of the study case Ex1-a.

Table 4). 9. Regarding the prediction of β(tN) (precisely = 13.32◦), this value is smaller
than the inclination of the band but still larger than the direction established by the
loading program. This confirms the expected result, since the direction of the crack-opening
velocity is a consequence of these two factors combined. In addition, Fig. 36b presents
the component (P)11 of stress, which, because of the geometry, is presumably the most
important in magnitude. Moreover, the softening behaviour greatly affects this component,
whose peak almost coincides with the critical point detected by the DBA.

Finally, in the third study case, the situation is that illustrated in Fig. 37a, in which
the localisation band appears as result of the applied shear loading. In the middle inset, it
is shown the exact instant when the critical point is detected (precisely tN = 1.245). Again,
9 It is important to mention that the detected band inclination is comprised in the range of angles inside

the finite band size induced by the domain with weakened properties.
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(a) Undeformed mesh displaying suα distribution and deformed network showing the damage
state at t = tmax.
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Figure 36 – Results of the study case Ex1-b.

the values detected for β(tN) = 30.6◦ and θ(tN) = 55.44◦ at the critical point are distinct
and not perpendicular (see middle-right panel in Fig. 37b), which characterises a mixed
fracture mode. In the present situation, with two particular preferential directions of the
fibre families, the localisation band is at an angle with respect to vertical. Interestingly,
and although the normal of the band is not aligned with the horizontal direction, we
observe that component (P)11 still manifests the typical representation of the outcome of
the DBA, therefore is the only component plotted.
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(a) From left to right: undeformed mesh displaying suα distribution, deformed network showing the
damage state d in the bifurcation instant, and in the last loading step.
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Figure 37 – Results of the study case Ex1-c.

6.2.2 Study 2: Sensitivity of critical point to boundary conditions

In this example we explore the influence of the choice of admissible fluctuations
(i.e. the RVE boundary conditions) in the initiation of the localisation process. Specifically,
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Property Ex2-a Ex2-b Ex2-c
λaα 1.0
Eα[F/L2] 250.0

ηα[F/L2] 20.0 (LBS)
0.1 (MCS)

20.0 (LBS)
5.0 (MCS)

20.0 (LBS)
10.0 (MCS)

suα[F/L2]
79.06

↓max= 40%
inside the band

79.06
↓max= 40%

inside the band

79.06
↓max= 40%

inside the band
Gf
α[F/L] 500.0

Aα[L2] N (µ, σ) = N (0.01, 0.0025)
φα ±36.87◦ ±36.87◦ ±38.66◦
δp[L] 0.04 0.02 0.0125
nfib 192 432 768
|Fnet|/|Ωµ| 0.2252
Model Both LBS and MCS

Table 5 – Material, geometrical and numerical parameters for the cases in Study 2. ↓max:
maximum reduction.

Figure 38 – Deformed state of fibre networks at the last step of the loading program. From
top to bottom, cases Ex2-a to Ex2-c, with LBS (left) and MCS (right) being
used.
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Figure 39 – Homogenised stress components throughout the loading program and critical
points (vertical lines). From top to bottom: Ex2-a, Ex2-b and Ex2-c.

we analyse the MCS and LBS models. As we will see, the choice of boundary conditions
severely affects the homogenised stress response, possibly delaying the appearance of the
critical point.

We considered here three fibrous networks with a vertically weakened fibrous band
in the middle of the RVE. Namely, we have the cases Ex2-a, Ex2-b and Ex2-c, with 192,
432 and 768 fibres each, respectively. The loading program is given by horizontal axial
stretching, applied during t ∈ [1.0, 1.7] in 100 equally spaced pseudo-time steps. Also, we
have admitted some level of heterogeneity in the network parameters, namely: i) fibres
areas follow a normal distribution N (µ, σ), where µ stands for the mean value and σ for the
standard deviation, and ii) the position of nodes in the network are randomly perturbed
by a factor δp according to the number of fibres. Moreover, to circumvent the lack of
convergence of the Newton-Raphson method, different values for the numerical viscosity
ranging from 0.1 to 20.0 were employed as well as the SOR method with subrelaxation
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ranging from 0.7 to 0.8. The model parameters are reported in Table 5.

