About HeMoLab
The HeMoLab (Hemodynamics Modeling Laboratory) group is, since 2006, a R&D group within the National Laboratory for Scientific Computing (LNCC/MCTI). Background areas of HeMoLab team members and collaborators are Engineering, Computer Science, Mathematics, Physiology, Cardiology, Anatomy and Physics. Core activities are related to the modeling and numerical simulation of physiological systems, more specifically the cardiovascular system. Research efforts are concentrated towards developing coupled and multiscale physical models based on variational foundations, as well as to develop and implement numerical approximations based on the Finite Element Method, the Finite Volume Method and the Lattice-Boltzmann Method. Blood flow models, fluid structure interaction, wave propagation phenomena, medical image processing, constitutive multiscale modeling and parameter identification procedures are some of the activities of the group. Software development targeting distributed computing systems is a continuous concern with the aim of popularizing modeling and simulation tools and facilitate their use in real large scale problems.
ADAN-WEB
ADAN-WEB is a web application to provide users with extremely refined anatomical and functional data of the arterial network. This unprecedented dataset is based on the anatomical/medical domain knowledge, and has been developed in the HeMoLab group within the context of the INCT-MACC .
See moreImageLab
ImageLab is a software for medical image processing designed to serve as an easy-to-use tool to aid cardiovascular research through the processing and segmentation of anatomical structures of interest from medical images. ImageLab can equally be used as a laboratory to aid the implementation of new algorithms and methods.
See moreLatest Journal Papers
• Fernandes, LG; Müller, LO; Feijóo, RA; Blanco, PJ. Closed-loop baroreflex model with biophysically detailed afferent pathway. International Journal for Numerical Methods in Biomedical Engineering, v. 40, p. e3849, 2024.
• Nieman, K; García-García, HM; Hideo-Kajita, A; Collet, C; Dey, D; Pugliese, F; Weissman, G; Tijssen, JGP; Leipsic, J; Opolski, MP; Ferencik, M; Lu, MT; Williams, MC; Bruining, N; Blanco, PJ; Maurovich-Horvat, P; Achenbach, S. Standards for quantitative assessments by coronary computed tomography angiography (CCTA). Journal of Cardiovascular Computed Tomography, v. 18, p. 429-443, 2024.
• Thiesen, JLM; Klahr, B; Carniel, TA; Blanco, PJ; Fancello, EA. A second-order multiscale model for finite-strain poromechanics based on the method of multiscale virtual power. Journal of Elasticity, v. 156, p. 917-954, 2024.
• Tesch, RS; Takamori, ER; Menezes, K; Carias, RBV; Rebelatto, CLK; Senegaglia, AC; Daga, DR; Fracaro, L; Robert, AW; Pinheiro, CBR; Aguiar, MF; Blanco, PJ; Zilves, EG; Brofman, PRS; Borojevic, R. Nasal septum-derived chondroprogenitor cells control mandibular condylar resorption consequent to orthognathic surgery: a clinical trial. Stem Cells Translational Medicine, v. 13, p. 593-605, 2024.
• Mansilla Álvarez, LA; Feijóo, RA; Blanco, PJ. Inflow stabilization for hemodynamic simulations using Stokesian regions. Journal of Computational Physics, v. 510, p. 113096, 2024.
• Garmendia, C; Gonzalo, N; Blanco, PJ; García-García, HM. Implicancias de la inteligencia artificial en los métodos de imagen endovascular. Revista Argentina de Cardiologia, v. 92, p. 42-54, 2024.
• Beyene, S; Tufaro, V; Garg, M; Gkargkoulas, F; Teira Calderon, A; Safi, H; Waksman, R; Windecker, S; Torii, R; Melaku, GO; Bulant, CA; Bourantas, CV; Blanco, PJ; García-García, HM. Comparison of endothelial shear stress between ultrathin strut Bioresorbable Polymer Drug Eluting Stent vs Durable Polymer Drug Eluting Stent post-stent implantation: An optical coherence tomography substudy from BIOFLOW II. Cardiovascular Revascularization Medicine, v. 61, p. 26-34, 2024.
• Mansilla Álvarez, LA; Ares, GD; Feijóo, RA; Blanco, PJ. A mixed-order interpolation solid element for efficient arterial wall simulations. Computational Mechanics, v. 73, p. 67-87, 2024.
• Bulant, CA; Boroni, GA; Bass, R; Räber, L; Lemos, PA; García-García, HM; Blanco, PJ. Data-driven models for the prediction of coronary atherosclerotic plaque progression/regression. Scientific Reports, v. 14, p. 1493, 2024.
• Nieman, K; García-García, HM; Hideo-Kajita, A; Collet, C; Dey, D; Pugliese, F; Weissman, G; Tijssen, JGP; Leipsic, J; Opolski, MP; Ferencik, M; Lu, MT; Williams, MC; Bruining, N; Blanco, PJ; Maurovich-Horvat, P; Achenbach, S. Standards for quantitative assessments by coronary computed tomography angiography (CCTA). Journal of Cardiovascular Computed Tomography, v. 18, p. 429-443, 2024.
• Thiesen, JLM; Klahr, B; Carniel, TA; Blanco, PJ; Fancello, EA. A second-order multiscale model for finite-strain poromechanics based on the method of multiscale virtual power. Journal of Elasticity, v. 156, p. 917-954, 2024.
• Tesch, RS; Takamori, ER; Menezes, K; Carias, RBV; Rebelatto, CLK; Senegaglia, AC; Daga, DR; Fracaro, L; Robert, AW; Pinheiro, CBR; Aguiar, MF; Blanco, PJ; Zilves, EG; Brofman, PRS; Borojevic, R. Nasal septum-derived chondroprogenitor cells control mandibular condylar resorption consequent to orthognathic surgery: a clinical trial. Stem Cells Translational Medicine, v. 13, p. 593-605, 2024.
• Mansilla Álvarez, LA; Feijóo, RA; Blanco, PJ. Inflow stabilization for hemodynamic simulations using Stokesian regions. Journal of Computational Physics, v. 510, p. 113096, 2024.
• Garmendia, C; Gonzalo, N; Blanco, PJ; García-García, HM. Implicancias de la inteligencia artificial en los métodos de imagen endovascular. Revista Argentina de Cardiologia, v. 92, p. 42-54, 2024.
• Beyene, S; Tufaro, V; Garg, M; Gkargkoulas, F; Teira Calderon, A; Safi, H; Waksman, R; Windecker, S; Torii, R; Melaku, GO; Bulant, CA; Bourantas, CV; Blanco, PJ; García-García, HM. Comparison of endothelial shear stress between ultrathin strut Bioresorbable Polymer Drug Eluting Stent vs Durable Polymer Drug Eluting Stent post-stent implantation: An optical coherence tomography substudy from BIOFLOW II. Cardiovascular Revascularization Medicine, v. 61, p. 26-34, 2024.
• Mansilla Álvarez, LA; Ares, GD; Feijóo, RA; Blanco, PJ. A mixed-order interpolation solid element for efficient arterial wall simulations. Computational Mechanics, v. 73, p. 67-87, 2024.
• Bulant, CA; Boroni, GA; Bass, R; Räber, L; Lemos, PA; García-García, HM; Blanco, PJ. Data-driven models for the prediction of coronary atherosclerotic plaque progression/regression. Scientific Reports, v. 14, p. 1493, 2024.
Articles in Press
•