It is important to mention that the parameters of the normal distribution appearing
in Table 5 are only used in the case Ex2-a. In cases Ex2-b and Ex2-c the same values were
used just as an initial guess for fibre areas. Next, these areas were scaled accordingly in
order to preserve the same volume fraction featured by case Ex2-a (note that the size of
the RVE (|Ωµ|) was kept unitary). This emulates the effect of increasing the size of the
RVE. No matter the approach, this aims to render comparable results in terms of stresses,
as shown in Fig. 39 and discussed in the following.

In Fig. 38 we report the deformed states for the three different cases of networks,
each one being simulated with both the LBS and MCS multiscale models. For the LBS,
the localisation band becomes more prominent as the number of fibres increases, and the
bell-like shape can be considered an artifact caused by the overly constrained space of
fluctuations over the RVE boundary. In contrast, the MCS features vertical localisation
bands crossing entirely the RVE regardless the number of fibres.

Fig. 39 displays the components (P)11 and (P)22 of the homogenised stress tensor
for the different models and for the different networks. The critical point is clearly delayed
when considering LBS (blue curves), compared to the response delivered by model MCS
(red curves). From top to bottom, as the number of fibres increases, the instant at which
the critical point occurs is more sensitive when using the linear model. These results
reveal another fundamental issue of multiscale models, the convergence of the mechanical
response with respect to the size of the RVE 10. Thus, we can assert that, in the present
setting, model MCS delivers a more physically consistent solution than model LBS.

In the examples examined above, independently of the kind of boundary condition,
we can appreciate from Fig. 39 that the shape of the post-critical mechanical response
(curve after the vertical lines) strongly depends upon the RVE size. This is a manifestation
of the well-known size-effect (BAZANT; PLANAS; BAZANT, 1998) and will be properly
investigated and discussed in Section 6.2.4.

6.2.3 Study 3: Influence of heterogeneity

Heterogeneities (of all kinds) in the topological and material composition of fibre
networks are the main sources of stress concentration, driving the damage processes and
strain localisation phenomena. The study cases reported in this section aim to analise the
effects of these factors. In the context of arterial tissues, heterogeneities can be originated
by anomalous and non-uniform processes of growth and remodelling of collagen fibres, and
so its study deserves special attention.
10 As already commented, this is equivalent to increasing the number of fibres for the same size of the

RVE, but scaling fibre areas in order to have comparable volume fractions.
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Property Ex3A-a Ex3A-b
λaα 1.0
Eα[F/L2] 250.0
ηα[F/L2] 0.0 10.0
suα[F/L2] 79.06
Gf
α[F/L] 500.0

Aα[L2]
0.01

↓max= 40%
band thickness 0.2

0.01
↓max= 40%

(×2) ball radius 0.2
φα ±33.69◦

δp[L] 0.02
nfib 600

Table 6 – Material, geometrical and numerical parameters for all cases in Study 3
concerning fibre area reduction. ↓max: maximum reduction.

Particularly, we consider, heterogeneities of the following kinds:

1. Reduction of fibre areas in a certain region: In case Ex3A-a the perturbation in the
fibre area is introduced in a vertical band whereas in case Ex3A-b such perturbation
is introduced on two ball-shaped regions located in the upper-central part of the
RVE. In both cases, damage threshold stress suα is the same for all fibres. The model
parameters data are found in Table 6.

2. Non-homogeneous spatial distribution of fibres: we induce a controlled and uneven
spatial distribution by removing a percentage of fibres located in a region of the
RVE. Particularly, we have considered vertical bands with width 0.3L (Ex3R-a) and
0.6L (Ex3R-b) centered with the RVE, in which, respectively, 10% and 5% of fibres
were randomly selected to be removed. In each case, two realisations were simulated.
Also, damage threshold stress suα is the same for all fibres. Table 7 presents all model
parameters.

As in the previous example, the RVE was stretched in the horizontal direction with
t ∈ [1.0, 1.6]. Due to the larger sources of heterogeneities, numerical parameters for these
simulations had to be carefully chosen in order to avoid poor or even lack of convergence of
the Newton-Raphson method as well as to capture the more complex mechanical behaviour
with more accuracy. In addition to fictitious viscosity and the SOR method, we have used
an adaptive selection of the pseudo-time step, refining the time-discretisation near singular
points (zero-derivative of stress) and at high gradient regions. In total, for all simulations
of this study, 1000 pseudo-time steps have been used, with a maximum ratio between the
largest and smallest steps of 20.0.
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Property Ex3R-a
(k=1)

Ex3R-a
(k=2)

Ex3R-b
(k=1)

Ex3R-b
(k=2)

λaα 1.0
Eα[F/L2] 250.0
ηα[F/L2] 5.0 5.0 10.0 6.0
suα[F/L2] 79.06
Gf
α[F/L] 500.0

Aα[L2] 0.01
φα ±35.84◦
δp[L] 0.01
nfib 936

Removal criterion
random

10% of fibres
band thickness 0.3L

random
5% of fibres

band thickness 0.6L

Table 7 – Material, geometrical and numerical parameters for all cases in Study 3
concerning removal of fibres. Variable (k) is used to identify the realisation.

The obtained results are presented in Fig. 40 and Fig. 41. It is seen that the
different cases of heterogeneous fibre areas yield similar homogenised mechanical responses
in the pre-critical stage. In detail, since the region between the balls features fibres with
larger area values, the total localisation in this case is slightly delayed (see the blue and
red vertical lines in Fig. 41). This delay not only affects the critical point position but
also the evolution of damage in the subsequent increments as depicted in the third row of
Fig. 40. Notwithstanding this, both study cases provide a similar homogenised behaviour,
quantitatively and qualitatively, in terms of the critical point and the constitutive response,
for both stress components, (P)11 and (P)22.

Let us now analyse the cases Ex3R-a and Ex3R-b. From Fig. 42 and Fig. 44
we notice that the nucleation of localisation bands occurs by traversing the (randomly
determined) regions in the RVE with reduced fibre density. This source of heterogeneity
strongly affects the configuration of the deformed network for the different realisations.
In addition, and as expected, the less concentrated is the remotion of fibres from the
RVE (case Ex3R-b seen in Fig. 44 compared to Ex3R-a in Fig. 42) the more complex
the localisation pattern that emerges in the RVE. These sources of heterogeneity affect
differently the homogenised response. As seen in Fig. 45, the study cases denoted by
Ex3R-b feature a more sensitive response along the whole loading program. Comparatively,
the response obtained in the study cases Ex3R-a seen in Fig. 43 only features some
differences during the post-critical stages. In either case, the directions of the nucleated
macroscale crack obtained from the DBA remain the same.
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t = 1.00

t = 1.35

t = 1.40

t = 1.60

(a) Case Ex3A-a.

t = 1.00

t = 1.35

t = 1.40

t = 1.60

(b) Case Ex3A-b.

Figure 40 – Different snapshots of the network of fibres for cases Ex3A-a and Ex3A-b
displaying distribution of fibre area (upper frame) and deformed configuration
for different states of material deterioration.
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Figure 41 – Homogenised stress components throughout the loading program and critical
points for Ex3A-a (band) and Ex3A-b (balls).
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t = 1.00
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t = 1.40

t = 1.60

(a) Case Ex3R-a(k=1).

t = 1.00

t = 1.30

t = 1.40

t = 1.60

(b) Case Ex3R-a(k=2).

Figure 42 – Different snapshots of the network of fibres for different realisations in the
case Ex3R-a.
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Figure 43 – Homogenised stress components throughout the loading program and critical
points for different realisations of the case Ex3R-a.
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t = 1.00

t = 1.365

t = 1.45

t = 1.60

(a) Case Ex3R-b(k=1).

t = 1.00

t = 1.365

t = 1.45

t = 1.60

(b) Case Ex3R-b(k=2).

Figure 44 – Different snapshots of the network of fibres for different realisations in the
case Ex3R-b.
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Figure 45 – Homogenised stress components throughout the loading program and critical
points for different realisations in the case Ex3R-b.

6.2.4 Study 4: Size-effect during the post-critical regime

In this section, we study the size-effect observed in the homogenised RVE stress
response during the post-critical regime, that is after the DBA points out the nucleation
of a macroscale crack as a result of the microscale localisation bands.
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Property Ex4V-a Ex4V-b
λaα 1.0
Eα[F/L2] 250.0
ηα[F/L2] 10.0 5.0

suα[F/L2]
79.06

↓max= 40%
one vertical band

79.06
↓max= 40%

two vertical bands
Gf
α[F/L] 500.0

Aα[L2] N (µ, σ) = N (0.01, 0.0025)
φα ±36.87◦
δp[L] 0.02
nfib 432 864
RVE size [L2] 1× 1 2× 1
|Fnet|/|Ωµ| 0.3359 0.3364

Table 8 – Material, geometrical and numerical parameters for all cases with a vertical
band in Study 4. ↓max: maximum reduction.

Property Ex4I-a Ex4I-b
λaα 1.0
Eα[F/L2] 250.0
ηα[F/L2] 10.0 10.0

suα[F/L2]
79.06

↓max= 40%
one 21.8◦-inclined band

79.06
↓max= 40%

two 21.8◦-inclined bands
Gf
α[F/L] 500.0

Aα[L2] N (µ, σ) = N (0.01, 0.0025)
φα ±36.87◦
δp[L] 0.02
nfib 432 864
RVE size [L2] 1× 1 2× 1
|Fnet|/|Ωµ| 0.3367 0.3364

Table 9 – Material, geometrical and numerical parameters for all cases with an inclined
band in Study 4.

Hence, in this section we study the homogenised response of the RVE when its size
is modified. Specifically, we double the RVE size in the horizontal direction by repeating
its structure. The source of material heterogeneity is considered to be in the fibre damage
threshold stress suα, located in vertical (Ex4V-a and Ex4V-b, see Table 8) and inclined
bands (ExI-a and ExI-b, see Table 9) inside the RVE. When the RVE is doubled, the
band with altered properties is also repeated correspondingly. Regarding the imposed
macroscale gradient, in all cases we consider progressive axial stretching, with t ∈ [1.0, 2.0]
discretised in 100 pseudo-time steps.

Fig. 46 shows, for a single realisation, the deformed state of the different RVEs.
Clearly, after the bifurcation instant, the localisation occurs just in one of the bands, and,
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thus, the whole strain applied to the RVE is confined to the same region of space. In
turn, the stress is homogenised using the whole size of the RVE. This implies that, during
the post-critical regime, for the same level of the inserted macroscale strain, the larger
RVE will have a larger crack opening, resulting in an apparently more brittle material,
i.e., strain localisation is more severe. This behaviour can be noticed in Fig. 47. In such
figure, the RVEs deliver the same response in the pre-critical stages regardless the RVE
size. When the critical point is achieved, the localisation has become prominent, and the
homogenised behaviours deviate from each other, highlighting the lack of objectivity of
the stress response at post-critical instants. Although beyond the scope of this thesis,
methodologies applied to circumvent this in continua are commented in Section 6.2.5.

6.2.5 Discussion

The multiscale model presented in this section is strictly valid for the pre-critical
regime and up to the critical point signaled by the DBA. Moreover, the model provides a
sound criterion (discontinuous bifurcation analysis) for the determination of the instant
at which the material deterioration in the microscale has reached such a level that a
macroscale crack must be nucleated to recover well-posedness of the macroscale mechanical
problem. Once the critical point has been identified by the DBA, it is widely known
that homogenisation strategies relying on the average of microscale stress-like entities
throughout the entire RVE yields non-objective responses. More specifically, and as seen
in the numerical experiments reported in this work, the post-critical effective response,
obtained from traditional homogenisation procedures, in such cases depends on the size
of the RVE (SÁNCHEZ et al., 2013). The development of a multiscale model capable of
recovering an objective response in the post-critical regime is a matter of current research.
This problem can be addressed by an appropriate generalisation of the insertion and
kinematical homogenisation operators in the post-critical regime (BLANCO et al., 2014;
BLANCO et al., 2016), resulting in different homogenisation procedures for the microscale
stress as proposed in (SÁNCHEZ et al., 2013; TORO et al., 2016; BLANCO et al., 2014;
BLANCO et al., 2016).
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(a) RVE with vertical band. (b) Doubled RVE with vertical bands.

(c) RVE with vertical band after
bifurcation.

(d) Doubled RVE with vertical bands after bifurcation.

(e) RVE with inclined band. (f) Doubled RVE with inclined bands.

(g) RVE with inclined band after
bifurcation.

(h) Doubled RVE with inclined bands after
bifurcation.

Figure 46 – Initial and final configurations for fibre networks of Study 4.
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(a) Vertical band Ex4V.
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Figure 47 – Homogenised stress responses showing the lack of objectivity in the mechanical
response during the post-critical regime.
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6.3 Closing Remarks
As already mentioned, this chapter was devoted to present the application of

the framework developed in this thesis in some representative numerical experiments.
Numerical simulations of Section 6.1 are related exclusively to Chapter 4 and can be found
in the contribution (ROCHA et al., 2018). In turn, Section 6.2 demonstrated the theory
developed in Chapter 5, subject of another contribution in (ROCHA et al., 2019).

Despite of the differences between the models MCS and LBS appreciated throughout
the several computational experiments presented in this chapter, it is important to remark
that both models are able to characterise the universe of possible solutions attainable
through this kind of homogenisation procedures. Although no formal proof has been
presented, MCS and LBS are respectively good candidates to be regarded as lower and
upper bounds of the constitutive response (HILL, 1965) (we have discarded from this
comparison the Taylor or rule of mixtures model).

In the context of the last part of this chapter, the use of the minimally constrained
kinematical model enabled the localisation phenomena occurring at the microscale to
reach the boundary and naturally give rise to visible localisation bands which, ultimately,
are manifested at the macroscale through the prediction delivered by the discontinuous
bifurcation analysis. More specifically, the proposed model allowed us to simulate the
development of straight and inclined localisation bands, as well as the simulation of the
effects of random heterogeneities in both the microscale mechanical state and the resulting
homogenised response. Furthermore, it has been possible to evaluate the sensitivity of the
material response to the presence of microscale regions with marked altered conditions.
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7 Conclusion

Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

Winston Churchill

This chapter is devoted to present some final remarks. Those addressing the
contribution of the thesis are discussed in Section 7.1, those concerning the limitations
of the work are presented in Section 7.2 followed by some comments about viability of
multiscale simulations in Section 7.3. Finally, in Section 7.4 we briefly present some further
branches of research that can be derived from this thesis.

7.1 On the contributions of the thesis
In this work, we presented the theoretical bases of a multiscale model to simulate

material failure in fibrous materials. As well, we exhaustively analysed, through several
numerical examples, the homogenised material response of networks of fibres targeting an
improved representation of the mechanical environment unfolding at fine scales in rather
general and complex mechanical settings, based on those found in arterial tissues. Models
of the present type have the potential to analyse trends in mechanical behaviour of fibrous
tissues in situations where fibre properties, including their spacial distribution, may be
affected, for instance, by pathological conditions in the case of arterial tissue. Studies of
this type may provide important clues as to the causes and potential consequences of
pathologically-induced variations in fibre properties.

Looking at the specific contribution of Chapter 3, we have successfully extended
the classical multiscale theory of solids to consistently address a more challenging scenario,
i.e., for those RVEs featuring voids reaching the RVE boundary. In addition, we have
also shown that the proposed minimally constraining boundary condition is equivalent to
setting a uniform traction model. By using an analysis based on Lagrange Multipliers we
have shown that in a purely constitutive model the reaction force originated by relaxing
the constraint of zero-average fluctuation is zero, which demonstrates that the model is
mechanically self-equilibrated, and thus consistent. Furthermore, the resulting candidate
for the lower bound for the homogenised mechanical response is of great theoretical and
practical interest, specially for the strain localisation problems as seen in Chapter 6.

With regards to the contribution of Chapter 4, it mainly consists in a rigorous
and general derivation of the micromechanical equilibrium problem as well as of the
homogenisation formula for the dual stress entity from a minimum set of basic kinematical
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hypotheses and through the use of the MMVP. Similarly to the model of porous RVEs, we
have derived the minimally kinematically constrained model, which has been shown to
be, through numerical examples of Chapter 6, a lower bound for the mechanical response.
Moreover, the resulting homogenised response has shown to be sensitive to the presence
of heterogeneities in the arrangement of fibres as well as to the choice of the multiscale
model (i.e. choice of boundary conditions). It is worthwhile to mention that the proposed
model can directly be implemented in 3D, as already demonstrated in Section 6.1.2.

Related to the contribution of Chapter 5, a new ingredient of this work is the
analytical derivation of the fourth-order homogenised tangent, thus completing, together
with the homogenised stress, a complete constitutive multiscale toolbox to be used in
a fully-coupled multiscale scheme. An important subproduct obtained from the tangent
tensor is the evaluation of the model loss of strong ellipticity via the acoustic tensor
properties as described in Section 5.8. This method has been shown to be effective also in
the present context in which we deal with a network of fibres, allowing the determination
of the critical instant as well as the crack orientation and the instantaneous initial crack-
opening velocity. Such characterisation is fundamental in the sense that these data are
required for the simulation of the mechanical equilibrium at the macroscale continuum
in the scenario of a strong discontinuous kinematics. Finally, simulations featuring strain
localisation have been shown to yield a more realistic deformation pattern in the cases
which the MCS was employed, in contrast to the artificial deformation patterns observed
when the LBS was used.

7.2 Limitations
In the construction of the microscale kinematics, we have neglected phenomena

related to some deformation modes the fibres may be subjected to. Bending and torsion
are two examples as well as the interaction among fibres at junctions. Particularly, inter-
fibre sliding, and torsional resistance of junctions as a consequence of fibre interactions
are two examples which could provide an even more heterogeneous micro-mechanical
phenomenology. Related to that, the so-called interlock effect among fibres is investigated
by (DURVILLE et al., 2018), and references therein, where interactions caused by frictional
contact are incorporated to address the problem. Particularly, inter-fibre sliding mechanisms
have been modelled in (NADY; GANGHOFFER, 2016) by using auxiliary beams in the
contact. Bending phenomena and torsional resistance of junctions have been partially
addressed in (STYLIANOPOULOS; BAROCAS, 2007a). Even in the bending dominated
range, it is possible to refine the fibre strain energy to indirectly model the crimp effect,
as proposed in (GRYTZ; MESCHKE, 2009; SHEARER, 2015; MARINO; WRIGGERS,
2017). Nevertheless, in such work it has been shown that for physiological ranges of
stretches, fibre stretching continued to play the most important role in the constitutive
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response. Based on this, the proposed model is suitable for biomedical application, and,
moreover, it constitutes a general and consistent multiscale formalism which enables more
kinematical complexities to be incorporated in order to test further hypotheses. In contrast,
(BERKACHE et al., 2017) introduce a parameter representing the ratio between bending
and axial stiffnesses to establish a transition where the response is dominated by bending
or by axial tension.

Considering the theoretical suitability of the multiscale approach, we highlight
that the present work focused on the coupling between a fibrous network and a standard
continuum. When the hypothesis of scale separation is questionable, and size-effects are
important, the model must be improved in order to capture a more complex phenomenology
(FOREST; TRINH, 2011; TRINH et al., 2012). However, even in the context of higher-
order continua, or fracture mechanics, the MMPV has proven to be a suitable tool for the
development of effective multiscale models (BLANCO et al., 2016; SÁNCHEZ et al., 2013),
by providing the characterisation of the minimally constrained kinematically admissible
space in which the generalised Hill-Mandel principle has to be regarded. These issues
have been addressed in fibrous materials by the works of (NADY; GANGHOFFER, 2016;
BERKACHE et al., 2017).

7.3 Towards truly multiscale simulations
Truly multiscale simulations are those simulations in which the macroscale and

microscale realms somehow interact to solve the macroscale equilibrium problem. From
the numerical point of view, whenever the use coupled multiscale simulations (also called
FE2 (FEYEL; CHABOCHE, 2000b)) are to be conducted in the context of finite element
procedures, the computational cost involved poses a challenge to be addressed. Within the
context of a Newton scheme for the linearisation of the macroscale equilibrium problem,
the application of the present multiscale approach requires, for each Newton iteration, and
throughout the whole loading program, the determination of the stress and the tangent
operator at each Gauss point. Besides, the assembly of the macroscale stiffness matrix and
load vector through the solution of these microscale problems constitutes an inherently
parallel process which requires an efficient management of the computational resources at
hand. Currently, this is only possible if high performance computing facilities are available
and several computationally efficient implementations have been proposed to mitigate costs
(LOPES; PIRES; REIS, 2018; MATSUI; TERADA; YUGE, 2004; MOSBY; MATOUS,
2015; MOSBY; MATOUS, 2016).

One possible approach, appealing in the context of materials whose response is
independent from the loading program, is the off-line construction of a database for the
constitutive response, depending upon a number of parameters, which can be reduced
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by some technique as in (TEMIZER; ZOHDI, 2007; ZAGHI et al., 2018), or even relying
on more sophisticated approaches of dimensionality reduction as in (YVONNET; HE,
2007; HERNÁNDEZ et al., 2014). This mapping could then be stored and accessed during
on-line computations, drastically reducing the computational cost to practically the same
burden than single-scale simulations. More specifically, for nonlinear inelastic constitutive
laws (e.g. history-dependent materials), as the situation of the present work, few extensions
of the database approach are available. For instance, (OLIVER et al., 2017) exploits the
dimensionality reduction approach as in (HERNÁNDEZ et al., 2014) but applying it just
to the elastic part of the domain, restricting the on-line simulations of the inelastic regime
just to a small part of the domain. Approaches like this deserve further investigations to
facilitate the use of multiscale models in more realistic applications. Finally, it is important
to mention that in many cases there are reliable phenomenological constitutive laws which
require the definition of model parameters. Then, it is possible to use homogenisation
procedures in the form of an in-silico mechanical testing machinery to fit these material
parameters, as carried out in (SPEIRS; NETO; PERIĆ, 2008).

7.4 Further perspectives
Based on what has been exposed above, we point out some topics that deserve a

special attention in future:

• Implementation of a robust software infrastructure enabling fully coupled simulations
(FE2) taking advantage as much as possible of most modern distributed and parallel
computer architectures. We do not expect that the pure application of this approach
will ultimately, and massively, be used in practice, but it may guide the suitability
evaluation of less computational demanding approaches, by comparison with this
gold standard.

• Regularisation of multiscale model after the critical point is detected, by recovering
the objectivity of the mechanical response by respect the RVE size. The work
of (SÁNCHEZ et al., 2013), in continuum RVEs, may guide the extension of the
multiscale model.

• Once a regularised model is available, it makes sense to use the multiscale modelling
also for simulating the entire fracture process, i.e., finite element technologies
that enable the modelling of strong discontinuous kinematics can be implemented.
Examples of these methodologies are XFEM (MOËS; DOLBOW; BELYTSCHKO,
1999; BELYTSCHKO; BLACK, 1999) and the EFEM (OLIVER, 2004).

• Uncertainty quantification analysis to evaluate the impact of the uncertainties in
the several model parameters, such as: morphology of the fibre networks, material
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parameters of the each fibre, initial state of degradation of each fibre, etc.

• Construction of truly biologically inspired RVEs for arterial wall and the experimental
validation with the proposed methodology.

• Enrichment of the models concerning the individual fibre behaviour, e.g., bending
consideration, and also at the level of the fibre network, e.g., inter-fibre sliding, fibre
contact, torsional springs, etc.

• Modelling of mechanobiology phenomena applied to fibrous tissues, i.e., growth and
remodelling of fibres. Note that such phenomena are in a different time scale, and
thus an adequate treatment of this new scenario should developed.

• Exploit the concepts of dimensionality reduction and/or machine learning techniques
applied to simulation of history-dependent materials, by using the simulations
of microscale model to provide the necessary input and first principles for these
approaches.

• Exploit high-order continuum theories, since the presence of the fibres leads to
non-local effects, the hypothesis of scale separation is debatable.
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